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Abstract. Many computer vision problems can be cast as an optimiza-
tion problem whose feasible solutions are decompositions of a graph. The
minimum cost lifted multicut problem is such an optimization problem.
Its objective function can penalize or reward all decompositions for which
any given pair of nodes are in distinct components. While this property
has many potential applications, such applications are hampered by the
fact that the problem is NP-hard. We propose a fusion move algorithm
for computing feasible solutions, better and more efficiently than existing
algorithms. We demonstrate this and applications to image segmentation,
obtaining a new state of the art for a problem in biological image analysis.

1 Introduction and Related Work

In 2011, Andres et al. [1], Bagon and Galun [2], Kim et al. [3,4] and Yarkony et
al. [5] independently proposed formulating the image segmentation problem [6] as
a minimum cost multicut problem [7,8] on a suitable graph. Given, for every pair
of neighboring nodes, a cost or reward (negative cost) to be paid if these nodes
are assigned to distinct components, the minimum cost multicut problem consists
in finding a decomposition of the graph with minimal sum of costs. In 2015,
Keuper et al. [9], using a construction from [10], proposed the minimum cost lifted
multicut problem, a generalization with an identical feasible set whose objective
function can assign a cost or reward to every pair of nodes, not just neighboring
ones. These non-local interactions are represented in the graph by “lifted” edges
which are subjected to slightly different constraints than the regular edges. The
introduction of lifted edges is appealing for image segmentation, because non-
local interactions can now be added without losing two key advantages of the
multicut: (i) Every feasible solution of the optimization problem corresponds to a
decomposition of the graph, i.e. to a consistent segmentation. (ii) No assumptions
on the number or size of segments are made, making the method applicable in
the typical and important scenario where such prior knowledge is not available.
Since standard and lifted multicut are both NP-hard integer linear programming
problems [7,8] – even for planar graphs [11,12] – this paper proposes a new family
of efficient heuristics inspired by [13,14] and on the basis of fusion moves [14,15].
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So far, the computer vision community has studied three classes of algorithms
addressing optimization problems of this type: (i) branch-and-cut algorithms
[1,16,17] that converge to an optimal integer solution but do not admit polynomial
time complexity bounds and are too slow for lifted multicuts; (ii) linear program-
ming relaxations with subsequent rounding to an integer solution [17,18,19] which
can yield a log-factor approximation [8] in polynomial time; (iii) constrained
search algorithms [9,20,21] that find approximate integer solutions directly in
polynomial time. Although no theoretical guarantees are known for the latter
approximations, they tend to be better than relaxation followed by rounding.

Constrained search algorithms for the lifted multicut problem were introduced
in [9]. They generalize multicut algorithms of the Kernighan/Lin [22] type from
[20] and greedy additive edge contraction from [21]. We show in this paper that
fusion move algorithms for the multicut as proposed in [23] can be generalized as
well and actually perform better in terms of approximation quality and speed.

1.1 Contribution

This work makes four contributions:

1. We generalize the fusion move algorithm [23] into a new constrained search
algorithm for the minimum cost lifted multicut problem defined in [9].

2. We show that our algorithm outperforms the constrained search algorithms of
[9] on the same problem instances in approximation quality and speed.

3. We introduce novel non-local potentials for the segmentation problem and
incorporate them into a lifted multicut formulation of the objective.

4. We apply the proposed algorithm to the biological image segmentation bench-
mark [24,25], achieving the highest accuracy known at the time of writing.

2 Optimization Problem

2.1 Minimum Cost Multicut Problem

The minimum cost multicut problem is an optimization problem whose feasible
solutions can be identified with the decompositions of a graph. Below, we recall
only the necessary basic definitions and otherwise refer to [26,27] for details.

A decomposition of a graph is a partition of the node set into connected
subsets. More rigorously, a decomposition of a graph G = (V,E) is a partition
Π of the node set V such that, for every U ∈ Π, the subgraph of G induced by
U is connected. Every decomposition of a graph can be identified with the set
of edges that straddle distinct components. Such subsets of edges are called the
multicuts of the graph.

A subset M ⊆ E of edges is a multicut of G iff there exists a decomposition
Π of G such that M is the set of edges straddling distinct components. Moreover,
M is a multicut of G iff no cycle in the graph intersects with M precisely once.
Rigorously, for every cycle Y ⊆ E of G: |M ∩ Y | 6= 1. This characterization is
intuitive: If one transitions from one component to another along the cycle, one
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needs to transition back before returning to the node from which one has started.
It is used to state the minimum cost multicut problem:

For every graph G = (V,E) and every c : E → R, the instance of the minimum
cost multicut problem w.r.t. G and c is the optimization problem

min
x∈{0,1}E

∑
e∈E

cexe (1)

subject to ∀Y ∈ cycles(G) ∀e ∈ Y : xe ≤
∑

e′∈Y \{e}

xe′ . (2)

2.2 Minimum Cost Lifted Multicut Problem

The minimum cost multicut problem has a limitation: A multicut makes explicit
only for neighboring nodes whether these nodes are in distinct components of
the decomposition induced by the multicut. It does not make this explicit for
non-neighboring nodes. Thus, the cost function can introduce only for pairs of
neighboring nodes a cost or reward to be paid by feasibles solutions that assign
these nodes to distinct components. It cannot introduce such a cost for pairs of
non-neighboring nodes. As illustrated in Fig. 1, simply considering a graph with
more edges does not overcome this limitation in general.

This limitation led Andres [10] to define the minimum cost lifted multicut
problem w.r.t. one graph G = (V,E) whose decompositions are identified with
feasible solutions, and a possibly larger graph G′ = (V,E′) with E ⊆ E′ for
whose every edge vw ∈ E′ it is made explicit whether the nodes v and w are in
distinct components. By assigning a cost cvw ∈ R to this edge, one can penalize
or reward precisely those decompositions of G (!) for which the nodes v and w
are in distinct components. This property is used for image segmentation in [9].
We recall the minimum cost lifted multicut problem from [10, Def. 10].

For any graphs G = (V,E) and G′ = (V,E′) with E ⊆ E′ and every c : E′ →
R, the instance of the minimum cost lifted multicut problem w.r.t. G, G′ and c is
the optimization problem

min
x∈{0,1}E′

∑
e∈E′

cexe (3)

subject to ∀Y ∈ cycles(G) ∀e ∈ Y : xe ≤
∑

e′∈Y \{e}

xe′ (4)

∀vw ∈ E′ \ E ∀P ∈ vw-paths(G) : xvw ≤
∑
e∈P

xe (5)

∀vw ∈ E′ \ E ∀C ∈ vw-cuts(G) : 1− xvw ≤
∑
e∈C

(1− xe) . (6)

The cycle constraints (4) are identical to those in (2). Additional constraints
(5) and (6) ensure, for every edge vw ∈ E′ \ E that xvw = 0 if (5) and only if
(6) v and w are connected in G by a path of edges labeled 0, i.e., iff v and w are
in the same component of G defined by the multicut M := {e ∈ E|xe = 1} of
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Fig. 1. Depicted above in (a) is an instance of the minimum cost multicut problem
(1)–(2). The solution is the multicut consisting of those edges that are depicted as
dotted lines. I.e. all edges except v1v6 are cut. Depicted above in (b) is an instance of
the minimum cost lifted multicut problem (3)–(6) with one edge in E′ \ E depicted in
green. Here as well, the solution is the lifted multicut consisting of those edges depicted
as dotted lines. Note that, unlike in (a), the lifted edge with cost 5 causes the nodes v1
and v6 to be connected in G by a path of edges labeled 0. Thus, positive costs assigned
to lifted edges are called an attraction.

G. Or in other words, iff a lifted edge (vw ∈ E′ \ E) is not cut, there must be a
path of non-cut edges in the original graph connecting v and w.

3 Optimization Algorithm

3.1 Constrained Search Algorithms

Constrained search is a class of heuristic optimization algorithms. In the computer
vision community, they are also commonly referred to as move making algorithms.
Examples are α-expansion [28], αβ-swap [28], lazy flipping [29] and fusion [14].

Given a map f : X → R and the optimization problem min {f(x) |x ∈ X},
the idea of constraint search is this: Instead of optimizing f over the entire
feasible set X, which might be hard, start from an initial feasible solution x0 ∈ X,
optimize f over a neighborhood N(x0) ⊆ X to obtain a new feasible solution x1.
Iff f(x1) < f(x0), re-iterate, starting from x1. Note that this algorithm does not
require that x1 be optimal.

Typically, the neighborhood function N : X → 2X is chosen such that, for
every x ∈ X, we have x ∈ N(x). If N is chosen such that, for every x ∈ X, the
problem min {f(x′) |x′ ∈ N(x)} is of polynomial time complexity, then every
iteration of the algorithm is efficient. If the optimization over the neighborhood is
not known to be of polynomial complexity, it can still be less complex or smaller
than the original problem and can thus be tractable in practice.

3.2 Fusion Move Algorithms

Fusion move algorithms [14] are a class of constrained search algorithms. They
consist of two procedures. First is proposal generation that computes, for every
feasible solution x ∈ X given as input, another feasible solution pg(x) ∈ X
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Fig. 2. In a fusion move algorithm, proposal generation (PG) and fusion moves (FM)
can be combined in different ways. We implement and study serial fusion moves (a) and
parallel fusion moves (b).

as output, possibly in a randomized fashion. Second is fusion, an optimiza-
tion algorithm that computes a feasible solution of an optimization problem
min {f(x) |x ∈ N(x)} for a neighborhood N(x) defined w.r.t. x and pg(x)
such that x ∈ N(x) and pg(x) ∈ N(x), to obtain a feasible solution x′ with
f(x′) ≤ f(x) and f(x′) ≤ f(pg(x)). In a fusion move algorithm, proposal genera-
tion and fusion can be combined in different ways, as depicted in Fig. 2.

3.3 Fusion Moves for the Lifted Multicut Problem

Lempitsky introduced fusion moves for unconstrained quadratic programming in
[14]. Beier et al. define a fusion move algorithm for the minimum cost multicut
problem in [23]. Here, we generalize the idea of Beier et al. to the minimum cost
lifted multicut problem. The fusion moves are defined in this section. Proposal
generators are defined in the next section.

Given any feasible solutions x1 and x2 of the minimum cost lifted multicut
problem (3)–(6), a constrained minimum cost lifted multicut problem in the
variables x ∈ {0, 1}E′

is defined by (3)–(6) and the additional constraints

∀e ∈ E : xe ≤ x1e + x2e . (7)

That is, all edges which are labeled 0 (join) in the feasible solution x1 and the
feasible solution x2 are constrained to be labeled 0 in the problem (3)–(7). By
construction, x1 and x2 are feasible solutions of the constrained problem (3)–(7).

Next, we reduce the constrained minimum cost lifted multicut problem (3)–
(7) to an unconstrained minimum cost lifted multicut problem w.r.t. a smaller
graph (Lemma 1). The latter problem can be solved by existing algorithms.
In practice, we solve it approximatively by means of the Kernighan-Lin-type
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Fig. 3. To perform a fusion move, we solve a minimum cost lifted multicut problem
with some edge labels fixed to 0 (join). In (a) such edges are depicted by bold lines. To
solve this constrained problem, we reduce it to an unconstrained minimum cost lifted
problem w.r.t. a contracted graph, depicted for this example in (b).

algorithm published by Keuper et al. [9]. The construction of the smaller graph
is depicted in Fig. 3 and is described below.

Let G = (V, E) be the graph obtained from the graph G by contracting the
edges {e ∈ E |x1e = 0 ∧ x2e = 0}1. Moreover, let E ′ ⊆

(V
2

)
such that V ′W ′ ∈ E ′ iff

there exist v ∈ V ′ and w ∈W ′ such that vw ∈ E′. Finally, let C : E ′ → R such
that, for every V ′W ′ ∈ E ′:

CV ′W ′ =
∑

{vw∈E′ | v∈V ′∧w∈W ′}

cvw (8)

Lemma 1. For every feasible solution X : E ′ → {0, 1} of the instance of the
minimum cost lifted multicut problem w.r.t. G, G′ := (V, E ′) and C, the x : E′ →
{0, 1} such that

∀vw ∈ E′ : xe =

{
XV ′W ′ if ∃V ′W ′ ∈ E ′ : v ∈ V ′ ∧ w ∈W ′

0 otherwise
(9)

is well-defined and a feasible solution of the constrained minimum cost lifted
multicut problem (3)–(7). Moreover,∑

vw∈E′

cvwxvw =
∑

V ′W ′∈E′
CV ′W ′XV ′W ′ . (10)

Proof. If there exist V ′W ′ ∈ E ′ such that v ∈ V ′ and w ∈W ′, then V ′ and W ′

are unique (because V is a partition of V ). Thus, x is well-defined.
The feasible solution X defines a decomposition of G (becauseM := {V ′W ′ ∈

E |XV ′W ′ = 1} is a multicut of G). Every decomposition of G induces a decompo-
sition of G (as the node set V of G is itself a decomposition of G). The multicut

1 I.e., V is a decomposition of G with every V ′ ∈ V a maximal subset V ′ ⊆ V of nodes
of G connected by edges e ∈ E for which x1

e = 0 and x2
e = 0. In addition, for every

V ′W ′ ∈
(V
2

)
, we have V ′W ′ ∈ E iff there exist v ∈ V ′ and w ∈W ′ such that vw ∈ E.
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M := {vw ∈ E |xvw = 1} of this decomposition of G is defined by the multicut
M of G by (9) (by definition of G). Thus, x satisfies (4).

Moreover, for every vw ∈ E′ \E, we have xvw = 0 iff v is connected to w by
a path P in G with xP = 0 (by (9) and definition of G and E ′). Thus, x satisfies
(5) and (6). Finally, (10) holds by (8) and (9). �

3.4 Proposal Generation for the Lifted Multicut Problem

As pointed out in [30], a proposal generator is designed with four objectives
in mind. Firstly, proposed feasible solutions should be diverse. Otherwise, the
fusion move algorithms can get trapped in local minima. Secondly, some proposed
feasible solutions should be good. Otherwise, the fusion move algorithms cannot
get close to the optimum. In the context of the minimum cost lifted multicut
problem, a feasible solution is good if the recall of edges that are cut in an optimal
solution is close to 1. Thirdly, the proposed feasible solutions should be sparse.
In the context of the minimum cost lifted multicut problem, a feasible solutions
is sparse if the precision of edges that are cut in an optimal solution is close to 1.
Fourthly, the proposed feasible solutions should be cheap, i.e., proposals should
be computable efficiently and in parallel. We study three proposal generators
that emphasize different design objectives.

Randomly Perturbed Proposals. In order to obtain a proposal of high
quality efficiently, we apply greedy additive edge contraction (GAEC) [9]. The key
idea of this algorithm is to greedily contract edges with maximum cost until this
maximum cost is equal to or smaller than zero. In order to get diverse solutions,
we follow [23] and add normally distributed noise of zero mean to edge costs. In
order to control the sparsity of the proposal, we replace the stopping criterion of
GAEC and continue until a maximum allowed number of components is reached.

Subgraph Proposals. In order to obtain an objective-aware proposal for
a large problem instance, we solve the minimum cost lifted multicut problem
for a small subgraph. Technically, the procedure works as follows: We choose a
center node v ∈ V and the subgraph induced by the set U of all nodes within
a fixed path-length distance from v. For E0 := {vw ∈ E | v /∈ U ∧ w /∈ U} and
E1 := {vw ∈ E | v ∈ U ∧ w /∈ U}, we solve the instance of the minimum cost
lifted multicut problem w.r.t. the graph G and the cost function c, with the
additional constraints

∀e ∈ E0 : xe = 0 (11)

∀e ∈ E1 : xe = 1 . (12)

Watershed Proposals. In order to obtain diverse proposals cheaply, we
follow [23] in using the weighted watershed algorithm [31,32] with random seeds.
From the set {vw ∈ E′ \ E | cvw < 0} of lifted edges with negative cost, we draw
a fixed number without replacement and assign different seeds to v and w. Thus,
a random subset of lifted edges with negative cost is cut.
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Data: G : Graph G = (V,E); G′ : Graph G′ = (V,E′)
C : edge weights; xstart : starting point solution; GEN : proposal generator

Result: y : improved solution
xbest ← xstart;
for < nIterations > do

P ← ∅;
for #Proposals in parallel do

xp ← GEN(xbest) . generate proposal;

xp ← argmin
x∈{0,1}

∑
e∈E′

cexe s.t. (3)–(7), ∀e ∈ E : xe ≤ xp
e + xbest

e .;

P ← P ∪ {xp};
end
while |P | > 1 do

. hierarchically fuse proposals ;

P̂ ← ∅;
for each i in |P |/2 in parallel do

x1 ← P2i;

x2 ← P2i+1;

xp ← argmin
x∈{0,1}

∑
e∈E′

cexe s.t. (3)–(7), ∀e ∈ E : xe ≤ x1
e + x2

e.;

P̂ ← P̂ ∪ {xp};
end

P ← P̂ ;

end
xbest ← P1 . update current best

end
return xbest;

Algorithm 1: Lifted MC - Parallel Fusion Moves (LMC-PFM)

4 Experiments

We now describe experiments in which we compare the fusion move algorithm
(Alg. 1) for the minimum cost lifted multicut problem with the Kernighan/Lin-
type algorithm (KLj) and Greedy Additive Edge Contraction (GAEC) of [9] for
the same problem.

In the tables below, FM-R, FM-SG and FM-WS stand for the fusion move
algorithm with the randomized, subgraph and watershed proposal generators,
respectively. Individual fusion problems, i.e., those problems denoted by boxes
labeld “FM” in Fig. 2, are solved by KLj initialized with the output of GAEC.

In each experiment, the outer loop of fusion is terminated when no improve-
ment is achieved for 5 consecutive iterations. Each experiment is conducted with
1, 2, 4 and 8 threads, respectively, to examine concurrency. All experiments are
conducted on an Intel Core i7-4700MQ CPU operating at 2.40GHz × 8, and
equipped with 32 GB of RAM.

4.1 ISBI 2012 Challenge

The ISBI 2012 Challenge [24,25] offers a set of segmentation tasks where images of
the Drosophila larva ventral nerve cord acquired by a serial section transmission
electron microscope are to be decomposed into distinct neurons, as depicted in
Fig. 4c. The data set contains of 30 training images and 30 test images. Human
annotations (Fig. 4b) are provided for each training image.
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(a) training data (b) ground truth (c) overlay

(d) test data (e) superpixel (f) local and lifted
edges in the RAG

(g) result

Fig. 4. The ISBI 2012 Challenge [24,25] offers a set of segmentation tasks where neurons
are to be delineated correctly in two-dimensional electron microscopy images, cf. (a)–(c).
We start from the region adjacency graph of a superpixel segmentation (e) and train
two classifiers to estimate the probability of adjacent and, respectively, non-adjacent
superpixel pairs to belong to the same neuron. I.e., for edges like A-B and C-D in
(f) or lifted edges E-F and G-H in (f). Solving, by fusion moves, a minimum cost
multicut problem with costs defined in (13), our results on independent test images
(with undisclosed ground truth) achieve the highest accuracy known at the time of
writing. See (g) and Tab. 1.

We propose a processing pipeline. Describing this pipeline in every technical
detail is beyond the scope of this work. For the sake of reproducibility, the source
code is available 2 . Overall, the pipeline consists of the following steps:

1. Start from the region adjacency graph (RAG) of an over-segmentation gener-
ated by seeded region growing [33], as shown in Fig. 4e.

2. Add lifted edges F for all pairs of superpixels within a path-length distance
of rnl = 4. The difference between lifted and non-lifted edges can be seen in
Fig. 4f.

3. Train two random forest classifiers: A first classifier RFl learns to predict if a
pair of adjacent superpixels should be in the same neuron or not. A second
classifier RFnl predicts the same for non-adjacent pairs of superpixels.

4. Solve an instance of the minimum cost lifted multicut problem (3)–(6) with
superpixels as nodes, non-lifted and lifted edges and costs defined w.r.t. the

2 https://github.com/DerThorsten/lifted_fusion_moves_eccv_2016

https://github.com/DerThorsten/lifted_fusion_moves_eccv_2016
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probabilities estimated by RFl and RFnl as

cvw := log
p(xvw = 0)

p(xvw = 1)
. (13)

To train RFl we use features on local image statistics as described in [34,35].
To train RFnl, we compute the following features for of lifted edges:

1. Features based on hierarchical clustering inspired by [36,37]: We apply UCM
to generate the complete dendrogram and use the thus defined ultrametric
distance between pairs of nodes (height in the dendrogram at the moment
when the nodes are merged) as a feature for the corresponding lifted edge, if
it exists.

2. Features inspired by maximum intervening contours [38,39,40]: We compute
simple statistics of local image features (e.g. average gradient) along multiple
straight lines between two superpixels.

3. Shortest path based features: Using various local features (raw intensities,
gradients etc.), we compute multiple shortest paths between non-adjacent
superpixels and measure statistics along these paths.

4. Candidate segmentation features: We compute multiple candidate segmen-
tations using the minimum multicut objective (with varying parameter and
without lifted edges), and each edge is assigned the proportion of the segmen-
tation where it got cut.

For all features above we use the raw data itself as input, but also a pixel wise
probability map learned with a CNN [41].

A quantitative evaluation is shown in Tab. 1. It can be seen from this table that
segmentations of the images defined by feasibles solutions of the minimum cost
lifted multicut problem define a new state of the art on this highly competitive
segmentation challenge. FM-R, FM-SG and KLj yield the same objective. Even
with only a single thread, FM-R and FM-SG are slightly faster than KLj. With
8 threads, the proposed methods outperform KLj by a factor of 4.

4.2 Image Decomposition

Keuper et al. [9] pose the image decomposition problem [6] as a minimum cost
lifted multicut problem. Instances of this problem are defined w.r.t. pixel grid
graphs and lifted edges connecting each pixel to the (about 300) pixels within a
path-length distance of 10. Costs of non-lifted edges are derived from structured
edge detection according to [42]. Costs of lifted edges are defined by probabilistic
geodesic lifting [9].

These large instances of the minimum cost multicut problem pose a challenge
to optimization algorithms and are thus suitable for benchmarking. Here, we
compare the fusion move algorithm with watershed proposal generator (FM-WS)
with GAEC and KLj initialized with the output of GAEC.

Results are shown in Tab. 2. It can be seen from these results that FM-WS
outperforms the current state of the art (KLj) in terms of runtime and objective
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Table 1. Feasible solutions of the minimum cost lifted multicut problem define a new
state of the art on the ISBI 2012 Challenge [24,25]. The performance measures VRand
and VInfo are defined in [25]. A value of 1 indicates a perfect segmentation; values close
to zero indicate poor segmentations. Using 8 threads, the proposed methods (FM-R,
FM-SG) outperform KLj by a factor of 4. Leader board: http://brainiac2.mit.edu/
isbi_challenge/leaders-board-new

Algorithm Objective Time to convergence [s] VRand VInfo
(1/2/4/8 threads) (higher is better)

FM-SG -13560.18 0.62 / 0.37 / 0.28 / 0.21 0.9804 0.9884
FM-R -13560.18 0.77 / 0.42 / 0.32 / 0.28 0.9804 0.9884
KLj -13560.18 0.89 0.9803 0.9884

Leader Board 2 - - 0.9796 0.9870
Leader Board 3 - - 0.9768 0.9886
Humans - - 0.9978 0.9990

value. Moreover, FM-WS is about twice as fast with one thread and about six
times as fast with 8 threads. The gap between FM-WS and KLj is comparatively
larger than that between of KLj and GAEC. Therefore, we consider FM-WS a
significant improvement over the state of the art.

4.3 Averaging Multiple Segmentations

Fusing multiple segmentations into a single one is not only important as an
image analysis sub-task, but can also be used to combine multiple manually
derived ground truth solutions into a “master” ground truth image. Multiple
user-provided solutions are, for example, available for the BSDS-500 data set [6].

Recently, [43] proposed to solve this problem with an EM-algorithm based
on the multicut objective. Their algorithm is defined on a complete graph
derived from the region adjacency graph of an initial superpixel segmentation. In
contrast to our approach, they use the plain multicut objective where all edges

Table 2. The proposed algorithm FM-WS outperforms KLj and GAEC on the large
and hard instances of the minimum cost lifted multicut problem of [9].

Algorithm Objective Time to convergence [s]
(1,2,4,8 threads)

FM-WS −62748200 61 / 32 / 25 / 22

GAEC −62744700 10 / n.a.
KLj −62745500 121 / n.a.

http://brainiac2.mit.edu/isbi_challenge/leaders-board-new
http://brainiac2.mit.edu/isbi_challenge/leaders-board-new
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of the complete graph are considered local, and there are no lifted edges. Before
constructiong the complete graph, every proposed segmentation xl from the given
set L is projected on the superpixel RAG, and all edges which are not cut in any
proposal are contracted, resulting in a dramatic reduction of the graph’s size.
The edge costs of the remaining edges measure how often this edge is cut in L.
Furthermore, a weight pl measuring the estimated reliability of each segmentation
relative to the others is assigned to each member of L. The multicut objective
is then optimized with pl kept fixed, and the pl are updated according to the
proportion of edges in xl that agree with the current master segmentation. This
is repeated in an EM manner until convergence.

We modify this aproach as follows: We optimize directly on the pixel-level, i.e.
on a 4-connected grid graph instead of a superpixel RAG, to eleminate superpixel
computation as an additional source of error. Moreover, we replace the multicut
objective with a lifted multicut objective containing only a sparse set of lifted
edges up to a graph distance of 5. We do not contract any edges in pre-processing.
Edge costs are defined as in [43] by

cvw := log
∑
l∈|L|

(1− xlvw)pl − log
∑
l∈|L|

xlvwpl (14)

As in [43], we use an EM-type algorithm to update pl according to the number
of edges in xl that agree with the current master segmentation x̂:

pl =
1

|EF |
∑

xvw∈EV

1− |xlvw − x̂vw| (15)

In every iteration of EM, we solve an instance of the minimum cost lifted
multicut problem using FM-SG and, for comparison, KLj. Both are initialized
with the output of GAEC. We only use FM-SG results to update the pl since they
were always better than the KL results. In addition to the proposals generated
by the subgraph method, all xl are included into the proposal set, leading to a
significant speed-up.

Results are shown in Tab. 3 and Fig. 5. It can be seen from Tab. 3 that
FM-SG outperforms KLj in terms of objective value and run-time. Even with a
single thread, FM-SG is twice as fast as KL. Using 8 threads, the FM-SG is six
times as fast.

5 Conclusion

We have defined a fast, scalable and easy to implement fusion move algorithm for
the minimum cost lifted multicut problem. Experiments with diverse instances
of the problem have shown that this algorithm typically outperforms existing
methods in terms of objective value and run-time. We conjecture that efficient al-
gorithms such as the one proposed in this paper facilitate a variety of applications
of the minimum cost lifted multicut problem in computer vision of which the
averaging of multiple segmentations is just one example. Improved parallelization
schemes of the proposed algorithm are subject of future work.
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Combined with KL:

Combined with FM-SG:

Combined with KL:

Combined with FM-SG:

Combined with KL:

Combined with FM-SG:

Fig. 5. To average multiple segmentations, we solve instances of a minimum cost lifted
multicut problem as in (14)–(15). Above, Rows 1–5 show different man-made segmenta-
tions of images from the BSDS-500 benchmark [6]. Row 6 shows the combination of
these segmentations by the solution using KL, row 7 shows the result with the proposed
algorithm (FM-SG).
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Table 3. To average multiple segmentations, we solve instances of a minimum cost
lifted multicut problem as part of the EM algorithm proposed in [43]. FM-SG is an
efficient algorithm to solve these instances.

Algorithm Objective Time to convergence [s]
(1/2/4/8 Threads)

FM-SG -2.29e+07 14.8 / 8.83/ 6.33/ 5.21

GAEC -1.53e+07 13.8
GAEC + KLj -2.27e+07 29.3

Acknowledgments: Partial financial support by DFG-SFB 1129, DFG-SFB
1134 and DFG-HA 4364/8-1 is gratefully acknowledged.

References

1. Andres, B., Kappes, J.H., Beier, T., Köthe, U., Hamprecht, F.A.: Probabilistic
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34. Andres, B., Köthe, U., Kroeger, T., Helmstaedter, M., Briggman, K.L., Denk, W.,
Hamprecht, F.A.: 3D segmentation of SBFSEM images of neuropil by a graphical
model over supervoxel boundaries. Medical Image Analysis 16(4) (2012) 796–805

35. Andres, B., Kroeger, T., Briggman, K.L., Denk, W., Korogod, N., Knott, G.,
Koethe, U., Hamprecht, F.A.: Globally optimal closed-surface segmentation for
connectomics. In: ECCV. Springer (2012) 778–791

36. Arbelaez, P.: Boundary extraction in natural images using ultrametric contour
maps. In: Proceedings of the 2006 Conference on Computer Vision and Pattern
Recognition Workshop. CVPRW ’06, Washington, DC, USA, IEEE Computer
Society (2006) 182–

37. Yang, X., Prasad, L., Latecki, L.J.: Affinity learning with diffusion on tensor
product graph. IEEE Trans. Pattern Anal. Mach. Intell. 35(1) (2013) 28–38

38. Leung, T.K., Malik, J.: Contour continuity in region based image segmentation. In
Burkhardt, H., Neumann, B., eds.: ECCV (1). Volume 1406 of Lecture Notes in
Computer Science., Springer (1998) 544–559

39. Fowlkes, C., Malik, J.: How Much Does Globalization Help Segmentation? Technical
report, Division of Computer Science, University of California, Berkeley (July 2004)

40. Maire, M., Arbelaez, P., Fowlkes, C.C., Malik, J.: Using contours to detect and
localize junctions in natural images. In: CVPR. (2008)

41. Lin, M., Chen, Q., Yan, S.: Network in network. CoRR abs/1312.4400 (2013)
http://arxiv.org/abs/1312.4400.

42. Dollár, P., Zitnick, C.L.: Fast edge detection using structured forests. PAMI (2015)
43. Alush, A., Goldberger, J.: Ensemble segmentation using efficient integer linear

programming. Pattern Analysis and Machine Intelligence 34(10) (2012) 1966–1977

http://arxiv.org/abs/1312.4400

	An Efficient Fusion Move Algorithm for the Minimum Cost Lifted Multicut Problem



