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Abstract We present several variational approaches for fluid flow estimation from
image sequences in experimental fluid dynamics. These approaches enable the con-
textual data analysis of particle images based on physical constraints, including
bounds on the variation of divergence and vorticity of flow patterns, vanishing diver-
gence for incompressible flows, and iterative estimation-prediction schemes based
on vorticity transport for spatiotemporal regularization. All approaches amount to
solving convex optimization problems that have unique solutions. They can be com-
puted by standard numerical algorithms exploiting sparsity even for large-scale
problems. We also present recent results on the physically consistent denoising of
corrupted three-dimensional fluid flow estimates.

1 Introduction

Particle Image Velocimetry (PIV) has been the prevailing image measurement tech-
nique for estimating turbulent flows in experimental fluid dynamics for more than
two decades [1, 11]. Local flow estimates are obtained by correlating local interro-
gation windows in subsequent image frames. Window parameters (size, shape) are
adapted to local flow variation in order to optimize the trade-off between accuracy
and resolution of flow estimation, and noise suppression.

A remarkable fact concerning correlation-based PIV is that prior knowledge, of-
ten available in terms of the physics of the underlying problem [16], is not taken
into account. Furthermore, estimates at different locations do not explicitly depend
on each other, and an overall optimization criterion with respect to all estimates in
the whole image domain is lacking. This appears unnatural in view of the interac-
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tion over a large range of scales in turbulent flows. Accordingly, correlation methods
bear little resemblance to the Navier-Stokes equations that govern fluid flows.

Methods for combining prior knowledge and data processing have a long history
in other fields of image processing. Variational methods, in particular, are amenable
to incorporate physical constraints through additional variational terms. In constrast
to correlation methods, even the simplest variational method gives rise to algorithms
for flow estimation where estimates at different locations explicitly depend on each
other. Likewise, the corresponding Euler-Lagrange systems bear some resemblance
to the constitutive equations of fluid dynamics. In our opinion, this indicates an
important long-term research direction enabling synergy between experimental fluid
dynamics and numerical flow simulation.

In the remainder of this paper, we present past and ongoing own work within
the DFG priority program 11471 on the design of variational methods for fluid flow
estimation that incorporate physical prior knowledge [12, 13, 14, 15, 17, 18], along
with related work of our group developed in a European project2 [19, 20, 21, 2]. For
related work, we refer to [3, 4, 5, 8, 10] and [7] and references therein.

The focus of our work is on variational methods

• that effectively steer algorithms for image sequence processing towards physi-
cally plausible fluid flow estimates, and

• that are mathematically well-posed and have unique solutions which can be com-
puted even for large-scale problems with numerically stable algorithms.

The paper is organized as follows. We discuss unconstrained variational ap-
proaches in section 2 and constrained ones in section 3. Recent work on efficient
variational techniques for denoising fluid flow estimates both in 2D and 3D is dis-
cussed in section 4. We conclude and indicate promising directions for future re-
search in section 5.

Due to lack of space, we only present experimental results for our most recent
work. Detailed presentations of all approaches sketched below, including thorough
discussions of related work, can be found in the papers referenced above and down-
loaded from the IPA homepage.

2 Unconstrained Variational Fluid Flow Estimation

Given the intensity function I : Ω → R+ (particle image) defined over a 2D or 3D
domain Ω ⊂Rd , d = 2,3, the prototypical variational approach for estimating flow
u : Ω → Rd for a fixed image frame (point of time) reads

inf
u

J(u) , J(u) =
∫

Ω

{
(∇I ·u+∂t I)2 +λ r(Du,D2u)

}
dx , λ > 0 . (1)

1 http://www.spp1147.tu-berlin.de/
2 http://fluid.irisa.fr/
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Minimizing the functional J entails minimizing the squared residuals of the conti-
nuity equation d

dt I(x, t) = 0 valid for incompressible flows, and a regularizing term
r(·) depending on the first- or second-order spatial derivatives of the flow. The latter
enforces spatially coherent flow estimates by bounding flow variation depending on
a weighting parameter λ .

Basic and advanced examples for regularizers include (formulated for 2D prob-
lems d = 2) [9, 19]

r(Du) = ‖∇u1‖2 +‖∇u2‖2 , r(D2u) = ‖∇div(u)‖2 +‖∇curl(u)‖2 . (2)

The former term leads to reasonable estimates of low-turbulent flows [12] whereas
the latter provides much more accurate estimates for highly turbulent flows. We
point out that this second-order regularizer requires a careful discretization along
with an additional term defined on the boundary ∂Ω , in order to obtain unique and
stable flow estimates from noisy image data [19]. By choosing a large weight for
the term penalizing the divergence, nearly incompressible flows that are typical for
2D scenarios can be conveniently estimated, whereas strictly incompressible flows
are better estimated by constrained variational methods as described next.

An extension of the first-order regularization approach to particle tracking ve-
locimetry was studied in [13]. Unlike all other approaches discussed in this paper,
however, this extension inherently leads to a nonconvex variational problem.

3 Constrained Variational Fluid Flow Estimation

Incompressible flows satisfy the constraint div(u) = 0 approximately in 2D settings
and strictly so in upcoming 3D scenarios. This section presents two variational ap-
proaches for estimating incompressible flows from image sequences.

3.1 Flow Estimation by Flow Control

The basic idea for constrained image flow estimation is to decouple data continuity
term and regularization in (1) into an objective function and constraints. This en-
ables regularization by enforcing flow properties strictly. A basic formulation reads
[14]

inf
u,p, f ,g

J(u, p, f ,g)

with

J(u, p, f ,g) =
∫

Ω

{
(∇I ·u+∂t I)2 +λ‖ f‖2

}
dx+ γ

∫
∂Ω

‖∂∂Ω g‖2ds (3)

and subject to
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µ∆u+∇p = f in Ω , div(u) = 0 in Ω , u = g on ∂Ω . (4)

The functional (3) is minimized over all flows satisfying the Stokes equation (4).
In comparison to (1), functional (3) additionally includes a multiplier function p
related to the incompressibility constraint and control functions f ,g as unknowns.
These additional degrees of freedom can be determined because the set of admissi-
ble flows is constrained, and because control variables steer the constrained flow so
as to fit as much as possible the observed optical flow in terms of the time-varying
intensity function I(x, t).

Additional regularization and numerical stability is achieved by slightly smooth-
ing the control variables. The constraints reveal f ∝ ∆u, i.e. second-order regular-
ization as in (2), but in a physically more strict way.

For scenarios with low Reynold numbers, this method yields physically consis-
tent and accurate flow estimates. In such cases, p and f indeed may be interpreted as
pressure and force field, estimated from image data. For higher Reynold numbers,
these quantities become physically insignificant, yet still ensure highly accurate es-
timates of turbulent fluid flows through weakly constrained control functions f ,g.

3.2 Enforcing Temporal Coherency

A computationally more expensive but still feasible method for additionally en-
forcing temporal coherency has been suggested in [15]. Flow estimation through
constrained variational optimization

inf
u

J(u) , J(u) =
∫

Ω

{
(∇I ·u+∂t I)2 +λ (ω−ωT )2 +κ‖∇ω‖2

}
dx (5)

subject to the linear constraints

div(u) = 0 , curl(u) = ω , (6)

is iterated with flow prediction through the vorticity transport equation

∂tω +u ·∇ω = ν∆ω in Ω × [0,T ] , ω(x,0) = ω0 . (7)

Each flow estimate u by (5), (6) obtained for some image frame (point of time)
defines the initial value ω0 = curl(u) in (7). A prediction ωT of the flow for the
period [0,T ] is then computed by (7). This curl field, in turn, is used to regularize
the next flow estimate u in (5).

Numerical experiments show that although the implementation of this approach
just needs two subsequent frames of an image sequence for estimating u at a spec-
ified point of time, the variational estimation-prediction framework effectively en-
codes a short-time memory over many frames that leads to physically consistent
flow regularization both in space and time.
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4 Constrained Fluid Flow Denoising in 3D

Our current work is focusing on a variational method for denoising fluid flow esti-
mates in a physically consistent way. On the one hand, this task is more involved
because we assume to be given as input data just a noisy vector field, without having
access to the image data from which this fluid flow estimate was computed. On the
other hand, our method is widely applicable, because vector fields produced by any
method can be processed.

A second prominent feature of our method is that no explicit noise model is in-
volved. Rather, the approach relies on modeling the class of physically admissible
vector fields and regards anything else as noise. By this a broad range of both ran-
dom and systematic errors can be removed by the very same approach, including
white noise and local bursts of outliers, automatic completion of fluid estimates in
local regions whose location is unknown, increasing the spatial resolution of fluid
flow estimates, etc. A thorough study of the 2D case is reported in [17, 18]. The
method equally applies in 3D, and we report preliminary results for the first time
below.

4.1 Variational Approach

The method comprises four steps:

1. Solenoidal projection.
As a first step, the given corrupted vector field d is projected onto the subspace
of vector fields with vanishing divergence by solving

∆q = div(d) , q = 0 on ∂Ω , (8)

for q and removing the divergence from d,

v = d−∇q .

2. Lowpass filtering.
Next we remove high-frequency noise by filtering each component function of v
with a Gaussian lowpass filter gσ ,

vg = gσ ∗ v . (9)

The cutoff frequency is chosen large enough so as to preserve any relevant signal
structure.

3. Vorticity rectification.
The third step of the approach enhances the physical structures of vg. To this end,
we approximate its vorticity field
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ωg = ∇× vg , (10)

by solving the optimization problem

inf
ω

J(ω) , J(ω) =
∫

Ω

{
‖ω−ωg‖2 +α

(
ν‖∇×ω‖2 +2

〈
e(vg),ω

〉)}
dx ,

(11)
where e(vg) is a shorthand for the left hand side of the vorticity transport equation

e(v) := ∂tω +(v ·∇)ω +(ω ·∇)v = ν∆ω , (12)

whose 3D-formulation differs from the 2D case (7) by an additional term. The
criterion (11) embodies a compromise between the approximation of ωg in (10)
and satisfying the vorticity transport equation (12).
Note that e(·) is evaluated in (11) for the vector field vg computed in the previous
step. Furthermore, we omitted the time derivative ∂tω in order to restrict the
computations to each individual image frame. This turned out to be a reasonable
approximation in the cases considered so far. As a result, ω can be computed by
just solving a large sparse linear system.

4. Velocity restoration.
The final step of our approach recovers an incompressible, denoised vector field
from ω by minimizing

inf
u

J(u) , J(u) =
∫

Ω

{
‖u− vg‖2 +β‖∇×u−ωg‖2

}
dx , (13)

subject to
div(u) = 0 . (14)

The minimizer u approximates both the velocity fields (9) and the rectified vor-
ticity field (11).
Problem (13), (14) leads to a simple version of the saddle-point problem corre-
sponding to (3), (4). For a consistent discretization with mixed finite elements,
we refer to [14].

4.2 Numerical Experiments

We illustrate the performance of our method by visualizing input and output data
of two experiments. In both cases, vector fields resulting from a direct numerical
simulation [6] served both as ground truth and as input data after corrupting them
with white noise.

The first experiment concerns a vertical convection process in 3D with a large
noise level. Figure 1 shows, from left to right, the vorticity of the input data, the
denoised vector field u from (13), (14), and ground truth. Figure 2 depicts corre-
sponding cross-sections to illustrate the signal-to-noise level.
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Fig. 1 Instantaneous snapshot of the vorticity of a four-cell vertical convection in three dimensions:
noisy input (left), denoised result (center), ground truth (right).

Fig. 2 Vertical cross-sections of the velocity fields through the centers of convective cells. These
vector fields correspond to the vorticities shown in Figure 1: noisy input (left), denoised result
(center), ground truth (right).

The second experiment concerns a turbulent flow around a cylinder with smaller
noise level. Figure 3 shows the vorticity of the input data (left panel) and the de-
noised output (right panel), respectively, together with two close-up views. Cross-
sections analogously to Figure 2 are shown in Figure 4. Close-up views of these
vector fields corresponding to the sections shown on the right in Figure 3, are de-
picted in Figure 5.

5 Conclusion and Further Work

We presented a range of variational methods for physically consistent image pro-
cessing in experimental fluid dynamics. Our results demonstrate the ability of varia-
tional approaches to seamlessly integrate physical prior knowledge. This is particu-
larly relevant for upcoming 3D scenarios in connection with tomographical methods
in experimental fluid dyamics.

Another important points is that the mathematical aspects of variational methods
and corresponding algorithms are similar to those used in numerical simulations.
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Fig. 3 Top: Instantaneous snapshot of the vorticity of a flow around a cylinder in three dimen-
sions: denoised result (left) and ground truth (right). Bottom: the corresponding close-up views.

Fig. 4 Vertical cross-sections of the velocity fields through the centers of convective cells. These
vector fields correspond to the vorticities shown in Figure 3: noisy input (left), denoised result
(center), ground truth (right).
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Fig. 5 Close-up views of the vector fields depicted in Figure 4 corresponding to the sections
marked in Figure 3: noisy input (left), denoised result (center), ground truth (right).

This may help to tie together in the long run approaches of experimental fluid dy-
namics and numerical simulation in order to bring to bear the synergy between these
complementary fields of research.

This paper mainly focused on aspects of regularization and their physical con-
sistency. The data terms in all approaches above are based on the continuity equa-
tion d

dt I(x, t) = 0, which is known to be less robust than correlation-based PIV-
approaches in very noisy scenarios. Hybrid variational approaches that combine
adaptive correlation-based schemes [2] or alternative more advanced local estima-
tion schemes [7] with nonlocal physical priors as presented in this paper (cf. also
[8]), is a promising direction for future research.
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15. Ruhnau P, Stahl A, Schnörr C (2007) Variational estimation of experimental fluid flows with

physics-based spatio-temporal regularization. Meas. Science and Techn. 18: 755-763
16. Tropea C, Yarin AL, Foss JF (eds) (2007). Springer Handbook of Experimental Fluid

Mechanics. Springer, Heidelberg
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