RUPRECHT-KARLS-

UNIVERSITÄT HEIDELBERG

1 Introduction **Self-Supervision:** Learn powerful features for visual understanding utilizing large amount of unlabeled data Surrogate Task: Ordering permuted input data Widely applicable s : state of the spatiotemporal (e.g. images and videos) network Utilized in several approaches gather statistics softmax **Multi-Task Self-Supervision**: Train several tasks evaluate gain Could improve upon single task training val error Problematic to balance heterogeneous tasks permute data sample action **Our Model:** • Unify ordering approaches in a single model Training procedure of π Trained with spatial and temporal information one network, (B) Validation—State & Reward Spatiotemporal multiple tasks, Self-Supervision two domains **Spatiotemporal-Network state representation** • Direct: weights > not feasible (dimensionality) **Procedure in Self-Supervision:** • Indirect: performance over a validation set X_{val} (1) apply a transformation to the input (2) train network learning to compensate the trafo Validation Process • Tranformations are controlled by a free parameter a $(x, \psi_i) \longrightarrow$ (e.g. selected permutation) $\psi_i \in \Psi$ $x \in X_{val}$ • Common procedure: selecting *a* randomly $y_i^{\hat{}}$: indicates the ability of ST-net to reconstruct $\psi_i^{\hat{}}$ Limitation Does not maximize the network improvements (e.g. a problematic transformation should be shown more $y_1(x_1) \ldots y_1(x_{|X_{val}|})$ Network often than a learnt one) $\implies s =$ State Idea: Learn a policy for optimally selecting a based on Embedding $|y_{|\Psi|}(x_1) \dots y_{|\Psi|}(x_{|X_{val}|}),$ the state of the network for efficient training **Action Space & State Representation** Random Policy XOur Policy Policy selects permutations directly \Box Independent by the model \Rightarrow Adjusts to the state of the net **Complexity too high, no convergence** Static policy ➡ Dynamic policy Solutior Group permutations based on S (C) \Box Inefficient Training rightarrow Efficient supervision signal Final State: (2) $\hat{s} = [|c_j|, median([s_i]_{\psi_i \in c_j})]_{j=1}^{|C|}$ rightarrow Fixed permutation \Box Learnable distribution distribution Reward Η $\dot{r} \leq$ **Our Approach: Train** a policy network using $c_i \in C$: Groups **Reinforcement learning for proposing** *a* \mathcal{E} : Validation Error $\mathcal{E}_{t+1}^{BL} = 2\mathcal{E}_t - \mathcal{E}_{t-1}$: Baseline (C) Spatiotemporal Training Architecture Data $\psi_i^I(x) = (\mathbf{w}, \mathbf{w}, \mathbf{w}$ **Videos:** Shuffling in time on frame-level • shared CaffeNet weights until pool5 **Images:** Input is $\psi_i^V(x) = (\begin{array}{c} \end{array}, \begin{array}{c} \end{$ divided in a 3x3

grid of tiles shuffled spatially

 $\psi_i^V = (5, 1, 8, 3, 6, 4, 7, 2)$

 $|\Psi^V| = 1000 \quad \psi_i^V \in \Psi^V$

Improving Spatiotemporal Self-Supervision by **Deep Reinforcement Learning**

Uta Büchler*

Biagio Brattoli*

Heidelberg University, HCI/IWR, Germany

{firstname.lastname}@iwr.uni-heidelberg.de

$$a = (x, \psi_i)$$
 : action

(3)
$$r_t := \mathcal{E}_{t+1}^{BL} - \mathcal{E}_{t+1}$$

- FC6—FC7—Classifier

Björn Ommer

Method	Non-	Linear
	Linear	
Imagenet	59.7	50.5
Random	12.0	14.1
RotNet+[18]	43.8	36.5
Videos [52]	29.8	-
OPN^* [28]	29.6	_
Context $[10]$	30.4	29.6
Colorization[55]	35.2	30.3
BiGan[12]	34.8	28.0
Split-Brain[56]	-	32.8
NAT[5]	36.0	-
Jigsaw[34]	34.6	27.1
Ours	38.2	36.5

ation[13]	Detection[13]	Segmentation[14]
8.2	56.8	48.0
3.3	43.4	19.8
8.0	54.4	39.1
3.8	46.9	_
5.9	-	38.4
7.7	51.4	36.6
0.4	49.5	37.9
. .6	53.2	37.6
.2	52.8	42.8

Pascal VOC Dataset

ed by licy in e. ple	000.0 Wean Error 000.0 Wean Error 000.0 00				20% 40% 60% 80% 100%		
	(D)		${\cal E}$ ove	isode r time,	one		
permutation per row. The policy leads to faster progress (A) upon training with random policy which improves uniformly (B)							
+P	Т	T+P	S&T	S+T	S+T+P		
1.3	64.1	65.9	69.8	72.0	74.2		
4.6	52.8	55.7	54.2	57.3	58.6		
ing for action recognition and multi-							

object classification. Joint training (S+T) outperforms serial training(S&T). Utilizing P improves upon the random policy.