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Abstract 3D vision guided manipulation of components is
a key problem of industrial machine vision. In this paper, we
focus on the localization and pose estimation of known in-
dustrial objects from 3D measurements delivered by a scan-
ning sensor. Because local information extracted from these
measurements is unreliable due to noise, spatially unstruc-
tured measurements and missing detections, we present a
novel objective function for robust registration without us-
ing correspondence information, based on the likelihood of
model points. Furthermore, by extending Runge-Kutta type
integration directly to the group of Euclidean transforma-
tion, we infer object pose by computing the gradient flow di-
rectly on the related manifold. Comparison of our approach
to existing state of the art methods shows that our method is
more robust against poor initializations while having com-
parable run-time performance.

Keywords Registration· Iterative Closest Point (ICP)·
Kernel-Based Similarity Measures· Geometric Integration

1 Introduction

1.1 Overview and Motivation

3D object recognition, pose estimation, quality inspection
and bin picking are typical tasks that frequently occur in in-
dustrial machine vision applications. In each case, reliability
and accuracy are important, besides a sufficiently short pro-
cessing time. While one often knowsa priori the object as
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well as a rough estimate of the position, accurately deter-
mining the 3D object pose without prior information is the
major difficulty of bin picking.

This difficulty results from the fact that a vision-based
bin picking system has to cope with multiple instances of ar-
bitrary, but known objects, that are randomly assembled in a
bin. Figure 1 shows a typical set-up. Although prior knowl-
edge of the objects shape simplifies the problem, a consider-
able amount of noise, symmetries of the object’s shape, and
mutual occlusion renders the tasks far from being trivial. A
close-up view depicted in the right panel of Fig. 1 illustrates
these issues.

A common way to address such a problem is to deter-
mine significant local landmarks in both the scene and the
model, and to match them. Landmark detectors in 3D in-
clude spin images [1], shape context [2], point signatures
[3], and volume integral descriptors [4]. Having established
the correspondence of the landmarks, determining the Eu-
clidean transformation that aligns measurements and object
model is straightforward [5].

However, in the scenario considered in this paper, land-
mark based approaches are likely to fail due to a high de-
gree of occlusion, object symmetry, and sparse noisy mea-
surements (Fig. 1). An alternative is to work directly with
the observed point clouds in order to register objects and
to determine their pose. Still, this involves the problem to
establish the correspondence between object model and ob-
servations.

An alternative class of methods to determine the rigid
body transformation involves problems that do not require
explicit point-to-point correspondences. Based on the work
of Jian and Vemuri [6], in this paper we investigate a corre-
sponding novel probabilistic objective function for the ro-
bust registration of point clouds. According to this crite-
rion, optimal configurations for the pose are achieved by di-
rectly minimizing a distance measure without the need to
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Fig. 1 Industrial Bin-Picking System (left) and the corresponding filtered edge data obtained with a SICK LMS 400 scanning device (right). The
data are noisy and components occlude each other. This paper studies the problem to compute likely hypotheses of 3D pose of individual objects.

establish point correspondences. This minimization is car-
ried out by numerically computing the gradient flow on the
special Euclidean group of transformation, without resorting
to particular parametrizations of rotations like Euler angles
or quaternions, that are common in graphics and vision but
not necessarily convenient for numerical purposes.

1.2 Related Work

Aligning two point sets amounts to the’chicken and egg’
problem of determining simultaneously point-to-point cor-
respondences and a rigid transformation. Having solved ei-
ther problem, the other one becomes trivial.

As a consequence, most approaches proceed in an itera-
tive fashion where given an estimate of the transformation,
correspondence is estimated by some heuristic, followed by
updating the transformation estimate, and so forth. The pro-
totypical representant of this class of approaches is the Iter-
ative Closest Point (ICP) algorithm developed in parallel by
Besl and McKay [7] and Chen and Medioni [8]. Due to its
simplicity and fast convergence, ICP is still a state of the art
algorithm [9]. Further variants for speeding up the ICP algo-
rithm have been suggested in the literature [10]. Because this
work does not address our main concern, robustness with re-
spect to initialization and local minima, we do not consider
it in this paper, however.

As is well known, this basic two-step iteration is sus-
ceptible to noise and poor initialization. To overcome these
issues Rusinkiewicz and Levoy [9], Rangarajan et al. [11]
and Fitzgibbon [12] proposed robust variations that are more
tolerant against imprecise initializations as well as against

noise and outlying structures. These improvements are based
on smoothing the cost function of ICP but require determin-
ing accurate annealing schedules or noise thresholds.

In order to model uncertainties more precisely, Granger
and Pennec [13] considered a robust ICP approach in an ex-
pectation maximization framework (EM-ICP). Using a prob-
abilistic framework facilitates the interpretation of involved
thresholds. Yet, despite increased robustness, there appears
to be still room for improvement, especially concerning the
requirement of accurate initializations of correspondences.

To alleviate these problems, Tsin and Kanade [14] and
Jian and Vemuri [6] suggested to use an approach that does
not require explicit point-to-point correspondences. The re-
spective point clouds of both, the scene and the model are
represented by mixture distributions, and the registration is
achieved by optimizing the correlation of both distributions.

1.3 Contribution

The contribution of this paper is twofold. Firstly, we inves-
tigate a novel distance measure for point set alignment that
does not involve explicit point-to-point correspondences.

Secondly, we show how to optimize this criterion numer-
ically on the manifold of rigid transformations, using numer-
ically convenient local charts rather than special parametriza-
tions of the rotational part like, e.g., Euler angles.

Our distance measure is closely related to the work of
Jian and Vemuri [6], who proposed a whole family of prob-
abilistic distance measures for the registration of point sets
that are continuously represented by kernel density estimates
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or mixture distributions, and therefore do not need explicit
point-to-point correspondences. Specifically, theL2-distance
was studied as a particular case in [6], because it admits
closed form computations of the distance between Gaussian
mixture distributions and, therefore, is computationally ef-
ficient. In the present paper, we investigate a more general
objective function for the registration of point sets in terms
of the Kullback-Leibler distance between mixture distribu-
tions and show that it is more robust with respect to noise
and poor initializations while having run-time performance
similar to state of the art algorithms like EM-ICP [13], Sof-
tassign [11] and Kernel Correlation [6]. We also show that
our distance measure includes the one proposed in [15] as
another special case.

The second major contribution of this paper concerns the
method to infer the rigid transformation optimizing our cost
function. We apply a geometric Runge-Kutta type integra-
tion method [16,17] directly on the underlying manifold of
special Euclidean transformations, rather than using partic-
ular parametrizations of the involved orthogonal group. This
leads to accurate and numerically stable gradient minimiza-
tion at reasonably large step sizes.

Finally we apply our approach to artificial and real world
point sets to evaluate its performance and compare it with
related state of the art methods including ICP [7], EM-ICP
[13], Softassign [11], and Kernel Correlation [6].

1.4 Organization

Our paper is organized as follows. In Sec. 2 we define our
novel alignment measure. We show the relations to ICP and
Kernel Correlation and examine the computational complex-
ity of evaluating this measure. An algorithm for determina-
tion the optimal configuration is developed in Sec. 3. We
exploit the manifold structure of the group of rigid transfor-
mations in order to optimize numerically the objective func-
tion. To evaluate the performance of our approach in Sec. 4,
we compare our approach to existing point set registration
algorithms on both, artificial and real world point sets. We
conclude and point out further work in Sec. 5.

2 Rigid Point Set Registration

Let {ui, i = 1, . . .N} ⊂ R
3 denote the set of scene mea-

surements obtained by a scanning device, and let{vj , j =

1, . . .M} ⊂ R
3 be the set of samples specified by a given

model description, i.e. a CAD file or a sample scan (Fig. 2).
In practice, explicit geometric mesh models are typically not
available (cf. Fig. 2, left). Furthermore, generating meshes
from thousands of 3D point measurements may not be error-
free and causes a time-consuming preprocessing step. We

Fig. 2 Examples of 3D point cloud models obtained by a sample scan
(left) and by discretizing a CAD model (right).

therefore only consider models in terms of 3D point mea-
surements in order to uniformly handle all practically rele-
vant situations.

The objective of the registration step is to determine a
rigid body transformationθ ∈ SE(3) such that model and
scene samples are aligned best with respect to a certain dis-
tance measure. Here,SE(3) denotes the special Euclidean
group of rigid transformationsθ = TtR whose elements are
uniquely given by a proper rotationR ∈ SO(3) of 3-space,
followed by a translationTt(x) = t + x.

2.1 Correspondence Based Registration

Typically, point set alignment is achieved through correspon-
dence based registration. A common distance measure in-
volves sums of point-to-point distancesd(·, ·) given by

N
∑

i=1

M
∑

j=1

δijd(ui, θ(vj)) , (1)

whereθ(vj) rigidly transformsvj , andδij ∈ {0, 1} denotes
thatvj corresponds toui.

To computeθ by minimizing (1), we have to determine
the point-to-point correspondences{δij}. Determining these
correspondences, on the other hand, requires to know the
transformationθ. In general, this problem is solved in an
iterative manner, see e.g. [7,8,13,11].

2.2 Registration Without Explicit Correspondence

To alleviate the correspondence estimation problem, recent
approaches adopted continuous representations of point sets
using mixture distributions [14,6]. These representations for
the model and the scene, respectively, read

m(x; θ, σm) =

M
∑

j=1

wm
j k

(

x, θ(vj); σm

)

, (2a)

s(x; σs) =

N
∑

i=1

ws
i k(x,ui; σs) , (2b)
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Fig. 3 L2 distance (left) and KL distance (right) for one-dimensional mixture distributions with respect to translation. We can see that for increasing
σm, the KL distance effectively convexifies theL2 distance, leading to increased robustness of registration.

with weightsws
i , w

m
j ≥ 0 and kernel functionsk(·, ·; σs),

k(·, ·; σm) whose scale is controlled by parametersσs, σm.
In [6], Gaussian mixture distributions with covariance

matricesσ2I were chosen in (2), and a parametrized family
of distancesdα was proposed that includes the KL-distance
(α = 0)

D(s‖m) =

∫

s(x; σs) log
s(x; σs)

m(x; θ, σm)
dx (3)

and theL2 distance (α = 1). The latter distance was pre-
ferred because it can be evaluated in closed form. In this pa-
per, we study the natural distance (3) between distributions
[18] and show the relation to the standard distance measure
(1). This enables to interpret the ICP algorithm as an special
instance of the KL-distance.

The continuous point set representations (2) contain a
scale parametersσs, σm that take into account noise and un-
certainty of the point correspondences. It is reasonable to
confine this degree of freedom to either the scene or the
model. Without loss of generality, taking into account un-
certainty and noise only in the representation of the model
points, and choosing uniform weights, minimizing the dis-
tance (3) leads to the problem

max
θ

F (θ) , (4a)

F (θ) :=
N

∑

i=1

log
M
∑

j=1

1

M
k(θ(vj),ui; σm) . (4b)

This can be seen as follows. Since the first term of (3),
∫

s(x; σs) log s(x; σs)dx

−

∫

s(x; σs) log m(x; θ, σm)dx ,

(5)

does not depend onθ, minimizing (3) amounts to maximize
the second term in (5). Confining the modeling of uncer-
tainty and noise to the representation of the model points, as
discussed above, and choosing uniform weights, reduces the
representation of the scene points to

s(x; σs) =
1

N

N
∑

i=1

δ(x − ui) , (6)

whereδ(·) denotes the Dirac delta. Insertion into the second
term of (5) and dropping the constant, leads to the problem

θ∗ = max
θ

N
∑

i=1

log m(ui; θ, σm) , (7)

which together with (2) gives (4).

In order to highlight the role of the scale parameterσm,
we drop the constantM−1 and write out the term of the first
sum,

log

M
∑

j=1

k(θ(vj),ui; σm)

=const. + log
M
∑

j=1

exp

(

−
1

2σ2
m

‖θ(vj) − ui‖
2

)

. (8)

Up to scaling, the latter term on the right hand side corre-
sponds to the log-exponential function having well-known
properties [19]. As a result,∀σm > 0, scaling this term im-
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Fig. 4 Sketch for obtaining the gradient flow using Euler’s (left) and the Improved Euler (right) algorithm for a 1D curve. We can see that the
obtained values (circle) of the flow are closer to the true function (solid curve) for the improved Euler Method than for the ordinary algorithm.

mediately yields the estimate

σ2

m log

M
∑

j=1

exp

(

−
1

2σ2
m

‖θ(vj) − ui‖
2

)

− σ2

m log M (9a)

≤ max
j=1,...,M

{

−
1

2
‖θ(vj) − ui‖

2

}

(9b)

≤ σ2

m log

M
∑

j=1

exp

(

−
1

2σ2
m

‖θ(vj) − ui‖
2

)

. (9c)

These lower and upper bounds reveal that each term in (4)
provides a smoothed version and (including scaling) uni-
formly approximates forσm → 0 the minimum distance
of transformed model pointsθ(vj) to the measurementui,
which corresponds to the basic ICP objective function. Fig-
ure 3 illustrates this robustness property of our objective
function (4). This result also shows that our approach (4)
includes as special case the objective function suggested in
[15].

Concerning computational complexity, similar to orig-
inal version of ICP [7], EM-ICP [13], Softassign [11] and
Kernel Correlation [6], our distance measure can be evalu-
ated inO(NM) operations, leading to an acceptable run-
time performance.

3 Optimization by Geometric Integration

In this section, we derive an algorithm for optimizing the
objective function (4). Due to the kernel function involved,
computing the optimum in closed form is not possible, and
we have to resort to numerical techniques.

Typically, objective functions of pose parameters are it-
eratively minimized using standard algorithms like Nelder-
Mead [6] or Levenberg-Marquardt [12], based on a particu-
lar parametrization of the groupSO(3) of rotations. As stan-
dard algorithms do not take into account the curved structure
of the underlying space, they require substantial modifica-
tions. We refer to [20] for typical examples.

Our plan in this paper, therefore, is to apply proper mod-
ifications of ordinary integration schemes [17,16] in order to
perform gradient ascent with respect to the objective func-
tion (4) directly on the group of rigid body transformations,
viewed as a smooth manifold in the space of4× 4 matrices.

Specifically, we adopt an improved version [21] of Eu-
ler’s algorithm for numerical integration to compute the gra-
dient flow onSE(3). To elucidate the exposition, we first
sketch the common Euclidean case, followed by explaining
the required modifications for transferring the scheme to the
manifold.

3.1 The Euclidean Case

Let X ∈ R
n×m be an arbitrary real valued matrix. A basic

approach for maximizing a smooth objective functionF (·) :

R
n×m → R is to perform gradient ascent

Ẋ(t) = ∇F (X(t)) , (10)

until a stationary pointẊ(t) = 0 is reached and the neces-
sary optimality condition∇F (X) = 0 is satisfied.

Many schemes for numerically integrating equations of
the form (10) exist [22,21]. In view of our objective to apply
such schemes to the curved space of pose parametersSE(3),
we explain next the most basic scheme, Euler’s method, and
its improvement through the mid-point rule.

Let X(t) denote a known point on the unknown path
solving (10). First-order expansion around this point yields

X(t + h) = X(t) + hẊ(t) + O(h2) . (11)

Omitting higher order terms, we obtain with (10)

X(t + h) ≈ X(t) + h∇F (X(t)) , (12)

defining Euler’s scheme to compute the next pointX(t+h)

along the solution path based on the current iterateX(t).
As is well-known, however, very small step sizesh have to
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Algorithm 1 Improved Euler Algorithm onRn×m

Require: F (·) : R
n×m → R

Require: h > 0.
1: setX0 ∈ R

n×m

2: t← 0
3: repeat
4: A← ∇F |Xt

5:
6: A← ∇F |

Xt+
1

2
hA

7:
8: Xt+h ←Xt + hA

9: t← t + h

10: until convergence

be chosen to avoid accumulation of numerical integration
errors. This holds, in particular, when integrating paths on
curved spaces.

Improving the Euler algorithm can be done as follows.
At each pointX(t) the search direction∇F (X(t)) is com-
puted. However, instead of moving with step sizeh along
the gradient direction∇F (X(t)), we move half the distance
1

2
h to obtain a new direction∇F

(

X(t) + 1

2
h∇F

(

X(t)
)

)

at this point. The corresponding update is given by

X(t + h) = X(t) + h∇F
(

X(t) +
1

2
h∇F

(

X(t)
)

)

. (13)

Figure 4 illustrates that the numerical scheme (13) is signifi-
cantly more accurate than (12), at moderate additional costs.

Algorithm 1 details each step of the numerical scheme
(13). Here∇F |Xt

denotes the computation of∇F atX(t).
We describe next how to modify and complement these steps
whenX(t) is defined on a manifold.

3.2 Extension to Rigid Body Transformations

In this section, we modify the scheme (13) such that it nu-
merically integrates (10) on a manifold. For the general math-
ematical background, we refer to [17,16].

We present the modified scheme first, followed by dis-
cussing the differences to the Euclidean case (13), viz. algo-
rithm 1.

3.2.1 Improved Euler Algorithm on SE(3)

A key property of the Euclidean spaceR
n, viewed as a flat

manifold, is that the tangent space at any point can be iden-
tified with R

n, i.e. the underlying manifold, itself. This is no
longer the case for non-flat manifolds, likeSE(3).

Besides clarifying the structure of tangent vectors, the
basic operation additionally needed is the so-called expo-
nential mappingexp(X), taking tangents to the manifold
M at pointX to pointsexp(X) ∈ M in the neighborhood
of X. For the mathematical details, we refer to [23].

Algorithm 2 Improved Euler Algorithm onSE(3)

Require: F (·) : SE(3)→ R

Require: h > 0.
1: setQ0 ∈ SE(3)
2: t← 0
3: repeat
4: G← ∂

∂Q
F |Qt

5: A← πQt
(G)

6: G← ∂
∂Q

F |exp( 1

2
hA)Qt

7: A← πexp( 1

2
hA)Qt

(G)

8: Qt+h ← exp(hA)Qt

9: t← t + h

10: until convergence

We will represent as usual elementsθ ∈ SE(3) by ma-
trices

Q =

(

R t

0⊤ 1

)

(14)

composed of rotation matricesR ∈ SO(3) and translation
vectorst ∈ R

3. In the sequel, it will be convenient to write
Qt instead ofQ(t) to improve readability of formulas.

For the readers convenience, we derive the structure of
tangents toSE(3) in appendix A. The exponential mapping
for matrixX is in general given by

exp(X) =

∞
∑

k=0

1

k!
Xk , (15)

which for the specific case of a matrixA tangent toQt ∈

SE(3) takes the form

exp(A) :=

(

exp(∆R) Λ∆t

0⊤ 1

)

, (16)

where, forγ = ‖∆R‖

exp(∆R) = I +
sin(γ)

γ
∆R +

sin2(γ
2
)

γ
2

∆2

R , (17a)

Λ = I +
1 − cos(γ)

γ2
∆R +

γ − sin(γ)

γ3
∆2

R . (17b)

All tangentsA and, in turn, matrices∆R, ∆t result from
projections as detailed in appendix B.

Let ∂
∂Q

F |Qt
denote the usual matrix derivative of the

objective functionF atQt, andπQt
(G) denote the orthogo-

nal projection of a matrixG onto the tangent space ofSE(3)

at Qt, as derived in appendix B. Then, together with the
basic operation (16), algorithm 2 is well-defined and corre-
sponds to the scheme (13) for integrating (10) onSE(3).

3.2.2 Differences to the Euclidean Case

The step-by-step comparison of algorithms 1 and 2 reveal
the modifications necessary to transfer the numerical inte-
gration scheme (13) to the manifoldSE(3).
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– Usual gradient computations of the objective functional
have to be interleaved with projections onto tangent spaces,
because for objective functions defined on manifolds,
the gradient actually is a vector field to make sense of
(10), cf. [23].

– Addition is replaced by the group operation, given by
matrix multiplication. This modification reflects that short-
est paths along a prescribed direction are straight lines in
the Euclidean space, but smooth curves when defined on
manifolds.

4 Evaluation and Application

In most industrial applications, estimating the pose of arbi-
trary but known objects is difficult due to measurement er-
rors and salient outlying structures. In order to align a model
to the scene under these conditions, sufficiently good initial-
izations are crucial. In this section, we therefore study the
behavior of the objective function (4) with respect to initial-
izations of varying accuracy. Moreover, we compare our ap-
proach to state of the art algorithms including ICP [7] based
on a k-D-tree implementation, EM-ICP [13], Softassign [11]
and Kernel Correlation [6].

Finally, we consider real world applications where model
points are taken from CAD files or a reference scan (Fig. 2)
and the corresponding scene is obtained by a SICK-LMS
400 laser scanner (Fig. 1).

4.1 Point Set Registration with Ground Truth

In this subsection we compare our approach to established
state of the are algorithms, including ICP [7], EM-ICP [13],
Softassign [11] and Kernel Correlation [6]. To this end, we
used models freely available [24] in order to analyze the per-
formance in a fully controlled environment. The models we
used for registration are visualized in Fig. 5.

Each model consists of up to 50.000 samples. To speed
up the whole process, we sampled each model down to the
size of 200 points. Scenes corresponding to the model were
placed arbitrarily in space. The primary concern in industrial
bin picking applications are outliers. To simulate this, we
randomly added up to 50 % outliers to each scene.

In order to analyze all algorithms with respect to sen-
sitivity to initialization, we repeated the alignment process
150 times, where for each iteration the scene was trans-
formed to a different location. Random rotations were ob-
tained by sampling the complete space of rotations, while
the translation varied randomly between 2 times the diame-
ter of the model.

Two sets were considered to be properly aligned if the
length of the curve connecting both transformations was less

Fig. 7 To demonstrate the ability of our novel cost function to handle
highly structured outliers we used a discrete set of points sampled from
slightly overlapping back and head of horse as scene and model respec-
tively (left). Instead of fitting the means of the point sets, our method
accurately merges both point sets and reconstructs the original model
(right).

than0.2. In Euler angles, this distance corresponds to an er-
ror of about 5 degrees in each angle and a total deviation
of 5 % of the model’s size in translation. This was chosen
empirically based on our experience with the industrial ap-
plication.

Furthermore, the parameters necessary for most algo-
rithms were all tuned by hand to optimize performance and
to guarantee a fair comparison. Accordingly, with respect
to the annealing schedules required for the Softassign [11]
and the EM-ICP Algorithm [13], we adopted conservative
schedules at the cost of slower convergence, in order to bet-
ter escape from local minima.

The choice of the parameterσ cannot be specified in
general but depends on the given data and its scale. As a
rule, too small values will impair robustness of the approach,
making it sensitive to local minima like the ICP algorithm.
Exceedingly large values, on the other hand, limit the accu-
racy of the registration. Our experiments show the existence
of a reasonably large interval of values resulting in good per-
formance.

The results of our experiments are presented in Fig. 6.
It shows that our novel objective function (4) show a sig-
nificantly increased robustness against inaccurate initializa-
tions and uniformly outperforms related state-of-the-art ap-
proaches like ICP and Kernel Correlation. Moreover, it re-
veals comparable performance to Softassign and EM-ICP
without using an annealing schedule.

Moreover, to demonstrate the robustness of our novel
objective function to structured outliers, we applied the reg-
istration procedure to the horse model, with a small overlap
as visualized in Fig. 7. Using an additional background ker-
nel supplemented to the model mixture, allows to accurately
align both point sets and reconstruct the original model.

Finally, the time, necessary to evaluate our objective func-
tion is similar to those arising from EM-ICP, Softassign and
Kernel Correlation, namelyO(NM).
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Fig. 5 Synthetic data set obtained from [24]. For our experiments, all data sets were down-sampled to 200 points and supplemented with outlier
points placed arbitrarily inside the bounding box of each model.
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Fig. 6 Percentage of experiments by applying from left to right ICP (dark blue), EM-ICP (light blue), Softassign (green), Kernel Correlation (red)
and our approach (brown) to the bunny (left), dragon (middle) and horse set (right) that converged to the true solution. All corresponding scenes
were supplemented with noisy points in the range up to 50 % of the model size.

4.2 Real World Applications

In real industrial applications, the rigid alignment of a model
point set to scene samples becomes more difficult due to the
type of noise. As Fig. 1 shows, the scene recorded by a SICK
LMS 400 scanning device contains noise as well as multi-
ple structures similar to model parts. Most structures have
to be considered as outliers, except for those corresponding
to the model. Quantitatively, nearly 80% of the samples are
structures not belonging to the object of interest.

In order to alleviate these issues, a common procedure
is to fit the scene to the model instead of fitting the model
to the scene, and to introduce a further background kernel
as already mentioned above. This improves the capability to
properly assign even occluded samples to parts.

In the particular scenario depicted in Fig. 1, experts from
industry expect a maximum variability of rotation of±6 de-
gree. Consequently, to be on the safe side, we randomly
sampled the rotation space within±25 degrees around the
model reference position and placed the model arbitrarily in
the scene. Similar to the synthetic experiments, we tuned the
parameters by hand.

The results of applying our approach as well as a ro-
bust implementation of ICP [9] are visualized in Fig. 8. The
statistics resulting from these experiments, presented in ta-
ble 4.2, reveal that according to our objective function 36 of
50 experiments converged to a visually correct solution. In
contrast, the robust implementation of ICP only converged
in 12 of 50 experiments.

This also leads to the fact that our approach locates 7 of
8 model instances in the scene with at least one experiment.
The robust ICP approach in contrast, is only able to extract
4 different model instances accurately.

Even more complicated models can be handled using our
novel objective function, see Fig. 9 and Fig. 10. While we
used the discretized model visualized on the right-hand side
of Fig. 2 to fit the scene measurements of Fig. 10 best, in
Fig. 9 we demonstrate the applicability to automatic pro-
cesses. The model, depicted on the left of Fig. 9 is used to
specify the transformation to subsequent sample scans. As
initialization we used the recorded position of the model.
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Fig. 8 Typical results of aligning a brake disc model to sample scans obtained by a SICK LMS 400 scanning device using our novel cost function
(left) and the robust ICP algorithm [9] (right). While our approach locates the disk in the upper right corner accurately, robust ICP failed to detect
it for the same initialization.

Fig. 9 Typical results of aligning a model, recorded by a SICK LMS 400 scanning device (left), to subsequent scans of the same object (middle
and right) using our novel objective function. The model (light blue) accurately fits to the recorded scene (black), even if parts of the scene are
missing.

Our Approach Robust ICP [9]
# located objects 7 4
# positive detections 36 12
# negative detections 14 38

Table 1 Statistical results of aligning a brake disc model to real world
data for our approach and a robust implementation of ICP using outlier
rejection [9].

4.3 Limitations of our Approach

Despite increased robustness in comparison to ICP, EM-ICP,
Softassign and Kernel Correlation, our approach still may
fail for too inaccurate initializations. Typical results where
our approach failed to converge to true solutions are shown
in Fig. 11.

In these cases, objects are placed such that parts of the
model accurately fit various salient structures in the scene
that, however, do not belong to a single object instance. Due
to the local influence of the kernels involved in our objective
function, we cannot currently escape from such pronounced
local optima.

5 Conclusion and Outlook

We briefly summarize the results obtained and give a short
outlook to our future work.

In this paper, we proposed a novel objective function for
rigid point set registration based on Jian and Vemuri’s [6]
work on Kernel Correlation. The major benefit of our cri-
terion is its ability to align point sets robustly even when a
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Fig. 10 Typical results of aligning a more complicated models to sample scans (left) obtained by a SICK LMS 400 scanning device using our
novel cost function. Due to high amount of occlusions, more than half of the model is invisible. Nevertheless, our method is able to accurately
align the model to the scene (right) given proper initializations.

Fig. 11 Typical negative detections occurring during experiments with too inaccurate initializations. Salient structures of different objects are
placed, such that they fit few parts of the model. Similar to state-of-the-art approaches, this causes our algorithm to get stuck in local optima.

considerable amount of spatial outlying structure is present
in the scene. This was demonstrated numerically in compar-
ison to a range of established methods, and implemented by
a numerical algorithm that takes into account the geometry
of the underlying manifold of transformations.

In our future work, we will address the persistent local
minima problem sketched in Sec. 4.3. A natural idea is to
apply an annealing procedure with respect to the kernel size,
similar to [11]. Parameterσm in (4) appears to be a suitable
candidate for this purpose.

Another point to be considered concerns the convergence
rate of our geometrical integration method. In this paper, we
used a stabilized version (13) of the basic Euler method (12),
adapted so as to integrate (10) onSE(3). This leaves room
for improvements by considering higher-order methods in
order to become competitive with the linear convergence
rate of basic ICP as well as the quadratic convergence of
the improved scheme presented in [25].

Acknowledgements This research work was supported by the
VMT Vision Machine Technic Bildverarbeitunssysteme GmbH, a
company of the Pepperl+Fuchs Group.

A Tangent Space ofSE(3)

We represent rigid transformationsθ ∈ SE(3) by matricesQ com-
posed of rotationsR and translationst,

Q =

„

R t

0⊤ 1

«

. (18)

The inverse is given by

Q−1 =

„

R⊤ −R⊤t

0⊤ 1

«

. (19)

LetQt := Q(t) denote any smooth path parametrized byt. Computing
the derivative ofQQ−1 = I yields

Q̇Q−1 + QQ̇−1 = 0 . (20)



11

Together with (14) and (19), (20) can be simplified to

∆ =

„

∆R ∆t

0⊤ 0

«

= Q̇Q−1 , (21)

where∆ is rotational skew symmetric, i.e∆R
⊤ = −∆R . Multiply-

ing both sides byQ reveals the general structure of tangent vectors,

Q̇ = ∆Q . (22)

As a result, the space of tangents toSE(3) at Q is given by

TQ = {Q̇ | Q̇ = ∆Q , ∆R
⊤ = −∆R} , (23)

where∆ has the form (21).

B Projections toTQ

The gradient∇F of a functionF : SE(3) → R is defined by the rela-
tion [23]

〈∂F, Y 〉 = 〈∇F, Y 〉 ,∀Y ∈ TQ , (24)

where〈·, ·〉 is the Riemannian metric of the underlying manifold, in
our case simply the ordinary matrix inner product

〈A, A〉 = tr
“

A⊤A
”

. (25)

TQ denotes the tangent space atQ defined in (23), and∂F is the usual
matrix derivative ofF given by

(∂F )ij =
∂

∂Qij

F (Q) . (26)

To obtain∇F in (24), we consider

∇F = arg min
Z∈TQ

1

2
‖Z − ∂F‖2 . (27)

Analogously to the decomposition in (14),∂F can be factorized as

∂F =

„

∂F11 ∂F12

∂F21 ∂F22

«

, (28)

where∂F11 ∈ R
3×3, ∂F12 ∈ R

3×1, ∂F21 ∈ R
1×3, ∂F22 ∈ R.

Using the general form of (23) and (21), together with (28), the
solution to (27) is given by

∆t = ∂F12 −∆Rt , (29)

∆R =
1

2

“

∂F11R⊤ −R∂F11
⊤

”

. (30)

As a result, the projection of∂F to∇F ∈ TQ reads

πQ(∂F ) =

„

∆R(∂F11) ∂F1,2 −∆R(∂F11)t
0 0

«

Q , (31)

where∆R(∂F11) = 1
2

`

∂F11R⊤ −R∂F11
⊤

´

.
By inserting (31) into (24), direct computation shows that (24)

holds for allY ∈ TQ . Moreover, for eachZ ∈ TQ ,

Z = πQ(Z) . (32)
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