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Abstract

We propose a new Bayesian Neural Net for-
mulation that affords variational inference for
which the evidence lower bound is analytically
tractable subject to a tight approximation. We
achieve this tractability by (i) decomposing
ReLU nonlinearities into the product of an iden-
tity and a Heaviside step function, (ii) introduc-
ing a separate path that decomposes the neural
net expectation from its variance. We demon-
strate formally that introducing separate latent
binary variables to the activations allows repre-
senting the neural network likelihood as a chain
of linear operations. Performing variational in-
ference on this construction enables a sampling-
free computation of the evidence lower bound
which is a more effective approximation than
the widely applied Monte Carlo sampling and
CLT related techniques. We evaluate the model
on a range of regression and classification tasks
against BNN inference alternatives, showing
competitive or improved performance over the
current state-of-the-art.

1 INTRODUCTION

The advent of deep learning libraries (Abadi et al., 2015;
Theano Development Team, 2016; Paszke et al., 2017)
has made fast prototyping of novel neural net architec-
tures possible by writing short and simple high-level code.
Their availability triggered an explosion of research out-
put on application-specific neural net design, which in
turn allowed for fast improvement of predictive perfor-
mance in almost all fields where machine learning is used.
The next grand challenge is to solve mainstream machine
learning tasks with more time-efficient, energy-efficient,
and interpretable models that make predictions with at-
tached uncertainty estimates. Industry-scale applications

also require models that are robust to adversarial pertur-
bations (Szegedy et al., 2014; Goodfellow et al., 2015).

The Bayesian modeling approach provides principled
solutions to all of the challenges mentioned above
of machine learning. Bayesian Neural Networks
(BNNs) (MacKay, 1992) lie at the intersection of deep
learning and the Bayesian approach that learns the pa-
rameters of a machine learning model via posterior infer-
ence (MacKay, 1995; Neal, 1995). A deterministic net
with an arbitrary architecture and loss function can be
upgraded to a BNN simply by placing a prior distribution
over its parameters turning them into random variables.

Unfortunately, the non-linear activation functions at the
layer outputs render direct methods to estimate the
posterior distribution of BNN weights analytically in-
tractable. A recently established technique for approxi-
mating this posterior is Stochastic Gradient Variational
Bayes (SGVB) (Kingma and Welling, 2014), which sug-
gests reparameterizing the variational distribution and
then Monte Carlo integrating the intractable expected
data fit part of the ELBO. Sample noise for a cascade
of random variables, however, distorts the gradient sig-
nal, leading to unstable training. Improving the sampling
procedure to reduce the variance of the gradient estimate
is an active research topic. Recent advances in this vein
include the local reparameterization trick (Kingma et al.,
2015) and variance reparameterization (Molchanov et al.,
2017; Neklyudov et al., 2017).

We here follow a second research direction (Hernández-
Lobato and Adams, 2015; Kandemir, 2018; Wu et al.,
2019) of deriving approaches that avoid Monte Carlo
sampling and the associated precautions required for vari-
ance reduction, and present a novel BNN construction
that makes variational inference possible with a closed-
form ELBO. Without a substantial loss of generality, we
restrict the activation functions of all neurons of a net
to the Rectified Linear Unit (ReLU). We build our for-
mulation on the fact that the ReLU function can be ex-



pressed as the product of the identity function and the
Heaviside step function: max(0, x) = x · 1(x). Fol-
lowing Kandemir (2018) we exploit the fact that we are
devising a probabilistic learner and introduce latent vari-
ables z to mimic the deterministic the Heaviside step
functions. This can then be relaxed to a Bernoulli distri-
bution z ∼ δx>0 ≈ Ber

(
σ(Cx)

)
with some C � 0 and

the logistic sigmoid function σ(·). The idea is illustrated
in Figure 1. We show how the asymptotic account of this
relaxation converts the likelihood calculation into a chain
of linear matrix operations, giving way to a closed-form
computation of the data fit term of the Evidence Lower
Bound in mean-field variational BNN inference. In our
construction, the data fit term lends itself as the sum of
a standard neural net loss (e.g. mean-squared error) on
the expected prediction output and the predictor variance.
This predictor variance term has a recursive form, describ-
ing how the predictor variance back-propagates through
the layers of a BNN. We refer to our model as Variance
Back-Propagation (VBP).

Experiments on several regression and classification tasks
show that VBP can perform competitive to and improve
upon other recent sampling-free or sampling-based ap-
proaches to BNN inference. Last but not least, VBP
presents a generic formulation that is directly applicable
to all weight prior selections as long as their Kullback-
Leibler (KL) divergence with respect to the variational
distribution is available in closed form, including the com-
mon log-Uniform (Kingma et al., 2015; Molchanov et al.,
2017), Normal (Hernández-Lobato and Adams, 2015),
and horseshoe (Louizos et al., 2017) priors.

2 BAYESIAN NEURAL NETS WITH
DECOMPOSED FEATURE MAPS

Given a data set D = {(xn, yn)Nn=1} consisting of N
pairs of d-dimensional feature vectors xn and targets yn,
the task is to learn in a regression setting1 with a normal
likelihood

w ∼ p(w),

y|X,w ∼ N
(
y|f(X;w), β−11

)
,

for X = {x1, ...,xN} and y = {y1, ..., yN}, with β as
the observation precision, and 1 an identity matrix of
suitable size. The function f( · ;w) is a feed-forward
multi-layer neural net parameterized by weights w, and
ReLU activations between the hidden layers. p(w) is an
arbitrary prior over these weights.

0

0
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Figure 1: ReLU decomposition. We decompose the
ReLU function into an identity function and a Heavi-
side step function, which is in turn approximated with a
Bernoulli distribution.

2.1 THE IDENTITY-HEAVISIDE
DECOMPOSITION

A ReLU function can be decomposed as max(0, u) =
u · 1(u), with 1 being the Heaviside step function

1(x) =

{
1, x > 0

0, x ≤ 0
.

This allows us to express the feature map vector hl (post-
activation) of a data point at layer l + 1 as

hl = f l ◦ zl

with f l = Wlh
l−1 and zl = 1

(
Wlh

l−1),
where hl−1 is the feature map vector of the same data
point at layer l − 1, the matrix Wl contains the weights
to map from layers l − 1 to l and ◦ denotes the element-
wise Hadamard product of equal sized matrices or vectors.
For l = 0, i.e. the input, we set h0 = x. f l is the
linear pre-activation output vector of layer l. We refer
to zl as the activation vector. When the argument of
the 1(·) function takes a vector as its input, we mean
its elementwise application to all inputs. We denote the
above factorized formulation of the feature map hl as the
Identity-Heaviside Decomposition.

Applying this decomposed expression for example on a
feed-forward neural net with two hidden layers, we get2

y = f(x;w) = wT
3

(
z2 ◦W2(z1 ◦W1x)

)
+ ε,

with ε ∼ N (0, β−1), for a data point consisting of the
input-output pair (x, y). Note that given the binary activa-
tions z1 and z2 of the step function, the predictor output
can be computed following a chain of linear operations.

1See Section 2.7 for the extension to classification.
2We suppress the bias from the notation as it can directly be

incorporated by extending the respective weights matrices.



2.2 THE PROBABILISTIC MODEL

For zlnj—the jth activation at the lth layer for data point
n—we can approximate the Heaviside step function with
a Bernoulli distribution as follows

zlnj ∼ Ber
(
zlnj |σ(C ·wT

ljh
l
n)
)
, (1)

where σ(·) is the logistic sigmoid function.3 The approxi-
mation becomes precise as C →∞.

Applying the Identity-Heaviside decomposition and
Bernoulli relaxation to an L-layer BNN we obtain

wlj ∼ p(wlj), ∀l, j
zlnj |wlj ,h

l
n ∼ Ber

(
zlnj |σ(C ·wT

ljh
l
n)
)
, ∀l, n, j

y|w,X,Z ∼ N
(
y|f(X;w), β−11

)
,

where Z is the overall collection of activation variables.

2.2.1 Relation to V-ReLU-Net

The decomposition of the ReLU activation has been pro-
posed before in the context of learning BNNs as the Vari-
ational ReLU Network (V-ReLU-Net) (Kandemir, 2018).
The goal of that work is to derive a gradient-free closed-
form variational inference scheme updating each variable
to the local optimum conditioned on the other variables.
This necessitates not only the decomposition we described
above but also a further mean-field decoupling of the BNN
layers. Translated to our notation, the V-ReLU-Net has
for hlnj—the post-activation unit j of layer l and data
point n—the following model

wlj ∼ N (wlj |0, α−11),

f lnj |wljh
l−1
n ∼ N (f lnj |wT

ljh
l−1
n , β−1),

zlnj |f lnj ∼ Ber
(
zlnj |σ(Cf lnj)

)
,

hlnj |zlnj , f lnj ∼ N (hlnj |zlnjf lnj , γ−1),

where α, β, γ are fixed hyperparameters. This means
introducing additional distributions over each pre- & post-
activation unit of each layer in the network. While such
factorization across layers enjoys gradient-free variational
update rules, it suffers from poor local maxima due to
lack of direct feedback across non-neighboring layers.
Our formulation loosens this update scheme in the way
shown in the next sections. Our experiments show that
the benefit of gradient-free closed-form updates tends to
not be worth the added constraints placed on the BNN for
our kind of problems.

3σ(x) =
(
1 + exp(−x)

)−1

2.3 VARIATIONAL INFERENCE OF THE
POSTERIOR

In the Bayesian context, learning consists of inferring
the posterior distribution over the free parameters of
the model p(θ|D) = p(y|θ,X)p(θ)

/ ∫
p(y|θ,X)p(θ)dθ

which is intractable for neural nets due to the integral
in the denominator. Hence we need to resort to approxi-
mations. Our study focuses on variational inference due
to its computational efficiency. It approximates the true
posterior by a proxy distribution qφ(θ) with a known
functional form parameterized by φ and minimizes the
Kullback-Leibler divergence between qφ(θ) and p(θ|D)

KL
[
qφ(θ)||p(θ|D)

]
.

After a few algebraic manipulations, minimizing this KL
divergence and maximizing the functional below turn out
to be equivalent problems

Lelbo = Eqφ(θ)[log p(y|θ,X)]︸ ︷︷ ︸
Ldata

−KL[qφ(θ)||p(θ)]︸ ︷︷ ︸
Lreg

. (2)

This functional is often referred to as the Evidence Lower
BOund (ELBO), as it is a lower bound to the log marginal
distribution log p(y|X) known as the evidence. The
ELBO has the intuitive interpretation that Ldata is respon-
sible for the data fit, as it maximizes the expected log-
likelihood of the data, and Lreg serves as a complexity
regularizer by punishing unnecessary divergence of the
approximate posterior from the prior.

In our setup, θ consists of the global weights w and
the local activations Z. For the weights we follow prior
art (Kingma et al., 2015; Hernández-Lobato and Adams,
2015; Molchanov et al., 2017) and adopt the mean-field
assumption that the variational distribution factorizes
across the weights. We assume each variational weight
distribution to follow q(wlij) = N (wlij |µlij , (σlij)2) and
parameterize the individual variances via their loga-
rithms to avoid the positivity constraint giving us φ =
{(µlij , log σlij)ijl}. We also assign an individual factor
to each zlnj local variable. Rather than handcrafting the
functional form of this factor, we calculate its ideal form
having other factors fixed, as detailed in Section 2.5. The
final variational distribution is given as

q(Z)qφ(W) =

N∏
n=1

L∏
l=1

Jl−1∏
i=1

Jl∏
j=1

q(zlnj)qφ(wlij), (3)

where Jl denotes the number of units at layer l.

This allows us to rewrite Lelbo as

Lelbo = Eq(Z)qφ(W) [log p(y|W,Z,X)]

− Eqφ(W)

[
KL
(
q(Z)||p(Z|W,X)

)]
−KL

(
q(W)||p(W)

)
,



splitting it into three terms. As our ultimate goal is to
obtain the ELBO in closed form, we have that for the
third term any prior on weights that lends itself to an ana-
lytical solution of KL(q(W)||p(W)) is acceptable. We
have a list of attractive and well-settled possibilities to
choose from, including: i) the Normal prior (Blundell
et al., 2015) for mere model selection, ii) the log-Uniform
prior (Kingma et al., 2015; Molchanov et al., 2017) for
atomic sparsity induction and aggressive synaptic connec-
tion pruning, and iii) the horseshoe prior (Louizos and
Welling, 2017) for group sparsity induction and neuron-
level pruning. In this work, we stick to a simple Normal
prior to be maximally comparable to our baselines.

We will discuss the second term of Lelbo,
Eqφ(W)

[
KL
(
q(Z)||p(Z|W,X)

)]
in greater detail

in Proposition 2, which leaves the first term that is
responsible for the data fit. For our regression likelihood,
we can decompose Ldata as

Ldata = Eq(Z)qφ(W) [log p(y|W,Z,X)]

c
= −β

2

N∑
n=1

Eq(Z)qφ(W)

[(
yn − f(xn;w)

)2]
= −β

2

N∑
n=1

{(
yn − Eq(Z)qφ(W)

[
f(xn;w)

])2
+ varq(Z)qφ(W)

[
f(xn;w)

]}
, (4)

where c
= indicates equality up to an additive constant.

In this form, the first term is the squared error evaluated
at the mean of the predictor f(·) and the second term
is its variance, which infers the total amount of model
variance to account for the epistemic uncertainty in the
learning task (Kendall and Gal, 2017). A sampling-free
solution to (4) therefore translates to the requirement of an
analytical solution to the expectation and variance terms.

2.4 CLOSED-FORM CALCULATION OF THE
DATA FIT TERM

2.4.1 The Expectation Term

When all feature maps of the predictor are Identity-
Heaviside decomposed and the distributions over the zlnj’s
are approximated by Bernoulli distributions as described
in Section 2.2, the expectation term

Eq(Z)qφ(W) [f(xn;w)] (5)

can be calculated in closed form, as f(xn;w) consists
only of linear operations over independent variables ac-
cording to our mean-field variational posterior with which
the expectation can commute operation orders. This order
interchangeability allows us to compute the expectation

term in a single forward pass where each weight takes
its mean value with respect to its related factor in the
approximate distribution q(Z)qφ(W). For instance, for a
Bayesian neural net with two hidden layers, we have

Eq(Z)qφ(W)[f(x;w)]

= Eq(Z)qφ(W)[w3
T(z2n ◦W2(z1n ◦W1xn))]

= E[w3]T
(
E[z2n] ◦ E[W2]

(
E[z1n] ◦ E[W1]xn

))
.

Consequently, the squared error part of the data fit term
can be calculated in closed form. This interchangeability
property of linear operations against expectations holds as
long as we keep independence between the layers, hence
it could also be extended to a non-mean-field case.

2.4.2 The Variance Term Calculated via Recursion

The second term in (4) that requires an analytical solution
is the variance

varq(Z)qφ(W) [f(xn;w)] . (6)

Its derivation comes after using the following two iden-
tities on the relationship between the variances of two
independent random variables a and b:

var[a+ b] = var[a] + var[b], (7)

var[a · b] = var[a]var[b] + E[a]2var[b]

+ var[a]E[b]2,

= E[a2]var[b] + var[a]E[b]2. (8)

Applying these well-known identities to the linear output
layer activations fL of the nth data point4 we have

var
[
fL
]

= var
[
wT
Lh

L−1] = var

[ JL∑
j=1

wLjh
L−1
j

]

=

JL∑
j=1

E
[
w2
Lj

]
var
[
hL−1j

]
+ var [wLj ]E

[
hL−1j

]2
.

Given the normal variational posterior over the weights,
we directly get

E
[
w2
Lj

]
= µ2

Lj + σ2
Lj

var [wLj ] = σ2
Lj ,

while E
[
hL−1j

]
can be computed as described in Sec-

tion 2.4.1. For var
[
hL−1j

]
finally we can use the second

variance identity again and arrive at

var
[
hL−1j

]
= var

[
zL−1j · fL−1j

]
= E

[
(zL−1j )2

]
var
[
fL−1j

]
+ var

[
zL−1j

]
E
[
fL−1j

]2
.

4We suppress the n index throughout following derivations



Combining these results we have for the output j of an
arbitrary hidden layer l that

var
[
hlj
]

= var

[ Jl∑
i=1

zliw
l
ijh

l−1
i

]
=

Jl∑
i=1

var

[
zliw

l
ijh

l−1
i

]

=

Jl∑
i=1

E
[
(zli)

2
]

var
[
wlijh

l−1
i

]
+ var

[
zli
] (
E
[
wlij
]
E
[
hl−1j

])2
=

Jl∑
i=1

E
[
(zli)

2
] {
E
[
(wlij)

2
]

var
[
hl−1i

]
+ var

[
wlij
]
E
[
hl−1i

]2 }
+ var

[
zli
] (
E
[
wlij
]
E
[
hl−1j

])2
. (9)

Assuming that we can evaluate E
[
(zli)

2
]

and var
[
zli
]
,

which we discuss in the next section, the only term left
to evaluate is the variance of the activations at the pre-
vious layer var

[
hl−1i

]
. Hence, we arrive at a recursive

description of the model variance. Following this formula,
we can express var[f(xn;w)] as a function of var[hL−1n ],
then var[hL−1n ] as a function of var[hL−2n ], and repeat
this procedure until the observed input layer, where vari-
ance is zero var[h0

n] = var[xn] = 0. For noisy inputs,
the desired variance model of the input data can be di-
rectly injected to the input layer, which would still not
break the recursion and keep the formula valid. Comput-
ing this variance term thus only requires a second pass
through the network in addition to the one required when
the expectation term is computed, sharing many of the
required calculations. As this formula reveals how the ana-
lytical variance computation recursively back-propagates
through the layers, we refer to our construction as Vari-
ance Back-Propagation (VBP).

Learning the parameters φ of the variational posterior
qφ(W) to maximize this analytical form of the ELBO
then follows via mini-batch stochastic gradient descent.

2.5 UPDATING THE BINARY ACTIVATIONS

The results so far are analytical contingent upon having
the existence of a tractable expression for each of the
q(zlnj) factors in the variational posterior in Equation (3).
While we update the variational parameters of the weight
factors via gradient descent of the ELBO, for the binary
activation distributions q(zlnj), we choose to perform the
update at the function level. Benefiting from variational
calculus, we fix all other factors in q(Z)qφ(W) except
for a single q(zlnj) and find the optimal functional form
for this remaining factor. We first devise in Propositon 1 a
generic approach for calculating variational update rules

of this sort. The proofs of all propositions can be found
in the Appendix.

Proposition 1. Consider a Bayesian model including
the generative process excerpt below

· · ·
a ∼ p(a)

z|a ∼ δa>0 ≈ Ber
(
z|σ(Ca)

)
b|z, a ∼ p(b|g(z, a))

· · ·

for some arbitrary function g(z, a) and C � 0. If the
variational inference of this model is to be performed with
an approximate distribution5 Q = · · · q(a)q(z) · · · , the
optimal closed-form update for z is

q(z)← Ber
(
z|σ(CEq(a) [a])

)
,

and for C →∞

q(z)← δEq(a)[a]>0.

For our specific case this translates for a finite C to

q(zlnj)← Ber
(
zlnj
∣∣σ(C ·∑iE

[
wlij
]
E
[
hl−1ni

] ))
,

and in the limit6

q(zlnj)← δ
E[wlj]

T
E[hl−1

n ]>0
,

involving only terms that are already computed during
the forward pass expectation term computation and can
be done concurrently to that forward pass. The Bernoulli
distribution also provides us analytical expressions for the
remaining expectation and variance terms in the computa-
tion of Equation (9).

2.5.1 The Expected KL Term on Z

A side benefit of the resultant q(zlnj) distributions is that
the complicated Eqφ(W)

[
KL
(
q(Z)||p(Z|W,X)

)]
term

can be calculated analytically subject to a controllable
degree of relaxation as we devise in Proposition 2.

Proposition 2. For the model and the inference
scheme in Proposition 1 with q(a) = N (a|µ, σ2),
in the relaxed delta function formulation δa>0 ≈
Ber

(
a|σ(Ca)

)
with some finite C > 0, the expression

Eq(a)
[
KL[q(z)||p(z|a)]

]
is (i) approximately analytically

tractable and (ii) its magnitude goes to 0 quickly as |µ|
increases, with σ controlling how fast it drops towards 0.

5Note that q(b) might or might not exist depending on
whether b is latent or observed.

6Note that the expectation of a delta function is the binary
outcome of the condition it tests and the variance is zero.
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Figure 2: Visualization of Eq(a)
[
KL[q(z)||p(z|a)]

]
.

While the second term in Eq (10) can be computed di-
rectly, the expected softplus function is approximated
with a large sample for each µ, σ pair. (Here C = 1 ).

This proposition deserves several comments. Firstly, the
approximation δa>0 ≈ Ber

(
a|σ(Ca)

)
is tight even for

decently small C values (≈ 10), which allows us to keep
a close relationship both to the Identity-Heaviside Decom-
position, as well as to the theoretical requirements arising
within the proofs as well as the numerical ones within the
implementation. Secondly, the Proposition relies on the
assumption that a follows a normal distribution. In our
case we have for zlnj that

alnj = wT
ljh

l
n =

Jl∑
i=1

wlijh
l
ni.

This sum allows us to use a central limit theorem (CLT)
argument (Wang and Manning, 2013; Wu et al., 2019), to
fulfill this assumption. The relevant µlnj , σ

l
nj parameters

of the can be computed via a moment-matching approach,
analogously to our general derivations above. As we show
in the appendix, with the Bernoulli relaxation we have
that the expression can be simplified to

Eq(a)
[
KL[q(z)||p(z|a)

]
= Eq(a)

[
log(1 + exp(Ca))

]
− log

(
1 + exp(CE[a])

)
. (10)

This expression drops quickly to zero as |µ| increases
with the size of σ controlling the width of this spread
around zero, as we visualize in Figure 2.

In order to arrive at an analytical expression we can further
approximate each of the two softplus terms soft(·) =
log(1 + exp(·)) with their ReLU counterpart, an approxi-

mation that gets tighter as we increase C.

Eq(a)[soft(Ca)]− soft(CEq(a)[a])

≈ C
(
Eq(a)[max(0, a)]−max(0,Eq(a)[a])

)
.

For this expression in turn we can get the analytical

C
(
µΦ
(µ
σ

)
+ σφ

(µ
σ

)
−max(0, µ)

)
, (11)

where φ(·) and Φ(·) are the pdf and cdf of a standard
Normal distribution.

In practice we drop this expected KL term from the ELBO
as it becomes negligible for a sufficiently constrained
variance. This soft constrained on the variance terms
of the layers however is already enforced through the
varq(Z)qφ(W)

[
f(xn;w)

]
term in Equation (4).

2.6 HANDLING CONVOLUTION AND
POOLING

As a linear operation, convolution is directly applicable
to the VBP formulation by modifying all the sums be-
tween weights and feature maps with sliding windows.
Doing the same will suffice also for the calculation of
var
[
f(xn;w)

]
. In VBP, one layer affects the next only

via sums and products of variables, which is not the
case for max-pooling. Even though convolutions are
found to be sufficient for building state-of-the-art archi-
tectures (Springenberg et al., 2015), we show in the Ap-
pendix with Proposition 3 that max-pooling is also di-
rectly applicable to VBP by extending Proposition 1.

2.7 HANDLING CLASSIFICATION

For classification, we cannot directly decompose

Eq(Z)qφ(W) [log p(y|W,Z,X)] ,

as we did in Equation (4) for regression.

For binary classification, we treat y as a vector of la-
tent decision margins and squash it with a binary-output
likelihood p(t|y). From (Hensman et al., 2013), the log-
marginal likelihood of the resultant bound is given by

log p(t|x) = log

∫
p(t|y)p(y|x)dy

≥ log

∫
p(t|y) exp(Lelbo)dy = Lclsf.

Choosing a probit likelihood p(t|y) = Ber
(
t|Φ(y)

)
, the

integral becomes tractable. This can also directly be ex-
tended to multi-class, multi-label classification.7

7where for a C class problem yn ∈ {0, 1}C



In the experiments we instead focus on multi-class classi-
fication with a unique label,8 i.e. a categorical likelihood

y|w,X,Z ∼ Cat
(
y|ζ(f(X;w))

)
,

where ζ(·) is the softmax function.9 In this case we have

Eq(Z)qφ(W) [log p(y|W,Z,X)]

=

N∑
n=1

Eq(Z)qφ(W)

[
yT
n f(xn;w)− lse(f(xn;w))

]
=

N∑
n=1

yT
nE
[
f(xn;w)

]
− E

[
lse(f(xn;w))

]
,

where lse(·) is the logsumexp function.10 The expec-
tation in the first term can be computed analytically as
detailed in Section 2.4.1, while the second is intractable.
We follow Wu et al. (2019) and derive the following ap-
proximation to the second term using a Taylor expansion

E
[
lse(f)

]
≈ lse (E[f ])

+
1

2

C∑
c=1

var[fc]
(
ζ
(
E[f ]

)
c
− ζ
(
E[f ])2c

)
,

with f = f(xn;w). The resulting expectation and vari-
ance terms can be computed as in the regression case.

2.8 RELATION TO CLT BASED APPROACHES

We close this section with a short comparison with two
other state-of-the-art sampling-free approaches and how
VBP differs from them. These are Deterministic Vari-
ational Inference (DVI) (Wu et al., 2019)11 and Proba-
bilistic Backpropagation (PBP) (Hernández-Lobato and
Adams, 2015). PBP follows an assumed density filter-
ing approach instead of variational inference, but relies
as DVI does on a CLT argument as a major part of the
pipeline. It is based on the observation that the pre-
activations of each layer

f lnj = wT
ljh

l
n =

Jl∑
i=1

wlijh
l
ni

are approximately normally distributed with mean and
variance parameters that can be computed by moment
matching from the earlier layers as in our case. The
mean and variance of the post-activation feature maps

8where yn ∈ {0, 1}C with the constraint
∑

j ynj = 1
9ζ(x)j = exp(xj)/

∑
i exp(xi)

10lse(x) = log
∑

j exp(xj)
11For simplicity we focus only on the homoscedastic, mean-

field variation of DVI here.

h = max(0, f) are tractable for ReLU activations (Frey
and Hinton, 1999), i.e.

EN (f |µ,σ2)

[
max(0, f)

]
= µΦ

(µ
σ

)
+ σφ

(µ
σ

)
var
[

max(0, f)
]

= (µ2 + σ2)Φ
(µ
σ

)
+ µσφ

(µ
σ

)
− E

[
h
]2
,

and can then be propagated forward to the next layer. Due
to the decomposition we do not rely on the CLT and get
the corresponding expressions as

E[h] = E[z]E[f ] = E[z]µ

var[h] = E[z2]var[f ] + var[z]E[f ]2

= E[z2]σ2 + var[z]µ2 ≈ E[z]σ2,

where the value of E[z] decides whether the mean and
variance of the pre-activation f are propagated or blocked.

3 RELATED WORK

Several approaches have been introduced for approxi-
mating the intractable posterior of BNNs. One line is
model-based Markov Chain Monte Carlo, such as Hamil-
tonian Monte Carlo (HMC) (Neal, 2010) and Stochastic
Gradient Langevin Dynamics (SGLD) (Welling and Teh,
2011). Chen et al. (2017) adapted HMC to stochastic
gradients by quantifying the entropy overhead stemming
from the stochasticity of mini-batch selection.

While being actively used for a wide spectrum of models,
successful application of variational inference to deep
neural nets has taken place only recently. The earliest
study to infer a BNN with variational inference (Hinton
and Camp, 1993) was applicable for only one hidden layer.
This limitation has been overcome only recently (Graves,
2011) by approximating intractable expectations by nu-
merical integration. Further scalability has been achieved
after SGVB is made applicable to BNN inference using
weight reparameterizations (Kingma and Welling, 2014;
Rezende et al., 2014).

Dropout has strong connections to variational inference
of BNNs (Srivastava et al., 2016). Gal and Ghahra-
manimani (2016) developed a theoretical link between a
dropout network and a deep Gaussian process (Damianou
and Lawrence, 2013) inferred by variational inference.
Kingma et al. (2015) showed that extending the Bayesian
model selection interpretation of Gaussian Dropout with a
log-uniform prior on weights leads to a BNN inferred by
SGVB. The proposed model can also be interpreted as an
input-dependent dropout (Ba and Frey, 2013; Lee et al.,
2018) applied to a linear net. Yet it differs from them and
the standard dropout in that the masking variable always



Table 1: Regression Results. Average test log-likelihood ± standard error over 20 random train/test splits.
boston concrete energy kin8nm naval power protein wine yacht

N/d 506/13 1030/8 768/8 8192/8 11934/16 9568/4 45730/9 1599/11 308/6

DVI −2.58± 0.04 −3.23± 0.01 −2.09± 0.06 1.01± 0.01 5.84± 0.06 −2.82± 0.00 −2.94± 0.00 −0.96± 0.01 −1.41± 0.03
PBP −2.57± 0.09 −3.16± 0.02 −2.04± 0.02 0.90± 0.01 3.73± 0.01 −2.84± 0.01 −2.97± 0.00 −0.97± 0.01 −1.63± 0.02
VarOut −2.59± 0.03 −3.18± 0.02 −1.25± 0.05 1.02± 0.01 5.52± 0.04 −2.83± 0.01 −2.92± 0.00 −0.96± 0.01 −1.65± 0.05
VBP (ours) −2.59± 0.03 −3.15± 0.02 −1.11± 0.07 1.04± 0.01 5.79± 0.07 −2.85± 0.01 −2.92± 0.00 −0.96± 0.01 −1.54± 0.06

shuts down negative activations, hence does not serve as a
regularizer but instead implements the ReLU nonlinearity.

A fundamental step in the reduction of ELBO gradient
variance has been taken by Kingma et al. (2015) with lo-
cal reparameterization, which suggests taking the Monte
Carlo integrals by sampling the linear activations rather
than the weights. Further variance reduction has been
achieved by defining the variances of the variational dis-
tribution factors as free parameters and the dropout rate as
a function of them (Molchanov et al., 2017). Theoretical
treatments of the same problem have also been recently
studied (Miller et al., 2017; Roeder et al., 2017).

SGVB has been introduced initially for fully factorized
variational distributions, which provides limited support
for feasible posteriors that can be inferred. Strategies for
improving the approximation quality of variational BNN
inference include employment of structured versions of
dropout matrix normals (Louizos and Welling, 2016),
repetitive invertible transformations of latent variables
(Normalizing Flows) (Rezende and Mohamed, 2015)
and their application to variational dropout (Louizos and
Welling, 2017). Wu et al. (2019) use the CLT argument to
move beyond mean-field variational inference and demon-
strate how to adapt it to learn layerwise covariance struc-
tures for the variational posteriors.

Lastly, there is active research on enriching variational
inference using its interpolative connection to expectation
propagation (Hernández-Lobato and Adams, 2015; Li and
Turner, 2016; Li and Gal, 2017).

4 EXPERIMENTS

We evaluate the proposed model on a wide variety of
regression and classification data sets. Details on hyper-
parameters and architectures not provided in the main text
can be found in the appendix.12

4.1 REGRESSION

For the regression experiments we follow the experimen-
tal setup introduced by Hernández-Lobato and Adams
(2015) and evaluate the performance on nine UCI bench-

12See https://github.com/manuelhaussmann/
vbp for a reference implementation and the appendix.

mark data sets. For each data set we train a BNN with one
hidden layer of 50 units.13 Each data set is randomly split
into train and test data, consisting of 90% and 10% of the
data respectively. We optimize the model using the Adam
optimizer (Kingma and Ba, 2015) with their proposed
default parameters and a learning rate of λ = 0.01.

We compare against the two sampling-free approaches
Probabilistic Back-Propagation (PBP) (Hernández-
Lobato and Adams, 2015) and Deterministic Variational
Inference (DVI) (Wu et al., 2019) as well as the sampling
based Variational Dropout (VarOut) (Kingma et al., 2015)
in the formulation by Molchanov et al. (2017). 14

In order to learn the observation precision β, we follow
a Type II Maximum Likelihood approach and after each
training epoch choose it so that the ELBO is maximized,
which reduces to choosing β to maximize the data fit, i.e.

β∗ = arg max
β

Eq(θ)
[

log p(y|θ,x)
]
,

which gives us

1

β∗
=

1

N

N∑
n=1

Eq(θ)
[

(yn − f(xn; θ))
2 ]
. (12)

This expression is either evaluated via samples for VarOut
or deterministically for VBP as we have shown above.
One could also introduce a hyperprior over the prior
weight precisions, and learn them via also via a Type-II
approach (Wu et al., 2019). Instead we use a fixed nor-
mal prior p(w) = N (w|0, α−11). We set α = 10 and
use β = 1 as the initial observation precision, observing
quick convergence in general.

We summarize the average test log-likelihood over twenty
random splits in Table 1. VBP either outperforms the
baselines or performs competitively with them.

4.2 CLASSIFICATION

Our main classification experiment is an evaluation on
four image classification data sets of increasing complex-
ity: MNIST (LeCun et al., 1998), FashionMNIST (Xiao

13100 units for protein
14The results for these baselines are taken from the respective

papers, while for VarOut we rely on our own implementation,
replacing the improper log-uniform prior with a proper Gaussian
prior to avoid a possible improper posterior (Hron et al., 2017).

https://github.com/manuelhaussmann/vbp
https://github.com/manuelhaussmann/vbp


Table 2: Classification Results. Average error rate and test log-likelihoods ± standard deviation over five runs
AVERAGE ERROR (in %) AVERAGE TEST LOG-LIKELIHOOD (in %)

VarOut DVI VBP (ours) VarOut DVI VBP (ours)

MNIST 1.12± 0.05 0.97± 0.06 0.85± 0.06 −0.03± 0.00 −0.03± 0.00 −0.03± 0.00
FASHIONMNIST 10.81± 0.24 10.33± 0.07 10.10± 0.16 −0.30± 0.00 −0.29± 0.00 −0.28± 0.00
CIFAR-10 33.40± 1.06 35.15± 1.13 31.33± 1.01 −0.95± 0.03 −1.00± 0.03 −0.90± 0.03
CIFAR-100 62.85± 1.43 66.21± 1.14 60.97± 1.61 −2.44± 0.06 −2.61± 0.06 −2.37± 0.08

et al., 2017), CIFAR-10, and CIFAR-100 (Krizhevsky
and Hinton, 2009), in order to evaluate how the three
variational inference based approaches of either taking
samples, relying on CLT, or the ReLU decomposition to
learn compare as the depth of the BNN increases.

We use a modified LeNet5 sized architecture consisting
of two convolutional layers and two fully connected lay-
ers, with more filters/units per layer for the two CIFAR
data sets As discussed in Section 2.6, VBP can handle
max-pooling layers, but they require a careful tracking
of indices between the data fit and variance terms, which
comes at some extra run time cost in present deep learn-
ing libraries. Instead, we provide a reference implementa-
tion on how to do this, but stick in the experiments with
strided convolutions following the recent trend of “all-
convolutional-nets” (Springenberg et al., 2015; Yu et al.,
2017; Redmon and Farhadi, 2018).

We compare VBP against VarOut and our own implemen-
tation of DVI.15 In order to ensure maximal comparability
between the three methods all of them share the same
normal prior p(w) = N (w|0, α−11) (α = 100), initial-
ization and other hyperparameters. They are optimized
with the Adam optimizer (Kingma and Ba, 2015) and a
learning rate of λ = 0.001 over 100 epochs.

We summarize the results in Table 2. We observe that
DVI, making efficient use of the CLT based moment-
matching approach, improves upon the sampling based
VarOut on the two easier data sets, while it struggles on
CIFAR. VBP can deal with the increasing width from
(Fashion)MNIST to CIFAR-{10,100} a lot better, improv-
ing upon both VarOut as well as DVI on all four data
sets. As the depth increases from the regression to the
classification experiment the difference that was small
for the shallow network also becomes more and more
pronounced.

4.2.1 Online Learning Comparison

As the final experiment we follow the setup of Kandemir
(2018). They argue that their focus on closed-form up-
dates instead of having to rely on gradients gives them
an advantage in an online learning setup that has the con-

15We use the mean-field setup of DVI to be comparable to the
mean-field variational posteriors learned with VBP and VarOut.

Table 3: Online Learning Results. Average test set ac-
curacy (in %) ± standard deviation over ten runs.

MNIST CIFAR-10

V-ReLU-Net 92.8± 0.2 47.1± 0.2
VarOut 96.7± 0.2 47.8± 0.3
DVI 96.6± 0.2 48.7± 0.4
VBP (ours) 96.6± 0.2 48.3± 0.4

straint of allowing only a single pass over the data. They
report results on MNIST and CIFAR-10, using a net with
a single hidden layer of 500 units for MNIST and a two
hidden layer net with 2048/1024 units for CIFAR-10. We
summarize the results in Table 3. While the closed-form
updates of V-ReLU-Net have the advantage of removing
the need for gradients, the required mean-field approxima-
tion over the layers substantially constrains it compared
to the more flexible VBP structure.

5 CONCLUSION

Our experiments demonstrate that the Identity-Heaviside
decomposition and especially the variance back-
propagation we propose offer a powerful alternative to
other recent deterministic approaches of training deter-
ministic BNNs.

Following the No-Free-Lunch theorem, our closed-form
available ELBO comes at the expense of a number of re-
strictions, such as a fully factorized approximate posterior,
sticking to ReLU activations, and inapplicability of Batch
Normalization (Ioffe and Szegedy, 2015). An immedi-
ate implication of this work is to explore ways to relax
the mean-field assumption and incorporate normalizing
flows without sacrificing from the closed-form solution.
Because Equations (7) and (8) extend easily to dependent
variables after adding the covariance of each variable pair
as done by Wu et al. (2019), our formulation is applica-
ble to structured variational inference schemes without
major theoretical obstacles. Further extensions that are
directly applicable to our construction are the inclusion
residual He et al. (2016) and skip connections Huang et al.
(2017), which is an interesting direction for future work as
it will allow this approach to scale to deeper architectures.



References

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin,
S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kud-
lur, J. Levenberg, D. Mané, R. Monga, S. Moore,
D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Va-
sudevan, F. Viégas, O. Vinyals, P. Warden, M. Watten-
berg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow:
Large-scale machine learning on heterogeneous sys-
tems, 2015.

Jimmy Ba and Brendan Frey. Adaptive dropout for train-
ing deep neural networks. In NIPS, 2013.

Christopher M. Bishop. Pattern recognition and machine
learning. springer, 2006.

C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wies-
tra. Weight uncertainty in neural networks. In ICML,
2015.

T. Chen, E.B. Fox, and C. Guestrin. Stochastic gradient
Hamiltonian monte carlo. In ICML, 2017.

A. Damianou and N.D. Lawrence. Deep Gaussian pro-
cesses. In AISTATS, 2013.

B. Frey and G. Hinton. Variational learning in nonlinear
Gaussian belief networks. Neural Computation, 1999.

Y. Gal and Z. Ghahramani. Bayesian convolutional neu-
ral networks with bernoulli approximate variational
inference. 2015.

Y. Gal and Z. Ghahramanimani. Dropout as a Bayesian ap-
proximation: Representing model uncertainty in deep
learning. In ICML, 2016.

I.J. Goodfellow, J. Shlens, and C. Szegedy. Explaining
and harnessing adversarial examples. In ICLR, 2015.

A. Graves. Practical variational inference for neural net-
works. In NIPS, 2011.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In ICCV,
2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
CVPR, 2016.

J. Hensman, N. Fusi, and N.D. Lawrence. Gaussian pro-
cesses for big data. In UAI, 2013.

J. M. Hernández-Lobato and R. Adams. Probabilistic
backpropagation for scalable learning of bayesian neu-
ral networks. In ICML, 2015.

G.E. Hinton and D.van Camp. Keeping neural networks
simple by minimizing the description length of the
weights. In COLT, 1993.

J. Hron, A.G. Matthews, and Z.Ghahramani. Variational
Gaussian dropout is not Bayesian. arXiv preprint
arXiv:1711.02989, 2017.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and
Kilian Q. Weinberger. Densely connected convolu-
tional networks. In CVPR, 2017.

S. Ioffe and C. Szegedy. Batch normalization: Accelerat-
ing deep network training by reducing internal covari-
ate shift. In ICML, 2015.

M. Kandemir. Variational closed-form deep neural net
inference. Pattern Recognition Letters, 2018.

A. Kendall and Y. Gal. What uncertainties do we need in
Bayesian deep learning for computer vision? In NIPS,
2017.

D. Kingma and M. Welling. Auto-encoding variational
Bayes. In ICLR, 2014.

D. Kingma, T. Salimans, and M. Welling. Variational
dropout and the local reparameterization trick. In NIPS,
2015.

D.P. Kingma and J. Ba. Adam: A method for stochastic
optimization. In ICLR, 2015.

A. Krizhevsky and G. Hinton. Learning multiple layers
of features from tiny images. 2009.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278–2324, 1998.

Juho Lee, Saehoon Kim, Jaehong Yoon, Hae Beom Lee,
Eunho Yang, and Sungjoo Hwang. Adaptive network
sparsification via dependent variational beta-bernoulli
dropout. arXiv preprint arXiv:1805.10896, 2018.

Y. Li and Y. Gal. Dropout inference in Bayesian neural
networks with alpha-divergences. In ICML, 2017.

Y. Li and R.T. Turner. Rényi divergence variational infer-
ence. In NIPS, 2016.

C. Louizos and M. Welling. Structured and efficient vari-
ational deep learning with matrix Gaussian posteriors.
In ICML, 2016.

C. Louizos and M. Welling. Multiplicative normalizing
flows for variational Bayesian neural networks. In
ICML, 2017.

C. Louizos, K. Ullrich, and M. Welling. Bayesian com-
pression for deep learning. In NIPS, 2017.

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng.
Rectifier nonlinearities improve neural network acous-
tic models. In Proc. icml, 2013.



D.J. MacKay. A practical Bayesian framework for back-
propagation networks. Neural Computation, 1992.

D.J. MacKay. Probable networks and plausible predic-
tions – a review of practical Bayesian methods for
supervised neural networks. Network: Computation in
Neural Systems, 1995.

A. Miller, N. Foti, A. D’Amour, and R.P. Adams. Re-
ducing reparameterization gradient variance. In NIPS,
2017.

D. Molchanov, A. Ashukha, and D. Vetrov. Variational
dropout sparsifies deep neural networks. In ICML,
2017.

R. Neal. Bayesian learning for neural networks. PhD
Thesis, 1995.

R. Neal. MCMC using Hamiltonian dynamics. Handbook
of Markov Chain Monte Carlo, 54:113–162, 2010.

K. Neklyudov, D. Molchanov, A. Ashuka, and D. Vetrov.
Structured Bayesian pruning via log-normal multiplica-
tive noise. In NIPS, 2017.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang,
Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and
A. Lerer. Automatic differentiation in pytorch. In
NIPS-W, 2017.

J. Redmon and A. Farhadi. Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767, 2018.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan
Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. arXiv preprint
arXiv:1401.4082, 2014.

D.J. Rezende and S. Mohamed. Variational inference with
normalizing flows. In ICML, 2015.

G. Roeder, Y. Wu, and D. Duvenaud. Sticking the land-
ing: Simple, lower-variance gradient estimators for
variational inference. In NIPS, 2017.

J.T. Springenberg, A. Dosovitskiy, T. Brox, and M. Ried-
miller. Striving for simplicity: The all convolutional
net. In ICLR, 2015.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A simple way to prevent
neural networks from overfitting. Journal of Machine
Learning Research, 2016.

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus. Intriguing properties of
neural networks. In ICLR, 2014.

Theano Development Team. Theano: A Python frame-
work for fast computation of mathematical expressions.
arXiv e-prints, 2016.

S.I. Wang and C.D. Manning. Fast dropout training. In
ICML, 2013.

M. Welling and Y.W. Teh. Bayesian learning via stochas-
tic gradient Langevin dynamics. In ICML, 2011.

A. Wu, S. Nowozin, E. Meeds, R. E. Turner, J. M.
Hernandez-Lobato, and A. L. Gaunt. Deterministic
variational inference for robust bayesian neural net-
works. In ICLR, 2019.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-
mnist: a novel image dataset for benchmarking ma-
chine learning algorithms, 2017.

F. Yu, V. Koltun, and T. Funkhouser. Dilated residual
networks. In CVPR, 2017.


	INTRODUCTION
	BAYESIAN NEURAL NETS WITH DECOMPOSED FEATURE MAPS
	THE IDENTITY-HEAVISIDE DECOMPOSITION
	THE PROBABILISTIC MODEL
	Relation to V-ReLU-Net

	VARIATIONAL INFERENCE OF THE POSTERIOR
	CLOSED-FORM CALCULATION OF THE DATA FIT TERM
	The Expectation Term
	The Variance Term Calculated via Recursion

	UPDATING THE BINARY ACTIVATIONS
	The Expected KL Term on Z

	HANDLING CONVOLUTION AND POOLING
	HANDLING CLASSIFICATION
	RELATION TO CLT BASED APPROACHES

	RELATED WORK
	EXPERIMENTS
	REGRESSION
	CLASSIFICATION
	Online Learning Comparison


	CONCLUSION

