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ABSTRACT

Robust and accurate segmentation of blood vessels is impor-
tant for treatment and diagnosis of cardiovascular diseases.
Here, we introduce a new approach for 3D segmentation of
vessels which is formulated as a convex parameter estima-
tion problem and combined with an incremental tracking ap-
proach. Parameter values are determined as global optimum
of a semidefinite program and admissible shape variations
are imposed by convex constraints. The performance of the
approach has been evaluated using 3D synthetic images and
clinical 3D CTA images of the aorta including pathologies.

1. INTRODUCTION

Pathologies of the aorta are a major cause of death in western
countries that can be diagnosed using, for example, com-
puted tomography angiography (CTA) and can be treated
by minimally-invasive placement of an endovascular graft
(EVG). To minimize the risks associated with this treatment
option, an EVG should be chosen based on the individual
anatomy of each patient. For therapy planning, individual
morphological parameters such as diameters and length of a
pathology of the aorta are important, which can be determined
by segmentation approaches. A wide spectrum of approaches
for vessel segmentation exists, including approaches based on
differential measures (e.g., [1, 2]), minimal paths (e.g., [3]),
and deformable models (e.g., [4, 5, 6, 7]).

Approaches based on deformable models using paramet-
ric intensity models have the advantage that prior knowledge
about the vessel shape and the intensity structure can be ex-
ploited (e.g., [4, 5, 7]). However, these approaches are for-
mulated as a non-linear, least-squares parameter estimation
problem. As a consequence, the objective function is non-
convex. In this contribution, we introduce a new approach
for 3D vessel segmentation in tomographic image data which
uses incremental implicit polynomial fitting and convex op-
timization. The approach is based on the observation that
the tubular shape of a vessel can be described locally by an
implicit quadratic function. Given that the set of 3D tubular

shapes with arbitrary orientation and variation within natu-
ral bounds forms a convex set, we demonstrate that the prob-
lem of estimating the local shape of a vessel can be approx-
imated by a convex objective function. To segment vessels
from 3D image data, we have combined the convex optimiza-
tion method with an incremental tracking scheme. Our ap-
proach has been evaluated based on 3D synthetic and clinical
3D CTA images of the aorta, and the performance has been
quantified as well as compared with a previous approach.

2. LOCAL IMPLICIT POLYNOMIAL FITTING

Given a local image region V ⊂ R3, we wish to estimate the
shape of a region Ω ⊂ V that optimally separates a tubular
structure from the background. To this end, we use a para-
metric model f(x; p), p ∈ {p0, p1} that denote the intensity
variations. We assume that f is a piecewise constant function
taking only two values p0 and p1 to describe the foreground
and background intensity, respectively:

d(x; p) :=
(
f(x, p0)− g(x)

)2 − (
f(x, p1)− g(x)

)2
, (1)

where g(x) denotes the image intensities. If the parametric
model f(x; p) represents g(x) well, then d(x; p) ≤ 0 if x ̸∈ Ω
and d(x; p) ≥ 0 if x ∈ Ω. Consequently, any function s(x),
that maximizes the functional

∑
x∈V d(x; p)s(x)should have

the same sign as d(x) and the zero level set {x : s(x) = 0}
will indicate the shape of Ω. To determine the local shape of a
vessel, we maximize the functional over a family of quadratic
functions whose zero level sets correspond to tubular shapes:

s(x;A) :=
⟨
x−a,A(x−a)

⟩
+a0, A = {A,a, a0}, (2)

where A is a 3 × 3 matrix which describes the shape, a is
a vector which represents the translation, and a0 is a scalar
which denotes a scale factor of the model. Convexity of the
shape is ensured by restricting possible shape variations to a
convex set CA of shape parameters A ∈ CA.

Note that tubular surfaces can be represented by symmet-
ric matrices A with ordered eigenvectors λ(A) contained in



the convex set λl ≤ λ(A) ≤ λu, λl,λu ∈ R3, where
the inequalities hold elementwise. Vectors λl,λu are fixed
vectors that specify lower and upper bounds for the maxi-
mum admissible deformation of a straight cylinder. The first
two components of λl and λu are equal and specify the same
strictly positive interval, whereas the third component defines
a symmetric interval around 0.

Our specification of admissible shape variations is based
on the following proposition: Let A,B ∈ S3+ and suppose
A ≽ B. Then λ(A) ≥ λ(B). Here, Sn+ denotes the convex
cone of n × n positive semidefinite symmetric matrices and
A ≽ B means that A − B is symmetric positive semidef-
inite. Note that the monotonicity property follows from the
classical min-max principle characterizing the eigenvalues of
symmetric matrices [8]. Thus, convexity may be imposed by

A−Diag(λl) ≽ 0, Diag(λu)−A ≽ 0. (3)

Since the conditions in (3) require affine mappings of A to
lie in the convex cone S3+ and as convexity is preserved under
affine mappings, the set CA :=

{
A ∈ S3+ : A satisfies (3)}

is given by the intersection of convex sets, hence is convex.
Thus, feasible solutions are contained inCA := CA×R3×R.

Locations x ∈ V with s(x;A) ≈ 0 should dominate the
sensitivity of the functional with respect to variations of A.
However, this is not the case for the squared distance function
in (1), where locations far from the zero level set will have the
highest influence on the functional. To reduce the influence of
large residuals far from the zero level set, we use an apodiza-
tion function ϕσ(t) =

(
1 + exp(−t/σ)

)−1
, parametrized by

a scale parameter σ. Note that ϕσ is log-concave and that
the logarithm is a strictly monotone function. Thus, applying
the logarithm to ϕσ convexifies the problem without changing
the optimum of ϕσ. By transforming the maximization into a
minimization problem we obtain the objective function

J(A) = −
∑
x∈V

log
(
ϕσ

(
d(x; p)s(x;A)

))
,A ∈ CA, (4)

with d(·) and s(·) defined by (1) and (2), respectively.

2.1. Convex Approximation

The objective function in (4) can be written as

J(A) = −
∑
x∈V

log
(
ϕσ

(
r(x;A)

))
, (5)

where r(x;A) = d(x; p)s(x;A). Since ϕσ is log-concave,
the function ψ := − log ϕσ is convex. Moreover, since ψ
is nonincreasing, the objective function is convex if r(x;A)
is concave. This holds, in particular, if r(x;A) is linear in
A. Consequently, by linearization of r(x;A), we obtain a
convex approximation of the objective function which is used
to iteratively estimate the shape parameters numerically. With

A = A′ + δA, we have

s(x;A) = s(x;A′ + δA)
= ⟨x,Ax⟩ − 2⟨x,Aa⟩+ ⟨a,Aa⟩+ a0

= s(x;A′) + ⟨xx⊤ − 2xa′
⊤
+ a′a′

⊤
, δA⟩

+ ⟨δa, 2A′⊤(a′ − x)⟩+δa0
+ ⟨δa, (A+ δA) δa⟩+ 2⟨δa, δA (a′ − x)⟩

=: s(x;A′) + sc(x;A) + snc(x;A), (6)

where sc(x;A) and snc(x;A) represent the convex and non-
convex parts, respectively. With small increments ∥δA∥ ≤
ε, ∥δa∥ ≤ ε, the nonconvex part becomes negligible. As a
result, the convex approximation reads

Jc(A) :=
∑
x∈V

log
( 1

1 + c(A′) exp
(
− dσ(x; p)sc(x;A)

)),
where dσ(x; p) := d(x; p)/σ, and c(A′) := exp

(
−

dσ(x; p)s(x;A′)
)
.

2.2. Algorithm

We iteratively compute parameter updates A = A′ + δA by
solving at each iteration the semidefinite program

min
δA

Jc(A) subject to A ∈ CA. (7)

In each iteration, we compute

A ← ΠCA(A′ + δA), δA = −τ∇δAJc(A), (8)

with small increments τ until convergence. Note that
ΠCA(A′ + δA) denotes the projection of A′ + δA to the
convex constraints. The projection is computed by decom-
position of the symmetric matrix A′ + δA = QDQT , where
D = Diag(λ(A′ + δA)) with eigenvalues λ(A′ + δA) and
Q denotes the matrix with the corresponding eigenvectors. If
the eigenvalues λ(A′+δA) do not agree with the constraints,
they are projected to the constraint boundaries. By doing this,
we obtain a new diagonal matrix DΠ ← ΠCA(D), which
serves to compute A = QDΠQ

T .

3. INCREMENTAL 3D VESSEL SEGMENTATION

Our approach for 3D vessel segmentation determines local
vessel parameters incrementally along the path of a vessel.
We have developed an incremental approach, which consists
of three main steps: (i) initialization, (ii) estimation of local
model parameters using convex optimization, and (iii) track-
ing along the centerline.

For initialization, coarse estimates for the starting point
(x0), the local orientation (α0), the radius of the region-of-
interest (RROI ) for model fitting, as well as for the local back-
ground (p0) and foreground intensities (p1) are required. Note
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Fig. 1. Segmentation results for 3D image data. (a) 3D original image and (b) segmentation result of a section of a twisted torus
with neighboring structures. (c) Segmentation result for a 3D synthetic image of a twisted cylinder and (d) for a section of a
twisted torus. (e) Segmentation result a clinical 3D CTA image. Colors indicate regions where the constraints were active (red).

that this information has to be provided only once for initial-
ization of the first vessel segment. In our case, we determine
these parameters semi-automatically based on two points of
the centerline and the vessel radius. For subsequent vessel
segments, updates for RROI , p0 and p1 are determined based
on the segmentation result of the previous vessel segment.

For estimation of local model parameters, the convex ob-
jective function (7) is minimized in a 3D ROI around a vessel
(RROI = cROI · Dmax/2, cROI = 1.2). For minimization,
a projected gradient descent approach is used and parameter
updates are iteratively computed. The parameters p0 and p1
are determined in each iteration using the current segmenta-
tion result and the mean intensities of the background and
foreground intensities in the ROI.

For incremental tracking along the vessel centerline, we
predict a new 3D position based on the estimated center-
line position xk = (x1, x2, x3)k and the local 3D orientation
αk = (α, β, γ)k of the current vessel segment. To this end,
we compute the current vessel centerline position xk based
on the center of the ROI x0,k and the translation ak by xk =
x0,k − ak. The orientation αk of a vessel segment can be de-
termined based on the eigenvectors and corresponding eigen-
values of the projected estimates A = QDΠQ

T (see Sect. 2
above). Given the ordered eigenvalues |λ1| ≤ |λ2| ≤ |λ3| of
A, the orientation of the current vessel is given by the eigen-
vector ϕ1 corresponding to the eigenvalue λ1. To predict a
new center position xk+1,we compute xk+1 = xk − τϕ1,
where τ denotes the step size. The two remaining eigenvec-
tors ϕ2 and ϕ3 span a plane which is orthogonal to the ves-
sel centerline and indicate the rotation of the quadratic sur-
face around ϕ1. Note that a 2D orthogonal cross-section of
a quadratic surface can be described by an ellipse with a ma-
jor and minor axis. The orientation of the minor axis is given
by the eigenvector ϕ2, while the orientation of the major axis
corresponds to the eigenvector ϕ3. In our clinical applica-
tion the minimum and maximum vessel diameters along the
vessel are important parameters, which can be determined by
Dmin = 2

√
−a0

λ2
and Dmax = 2

√
−a0

λ3
, respectively.

4. EXPERIMENTAL RESULTS

4.1. Convergence analysis

In a first experiment, we have studied the convergence of our
approach based on the L2-norm of the gradient of Jc and us-
ing different clinical 3D CTA images. We found that the ap-
proach typically converges after 10 to 30 iterations.

4.2. Evaluation based on 3D synthetic images

To evaluate the effect of neighboring structures, we have gen-
erated 3D synthetic image data of a section of a twisted torus
with spherical and boxlike structures in the vicinity of a ves-
sel. In Fig. 1a, the shape of the vessel and the neighboring
structures are shown. The neighboring structures have differ-
ent sizes, shapes, and distances to the vessel. The segmen-
tation result of our new approach is shown in Fig. 1b. Col-
ors indicate regions where the constraints were active (red) at
convergence. From the colors it can be seen that all structures
in the vicinity of the vessel have an effect on the segmentation
result (constraints are active). However, only one structure
with a direct connection to the vessel (i.e., Fig. 1a, top left
sphere) has a notable influence on the segmentation result.

We have applied the new approach to 150 3D synthetic
images of a twisted cylinder and 100 3D images showing a
section of a twisted torus with elliptical cross-sections. In
Fig. 1c,d, typical segmentation results for both sets of images
are shown. To quantify the segmentation accuracy, we have
computed mean errors for clinically relevant parameters com-
prising the minimum, mean, and maximum vessel diameters,
eDmin , eDmean , and eDmax , respectively, as well as the mean
error for the centerline position ex0 and the mean Dice co-
efficient d. Table 1 shows the results of the new approach
compared to a previous model-based approach [5]. For both
sets of synthetic images, we obtain similar results. For Dmin

and Dmax, the accuracy of the new approach is significantly
higher than that of the previous approach. In comparison to
the previous approach, the new approach yields an improve-
ment of 73% − 87% for Dmin and Dmax. For Dmean, the



Table 1. 3D synthetic image data: Mean errors and standard deviations for the diameters Dmin, Dmean, and Dmax, for the
centerline position x0, as well as the mean and the standard deviation of the Dice coefficent d for different approaches.
XXXXXXXXXXApproach

Accuracy 150 twisted cylinders 150 twisted tori
eDmin eDmean eDmax ex0 d eDmin eDmean eDmax ex0 d

Prev. approach [5] 3.14±0.83 0.29±0.20 3.93±1.32 0.10±0.01 0.91±0.02 3.12±0.72 0.35±0.19 4.03±1.16 0.02±0.00 0.91±0.02

New approach 0.86±0.88 0.33±0.40 0.83±0.17 0.01±0.01 0.96±0.01 0.82±0.96 0.43±0.52 0.54±0.05 0.14±0.02 0.97±0.01

accuracy of the previous approach is slightly higher. For the
centerline position x0 we obtain similar good results for the
new and the previous approach with a subvoxel accuracy of
x0 ≤ 0.11 voxels. For d, the new approach yields the best
results with d = 0.96 and d = 0.97, respectively.

4.3. Segmentation results for 10 3D CTA images

We have also applied the approach to 10 different clinical
3D CTA images including pathologies. The images were ac-
quired with a 16-slice CT scanner (Acquilion 16, Toshiba,
Japan) using iodinated contrast media (Imeron, 400 mgI/ml
and Iomeprol, 400 mgI/ml) and comprise between 597 and
758 slices with a spacing of 0.8 mm. Each slice consists of
512 × 512 voxels with a resolution of 0.51 - 0.63 mm/voxel.
In Fig. 1e, the segmentation result for an example image is
shown. From the figure it can be seen that the approach suc-
cessfully segments the vessel for a difficult clinical case. We
have also performed a quantitative comparison with a previ-
ous model-based approach [5] (see Tab. 2). For Dmean, x0,
and d we obtain similar good results for both approaches with
subvoxel accuracy, while forDmin andDmax we obtain more
accurate results for the new approach.

5. CONCLUSIONS

In this contribution, we introduced for the first time a 3D
vessel segmentation approach based on implicit polynomials
and convex optimization, and we combined the approach with
an incremental tracking scheme. Our approach was applied
to 3D synthetic and 3D clinical image data of the aorta and
the performance was quantitatively compared with a previous
model-based approach. Overall, it turned out that while we
obtain similar good results for the mean diameter, the center-
line position and the Dice coefficient d, the new approach out-

Table 2. 3D CTA image data: Mean errors and standard de-
viations for the diameters Dmin, Dmean, and Dmax, for the
centerline position x0, as well as the mean and the standard
deviation of the Dice coefficent d for different approaches.

Approach
Ten 3D CTA images

eDmin eDmean eDmax ex0 d

Prev. appr. 2.66±0.62 0.91±0.35 1.57±0.35 0.88±0.10 0.97±0.00

New appr. 1.82±0.38 0.95±0.29 1.22±0.30 0.90±0.16 0.97±0.01

performs the previous approach for the minimum and maxi-
mum diameters.
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