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Abstract. Classification-based approaches for segmenting medical im-
ages commonly suffer from missing ground truth: often one has to resort
to manual labelings by human experts, which may show considerable
intra-rater and inter-rater variability. We experimentally evaluate sev-
eral latent class and latent score models for tumor classification based on
manual segmentations of different quality, using approximate variational
techniques for inference. For the first time, we also study models that
make use of image feature information on this specific task. Additionally,
we analyze the outcome of hybrid techniques formed by combining as-
pects of different models. Benchmarking results on simulated MR images
of brain tumors are presented: while simple baseline techniques already
gave very competitive performance, significant improvements could be
made by explicitly accounting for rater quality. Furthermore, we point
out the transfer of these models to the task of fusing manual tumor
segmentations derived from different imaging modalities on real-world
data.

1 Introduction and related work

The use of machine learning methods for computer-assisted radiological diag-
nostics faces a common problem: In most situations, it is impossible to obtain
reliable ground-truth information for e.g. the location of a tumor in the images.
Instead one has to resort to manual segmentations by human labelers, which are
necessarily imperfect due to two reasons. Firstly, humans make labeling mistakes
due to insufficient knowledge or lack of time. Secondly, the medical images upon
which they base their judgment may not have sufficient contrast to discriminate
between tumor and non-tumor tissue. In general, this causes both a systematic



bias (tumor outlines are consistently too large or small) and a stochastic fluctu-
ation of the manual segmentations, both of which depend on the specific labeler
and the specific imaging modality.

One can alleviate this problem by explicitly modelling the decision process
of the human raters: in medical image analysis, this line of research started with
the STAPLE algorithm (Warfield et al., 2004) and its extensions (Warfield et al.,
2008), while in the field of general computer vision, it can already be traced back
to the work of Smyth et al. (1995). Similar models were developed in other ap-
plication areas of machine learning [Raykar et al. (2010), Whitehill et al. (2009),
Rogers et al. (2010)]: some of them make also use of image information and
produce a classifier, which may be applied to images for which no annotations
are available. The effect of the different imaging modalities on the segmentation
has not yet found as much attention.

In this paper, we systematically evaluated these competing methods as well
as novel hybrid models for the task of computer-assisted tumor segmentation
in radiological images: we used the same machinery on annotations provided
by multiple human labelers with different quality and on annotations based
on multiple imaging modalities. While traditionally these methods have been
tackled by expectation maximization (EM; Dempster et al., 1977), we formulate
the underlying inference problems as probabilistic graphical models (Koller and
Friedman, 2009) and thereby render them amenable to generic inference methods
(see Fig. 1). This facilitates the inference process and makes it easier to study
the effect of modifications on the final inference results.

2 Theory and Modelling

Previous models In the following we detail on earlier and novel probabilistic
models studied in the present work. In the STAPLE model proposed by Warfield
(2004, Fig. 1(a)) the discrete observations snr ∈ {0, 1} are noisy views on the
true scores tn ∈ {0, 1}, with n ∈ {1, . . . , N} indexing the image pixels and r ∈
{1, . . . , R} indexing the raters. The r-th rater is characterized by the sensitivity
γr and the specificity 1−δr, and the observation model is snr ∼ tnBer(γr)+(1−
tn)Ber(δr), with “Ber” denoting a Bernoulli distribution. A Bernoulli prior is
given for the true class: tn ∼ Ber(p). While the original formulation fixes p = 0.5
and uses uniform priors for γr and δr, we modify the priors to fulfil the conjugacy
requirements for the chosen variational inference techniques: hence we impose
beta priors on γr ∼ Beta(ase, bse), δr ∼ Beta(bsp, asp) and p ∼ Beta(ap, bp).
The latter distribution is introduced in order to learn the share of tumor tissue
among all voxels from the data.

The model by Raykar et al. (2010, Fig. 1(c)) is the same as (Warfield et al.,
2004) except for the prior on tn: the authors now assume that a feature vector
φn is observed at the n-th pixel and that tn ∼ Ber

(

{1+exp(−w⊤φn)}−1
)

follows
a logistic regression model. A Gaussian prior is imposed on w ∼ N (0, λ−1

w I). In
contrast to (Warfield et al., 2004), they obtain a classifier that can be used to
predict the tumor probability on unseen test images, for which one has access



(a) Warfield et al. (2004) (b) Warfield et al. (2008)

(c) Raykar et al. (2010) (d) Whitehill et al. (2009)

(e) Hybrid model 2 (f) Hybrid model 4

Fig. 1. Graphical model representations. Red boxes correspond to factors, circles cor-
respond to observed (gray) and unobserved (white) variables. Solid black rectangles
are plates indicating an indexed array of variables (Buntine, 1994). The dashed rect-
angles are “gates” denoting a mixture model with a hidden selector variable (Minka
and Winn, 2009).

to the features φn but not to the annotations snr. One may hypothesize that
the additional information of the features φn can help to resolve conflicts: in a
two-rater scenario, one can decide that the rater has less noise who labels pixels



with similar φn more consistently. In our graphical model formulation, we add
a gamma prior for the weight precision λw ∼ Gam(aw, bw).

Whitehill et al. (2009, Fig. 1(d)) propose a model in which the misclassi-
fication probability depends on both the pixel and the rater: snr ∼ Ber

(

{1 +

exp(−tnαrǫn)}−1
)

with the rater accuracy αr ∼ N (µα, λ
−1
α ) and the pixel diffi-

culty ǫn with log(ǫn) ∼ N (µǫ, λ
−1
ǫ ) (this parameterization is chosen to constrain

ǫn to be positive).

In the continuous variant of STAPLE by Warfield et al. (2008, Fig. 1(b)),
the observations ynr are continuous views on a continuous latent score τn. The
r-th rater can be characterized by a bias βr and a noise precision λr: ynr ∼
N (τn + βr, λ

−1
r ), with a Gaussian prior on the true scores: τn ∼ N (0, λ−1

τ ).
In contrast to the original formulation, we add Gaussian priors on the biases,
i.e. βr ∼ N (0, λ−1

β ). For the precisions of the Gaussians, we use gamma priors:
λτ ∼ Gam(aτ , bτ ), λβ ∼ Gam(aβ , bβ) and λr ∼ Gam(aλ, bλ). Note that when
thresholding the continuous scores, the tumor boundary may shift because of the
noise, but misclassifications far away from the boundary are unlikely: this is an
alternative to (Whitehill et al., 2009) for achieving a non-uniform noise model.

Novel hybrid models We also study four novel hybrid models, which incorpo-
rate all aspects of the previous proposals simultaneously: while they provide a
classifier as in (Raykar et al., 2010), they do not assume misclassifications to
occur everywhere equally likely. In the simplest variant (hybrid model 1), we
modify the model from (Warfield et al., 2008) by a linear regression model for
τn ∼ N (w⊤φn, λ

−1
τ ) with w ∼ N (0, λ−1

w ). Note that this model predicts a (noisy)
linear relationship between the distance transform values ynr and the features φn,
while experimentally the local image appearance saturates in the interior of the
tumor or the healthy tissue. To alleviate this concern (hybrid model 2, Fig. 1(e)),
one can interpret ynr as an unobserved malignancy score, which influences the
(observed) binary segmentations snr via snr ∼ Ber

(

{1 + exp(−ynr)}−1
)

. This
is a simplified version of the procedure presented in (Rogers et al., 2010), with
a linear regression model for the latent score instead of a Gaussian process re-
gression. Alternatively one can model the raters as using a biased weight vector
rather than having a biased view on an ideal score, i.e. yrn ∼ N (v⊤r φn, λ

−1
r ) with

vr ∼ N (w, λ−1
β I). Again the score ynr may be observed directly as a distance

transform (hybrid model 3) or indirectly via snr (hybrid model 4, Fig. 1(f)).

Inference For the graphical models considered here, exact inference by the junc-
tion tree algorithm is infeasible owing to the high number of variables and the
high number of V structures, which lead to a nearly complete graph after mor-
alization (Koller and Friedman, 2009). However, one can perform approximate
inference using e.g. variational message passing (Winn and Bishop, 2005): the
true posterior for the latent variables is approximated by the closest factorizing
distribution (as measured by the Kullback-Leibler distance), for which inference
is tractable. As a prerequisite, all priors must be conjugate; this holds for all
models discussed above except (Whitehill et al., 2009). Here we cannot apply



the generic variational message passing scheme to this model, and show the
results from the EM inference algorithm provided by the authors instead.

We employed the INFER.NET 2.3 Beta implementation for variational mes-
sage passing (Minka et al., 2009) to perform inference on the algorithms by
Warfield et al. (2004), Warfield et al. (2008), Raykar et al. (2010) and the four
hybrid models. The default value of 50 iteration steps was found to be sufficient
for convergence, since doubling the number of steps led to virtually indistinguish-
able results. For the algorithm by Whitehill et al. (2009), we used the GLAD
1.0.2 reference implementation.6 Alternative choices for the generic inference
method would have been expectation propagation (Minka, 2001) and Gibbs sam-
pling (Gelfand and Smith, 1990). We experimentally found out that expectation
propagation had considerably higher memory requirements than variational mes-
sage passing for our problems, which prevented its use for our problems on the
available hardware. Gibbs sampling was not employed since some of the factors
incorporated in our models (namely gates and factor arrays) are not supported
by the current INFER.NET implementation.

We also compared against three baseline procedures: majority voting, train-
ing a logistic regression classifier from the segmentations of every single rater
and averaging the classifier predictions (ALR), and training a logistic regression
classifier on soft labels (LRS): if S out of R raters voted for tumor in a certain
pixel, it was assigned the soft label S/R ∈ [0, 1].

3 Experiments

We performed two experiments in order to study the influences of labeler qual-
ity and imaging modality separately. In the first experiment, we collected and
fused multiple human annotations of varying quality based on one single imaging
modality: here we used simulated brain tumor measurements for which ground
truth information about the true tumor extent was available, so that the re-
sults could be evaluated quantitatively. In the second experiment, we collected
and fused multiple human annotations, which were all of high quality but had
been derived from different imaging modalities showing similar physical changes
caused by glioma infiltration with different sensitivity.

Human raters Simulated brain tumor MR images were generated by means
of the TumorSim 1.0 software by Prastawa et al. (2009).7 The advantage of
these simulations was the existence of ground truth about the true tumor extent
(in form of probability maps for the distribution of white matter, gray matter,
cerebrospinal fluid, tumor and edema). Our task was to discriminate between
“pathological tissue” (tumor and edema) and “healthy tissue” (the rest). We used
nine volumes: three for each tumor class that can be simulated by this software
(ring-enhancing, uniformly enhancing and non-enhancing). Each volumetric im-
ages contained 256× 256× 181 voxels and the three different imaging modalities

6 http://mplab.ucsd.edu/~jake/OptimalLabelingRelease1.0.2.tar.gz
7 http://www.sci.utah.edu/releases/tumorsim v1.0/TumorSim 1.0 linux64.zip



(T1-weighted with and without gadolinium enhancement and T2-weighted) were
considered perfectly registered with respect to each other. The feature vectors φi

consisted of four features for each modality: gray value, gradient magnitude and
the responses of a minimum and maximum filter within a 3×3 neighborhood. A
row with the constant value 1 was added to learn a constant offset for the linear
or logistic models (since there was no reason to assume that features values at
the tumor boundary are orthogonal to the final weight vector).

The image volumes were segmented manually based on hypointensities in the
T1-weighted images, using the manual segmentation functionality of the ITK-
SNAP 2.0 software.8 In order to control the rater precision, time limits of 60, 90,
120 and 180 seconds for labeling a 3D volume were imposed and five segmenta-
tions were created for each limit: we expect the segmentations to be precise for
generous time limits, and to be noisy when the rater had to label very fast. The
set of raters was the same for the different time constraints, and the other exper-
imental conditions were also kept constant across the different time constraints.
This was statistically validated: the area under curve value of the receiver oper-
ating characteristic of the ground-truth probability maps compared against the
manual segmentations showed a significant positive trend with respect to the
available time (p = 1.8× 10−4, F test for a linear regression model). Since tight
time constraints are typical for the clinical routine, we consider this setting as
realistic, although it does not account for rater bias.

We extracted the slices with the highest amount of tumor lesion, and par-
titioned them into nine data subsets in order to estimate the variance of seg-
mentation quality measures, with each subset containing one third of the slices
extracted from three different tumor datasets (one for each enhancement type).
For memory reasons, the pixels labeled as “background” by all raters were ran-
domly subsampled to reduce the sample size. A cross-validation scheme was used
to test the linear and log-linear classifiers 9 on features φn not seen during the
training process: we repeated the training and testing nine times and chose each
of the data subsets in turn as the training dataset (and two different subsets as
the test data).

The following default values for the hyperparameters were used: aSe = 10,
bSe = 2, aSp = 10, bSp = 2, aw = 2, bw = 1, ap = 2, bp = 2, aτ = 2, bτ = 1,
aβ = 2, bβ = 1, aλ = 2, bλ = 1. We confirmed in additional experiments
that inference results changed only negligibly when these hyperparameters were
varied over the range of a decade. In order to check the effect of the additional
priors that we introduced into the models by Warfield et al. (2004), Warfield
et al. (2008) and Raykar et al. (2010), we also ran experiments with exactly
the same models as in the original papers (by fixing the corresponding variables
or using uniform priors). However, this led to uniformly worse inference results
than in our model formulations.

8 http://www.itksnap.org/pmwiki/pmwiki.php?n=Main.Downloads
9 All except (Warfield et al., 2004), (Warfield et al., 2008), (Whitehill et al., 2009).



Multiple modalities For evaluation on real-world measurements, we used a set
of twelve multimodal MR volumes acquired from glioma patients (T1-, T2-,
FLAIR- and post-gadolinium T1-weighting), which had been affinely registered
to the FLAIR volume: we used a automated multi-resolution mutual information
registration procedure as included in the MedINRIA10 software. Manual segmen-
tations of pathological tissue (tumor and edema) were provided separately for
every modality on 60 slices extracted from these volumes (20 axial, sagittal and
coronal slices each of which intersecting with the tumor center). In these experi-
ments, we propose to use the described models to infer a single probability map
summarizing all tumor-induced changes in the different imaging modalities. In
particular, we identify every modality as a separate “rater” with a specific and
consistent bias with respect to the joint probability map inferred.

4 Results

Specificity Sensitivity CCR AUC Dice

Majority vote .987(007) .882(051) .910(032) .972(008) .827(020)
ALR .953(018) .920(036) .931(025) .981(005) .855(031)
LRS .953(019) .919(037) .931(025) .981(005) .855(030)

(Warfield et al., 2004) .987(007) .882(051) .910(032) .972(008) .827(020)
(Warfield et al., 2008) 1.000(001) .617(130) .692(139) .989(003) .584(211)
(Raykar et al., 2010) .988(006) .886(045) .913(028) .993(003) .830(024)
(Whitehill et al., 2009) .988(004) .913(016) .931(008) .980(003) .845(063)
Hybrid model 1 .940(078) .692(060) .751(070) .902(117) .603(191)
Hybrid model 2 .972(019) .716(048) .770(057) .953(015) .628(163)

Table 1. Evaluation statistics for the training data (i.e. the manual annotations of the
raters were used for inference), under the 120/120/90 scenario. The first three rows
show the outcome of the three baseline techniques. The best result in each column is
marked by italics, while bold figures indicate a significant improvement over the best
baseline technique (P < .05, rank-sum test with multiple-comparison adjustment).
Estimated standard deviations are given in parentheses. The outcome of the other
scenarios was qualitatively similar (especially concerning the relative ranking between
different inference methods). ALR = Averaged logistic regression. LRS = Logistic
regression with soft labels. CCR = Correct classification rate (percentage of correctly
classified pixels). AUC = Area Under Curve of the receiver operating characteristics
curve obtained when thresholding the ground-truth probability map at 0.5. Dice =
Dice coefficient of the segmentations obtained when thresholding both the inferred and
the ground-truth probability map at 0.5.

Multiple raters We studied several scenarios, i.e. several compositions of the rat-
ing committee. Here we exemplarily report the results for two of them: one with

10 https://gforge.inria.fr/projects/medinria



Sensitivity Specificity CCR AUC Dice

ALR .937(017) .924(038) .928(029) .978(009) .837(065)
LRS .936(017) .925(038) .928(029) .978(009) .837(066)

(Raykar et al, 2010) .927(019) .937(031) .936(025) .977(013) .853(038)
Hybrid model 1 .851(152) .735(181) .760(167) .852(172) .619(142)
Hybrid model 2 .973(013) .727(174) .786(116) .952(026) .667(084)

Table 2. Evaluation statistics for the test data (i.e. the manual annotations of the
raters were not used for inference), under the 120/120/90 scenario. Note that one
can only employ the inference methods which make use of the image features φn and
estimate a weight vector w: the unobserved test data labels are then treated as missing
values and are marginalized over. To these examples we cannot apply the methods
which only use the manual annotations: majority voting, (Warfield et al., 2004) and
(Warfield et al., 2008). The results for the other scenarios were qualitatively similar
(especially concerning the relative ranking between different inference methods). Cf.
the caption of table 1 for further details.

a majority of good raters (120/120/90, i.e. two raters with a 120 sec constraint
and one rater with a 90 sec constraint) and one with a majority of poor raters
(60/60/60/180/180, i.e. three raters with a 60 sec constraint, and two raters
with a 180 sec constraint). Tables 1 and 2 show the results of various evaluation
statistics both for training data (for which the human annotations were used)
and test data. Sensitivity, specificity, correct classification rate (CCR) and Dice
coefficient are computed from the binary images that are obtained by thresh-
olding both the ground-truth probability map and the inferred posterior proba-
bility map at 0.5. If nfb denotes the number of pixels that are thereby classified
as foreground (tumor) in the ground truth and as background in the posterior
probability map (and nbb, nbf and nff are defined likewise), these statistics are
computed as follows:

Sensitivity =
nff

nfb + nff

, Specificity =
nbb

nfb + nbb

,

CCR =
nff + nbb

nff + nbb + nbf + nfb

, Dice =
2nff

2nff + nbf + nfb

Additionally we report the Area Under Curve (AUC) value for the receiver
operating curve obtained by binarizing the ground-truth probabilities with a
fixed threshold of 0.5 and plotting sensitivity against 1 − specificity while the
threshold for the posterior probability map is swept from 0 to 1. Most methods
achieved Dice coefficients in the range of 0.8–0.85, except for the models oper-
ating on a continuous score (the hybrid models and the model by Warfield et al.
(2008)). Since our features were highly discriminative, even simple label fusion
schemes such as majority voting gave highly competitive results. Qualitatively,
there is little difference between these two scenarios (and the other ones under
study). Some graphical models perform better than the baseline methods on the
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2D histogram for Warfield, 2008 and 120 120 90
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2D histogram for Warfield, 2008 and 60 60 60 180 180
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2D histogram for Hybrid 1 and 120 120 90
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2D histogram for Hybrid 2 and 120 120 90
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2D histogram for Hybrid 3 and 120 120 90
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Fig. 2. Comparison of ground-truth (abscissa) and inferred posterior (ordinate) tumor
probabilities, visualized as normalized 2D histograms. All histograms are normalized
such that empty bins are white, and the most populated bin is drawn black. We show
the inference results of (Warfield et al., 2004), (Warfield et al., 2008), and the hybrid
models 1–3. The results of hybrid model 4 were similar to hybrid model 3, and the
results of (Raykar et al., 2010) and (Whitehill et al., 2009) were similar to (Warfield
et al., 2004). Mostly the two scenarios 120/120/90 and 60/60/60/180/180 gave similar
results so that we show only the results for the former, with the exception of (Warfield
et al., 2008) (top middle and top right). For the ideal inference method, all bins outside
the main diagonal would be white; (Warfield et al., 2004) comes closest.

training data, namely (Raykar et al., 2010) and (Warfield et al., 2008). However,
they bring no improvement on the test data.

Unexpectedly, the hybrid models perform worse and with lesser stability than
the simple graphical models, and for hybrid models 3 and 4, the inference con-
verges to a noninformative posterior probability of 0.5 everywhere. It should be
noted that the posterior estimates of the rater properties did not differ con-
siderably between corresponding algorithms such as (Warfield et al., 2008) and
(Raykar et al., 2010), hence the usage of image features does not allow one to
distinguish between better and poorer raters more robustly.

In order to account for partial volume effects and blurred boundaries be-
tween tumor and healthy tissue, it is preferable to visualize the tumors as soft
probability maps rather than as crisp segmentations. In Fig. 2, we compare the
ground-truth tumor probabilities with the posterior probabilities following from
the different models. Some models assume a latent binary class label, namely
(Warfield et al., 2004), (Raykar et al., 2010) and (Whitehill et al., 2009): they
tend to sharpen the boundaries between tumor and healthy tissue overly, while
the latent score models (all others) smooth them. One can again note that the
true and inferred probabilities are completely uncorrelated for hybrid model 3
(and 4).



Fig. 3. Example of a FLAIR slice with manual segmentation of tumor drawn on the
same FLAIR image (white contour), and inferred mean posterior tumor probability
maps for (Warfield et al., 2004) (top left), (Warfield et al., 2008) (top right), (Whitehill
et al., 2009) (bottom left) and hybrid model 2 (bottom right). The results of hybrid
model 3 and 4 were nearly identical to (Warfield et al., 2008), the results of hybrid
model 1 to model 2, and the results of (Raykar et al., 2010) to (Whitehill et al., 2009).
Tumor probabilities outside the skull mask were automatically set to 0. We recommend
to view this figure in the colored online version.

Multiple modalities The optimal delineation of tumor borders in multi-modal
image sequences and obtaining ground truth remains difficult. So, in the present
study we confine ourselves to a first, qualitative comparison of the different
models. Fig. 3 shows the posterior probability maps for a real-world brain image
example. The results of (Warfield et al., 2004) and (Warfield et al., 2008) can
be regarded as extreme cases: the former yields a crisp segmentation without
accounting for uncertainty near the tumor borders, while the latter assigns a
probability near 0.5 to all pixels and is hence inappropriate for this task. Hybrid
model 1 (or 2) and (Whitehill et al., 2009) or (Raykar et al., 2010) are better
suited for the visualization of uncertainties.

5 Discussion and Outlook

In this study, we introduced graphical model formulations to the task of fusing
noisy manual segmentations: e.g. the model by Raykar et al. (2010) had not
been previously employed in this context, and it was found to improve upon
simple logistic regression on the training data. However, these graphical models



do not always have an advantage over simple baseline techniques: compare the
results of (Warfield et al., 2004) to majority voting. Hybrid models combining
the aspects of several models did not fare better than simple models. This ran
contrary to our initial expectations, which were based on two assumptions: that
different pixels have a different probability of being mislabeled, and that it is
possible to detect these pixels based on the visual content (these pixels would
be assigned high scores far away from the decision boundary). This may be an
artifact of our time-constrained labeling experiment: if misclassifications can be
attributed mostly to chance or carelessness rather than to ignorance or visual
ambiguity, these assumptions obviously do not hold, and a uniform noise model
as in (Warfield et al., 2004) or (Raykar et al., 2010) should be used instead. It
is furthermore not yet understood why the slight model change between hybrid
models 1 / 2 and hybrid models 3 / 4 leads to the observed failure of inference.
For the future, it should be checked if these effects arise from the use of an
approximate inference engine or are inherent to these models: hence unbiased
Gibbs sampling results should be obtained for comparison purposes, using e.g.
the WinBUGS modelling environment (Lunn et al., 2000).

The use of simulated data for the main evaluation is the main limitation of
our approach, as simulations always present a simplification of reality and cannot
account for all artifacts and other causes for image ambiguity that are encoun-
tered in real-world data. However, this limitation is practically unavoidable, since
we are assessing the imperfections of the currently best clinical practice for the
precise delineation of brain tumors, namely manual segmentation of MR images
by human experts. This assessment requires a superior gold standard by which
the human annotations may be judged, and this can only be obtained from an in

silico ground truth. For animal studies, a possible alternative lies in sacrificing
the animals and delineating the tumor on histological slices which can be ex-
amined with better spatial resolution. However, these kinds of studies are costly
and raise ethical concerns. Additionally, even expert pathologists often differ
considerably in their assessment of histological images (Giannini et al., 2001).

Better segmentations could presumably be achieved by two extensions: More
informative features could be obtained by registration of the patient images to
a brain atlas, e.g. in the spirit of (Schmidt et al., 2005). An explicit spatial
regularization could be achieved by adding an MRF prior on the latent labels
or scores, and employing a mean-field approximation (Zhang, 1992) to jointly
estimate the optimum segmentation and the model parameters by EM.
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