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Abstract

We propose a novel graphical model for probabilistic image segmentation that
contributes both to aspects of perceptual grouping in connection with image seg-
mentation, and to globally optimal inference with higher-order graphical models.
We represent image partitions in terms of cellular complexes in order to make the
duality between connected regions and their contours explicit. This allows us to
formulate a graphical model with higher-order factors that represent the require-
ment that all contours must be closed. The model induces a probability measure on
the space of all partitions, concentrated on perceptually meaningful segmentations.
We give a complete polyhedral characterization of the resulting global inference
problem in terms of the multicut polytope and efficiently compute global optima
by a cutting plane method. Competitive results for the Berkeley segmentation
benchmark confirm the consistency of our approach.

1 Introduction
We study the image partitioning problem, where the task is to decompose an image
into a previously unknown number of segments that are somehow homogeneous but
do not belong to a predefined set of categories such as {ground, car, sky}. The most
popular representation for this kind of problem is in terms of pixel labels: segments are
then defined as connected components of pixels with the same label. However, while a
labeling uniquely defines a segmentation, the converse is not true. This aggravates the
inference problem, as discussed in Section 3.

Alternatively, one may represent image partitioning as an edge labeling problem.
Here, a region adjacency graph of pixels or superpixels can be constructed, and each
edge in the graph can be labeled as “active” (1) or “dormant” (0). Each maximal set
of nodes that is connected by edges of type 0 corresponds to one segment. An impor-
tant advantage is that arbitrary partitionings can thus be represented using only binary
labels. On the downside, not every binary labeling results in closed contours. Such
inconsistencies could be addressed by a heuristic postprocessing that closes gaps in
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Figure 1: (a) Oversegmentation of an image. The curves that separate superpixels are
shown in white. (b) Given local boundary and Gestalt features that characterize each
curve, we make a prediction if a curve should be kept (“active”) or discarded (“dor-
mant”). Connected component analysis then yields a segmentation that is, however, of
poor quality because the contours of most real objects have gaps. Each gap arises from
a curve that was falsely discarded. Many “active” curves (shown in red) then end up
in the interior of connected components and are hence inconsistent with the segmen-
tation. (c) The introduction of topological constraints yields improved and consistent
closed-contour segmentations.

contours, or eliminates dangling boundaries within a segment. While empirically use-
ful, such methods are hard to characterize theoretically and hence difficult to improve
systematically.

To address these challenges, we start from an oversegmentation whose regions be-
come the nodes of an adjacency graph. A binary random variable is associated with
each edge, stating whether the corresponding curve should become active as part of
a segment boundary, or remain dormant. A probabilistic graphical model is proposed
that associates a probability with each realization of these random variables. Impor-
tantly, we formulate a prior that assigns zero probability to all those configurations that
correspond to inconsistent edge labelings. This corresponds to an exponential number
of constraints in the integer linear programming (ILP) problem to which the inference
problem can be cast. However, we can find violated constraints in polynomial time
(Section 3.2) and add these iteratively, thus solving the inference problem to global
optimality using branch-and-cut. Overall, this amounts to a practical solution of the
multicut problem, despite its NP hardness.

Summarizing, our main contributions are

• A statistically sound formulation of the partitioning problem that explicitly in-
cludes a closedness constraint and achieves state-of-the-art performance on the
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Berkeley segmentation dataset (BSD) [15].

• An explicit objective function that measures the fit of a partitioning to an image,
rather than a mere procedural recipe.

• Empirical proof that globally optimal (maximum a posteriori) solutions can be
found even in the face of non-local closed-contour constraints.

• A probabilistic model whose underlying statistical assumptions are made explicit
and which can be parameterized without manual tweaking based on statistical
learning from training data.

2 Related Work
Image segmentation has successfully been formulated as an optimal graph partition-
ing problem, e.g. in normalized cuts [25]. While the normalized cut framework settles
for an iterative bisectioning of the graph by solving a relaxation of the normalized cut
objective, we solve an unrelaxed multicut objective to global optimality. We formu-
late this objective in terms of a higher-order probabilistic graphical model over edge
labelings.

Graphical models over edge labelings have been proposed in [17, 28]. These mod-
els are restricted to the special case in which curves cannot intersect. Each segment is
thus adjacent to at most one other segment in a global optimum. If it is known a priori
that only two segments exist, this assumption is mild and the optimization problem can
be solved efficiently [17]. We drop this assumption for the general case in which the
number of segments is not known a priori. We still guarantee the closedness of curves
globally through higher-order constraints and find global optima.

In [28], the ”multi class segmentation” problem is addressed in which object cate-
gories are given and the goal is to assign one category to each pixel. We, in contrast,
address the multicut problem where the goal is to partition the image, based merely on
a notion of similarity. Model assumptions are violated in the solutions of [28] (Fig. 14)
found by Loopy Belief Propagation which indicates that the problem has not been
solved to global optimality.

The advantages of superpixels and features derived from these have been expounded
by [23] and others.

On the theoretical side, our model is strongly related to the partitioning or multicut
problem in combinatorial optimization, cf. [6, 9, 7]. While the calculation of minimal
cuts has become a standard technique in computer vision [12, 24], its generalization
to the multi-class case (multicuts) has so far been deemed to be impractical for com-
puter vision applications. However, the multicut problem can be formulated as a linear
program over the multicut polytope [11]. Unfortunately, the number of facets defining
this polytope is exponential in general. Therefore, cutting plane methods are used to
iteratively tighten an outer approximation of the multicut polytope [10, 3].

Pioneering applications in computer vision that exploit these techniques in the pri-
mal (node) domain are [26] and [18]. In contrast to these, we consider the dual (edge)
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Figure 2: Unequal node labelings that represent the same segmentation (a through d)
can be obtained by permuting labels (b) and by using one or several labels for more
than one segment (c). The number of choices increases if there are more labels than
necessary to represent all segmentations (d).

domain and apply branch-and-cut algorithms [5] in order to guarantee optimal integer
solutions.

3 Probabilistic Models of Graph Segmentation
We represent an image as a graph G = (V,E) whose nodes correspond to pixels or
image regions / superpixels. We set out to find a probabilistic model on the set of all
possible partitionings SG of that finite graph G into connected subsets of nodes. That
is, we want to find a probability mass function p that assigns a probability p(S) ∈ [0, 1]
to every possible segmentation S ∈ SG. For all but the smallest graphs, the set SG is
too big to explore exhaustively, requiring an implicit definition. While such a definition
in terms of node labelings is challenging (Section 3.1) we use binary edge labelings
together with additional constraints that guarantee closed contours.

3.1 Graph Segmentation by Node Labeling
One way to define the desired probability mass function implicitly is to define a graph-
ical model in terms of a node labeling. Assuming a set L of labels, each of the |V |
discrete variables in the graphical model can take any of |L| states. The segmentation
induced by a node labeling is then defined as the partition of V into maximal connected
subsets of nodes that have the same label.

The set of all node labelings is greater than the set of all segmentations represented
by these labelings (see Fig. 2). This implies that the optimizer has to work in a search
space that has degenerate optima [11], and that certainly is (much) larger than is the-
oretically necessary. Two approaches to tackle this problem are by introduction of a
label bias [8] and through a Dirichlet process prior [19]. While the first still has to
operate on a huge state space, the latter requires sampling methods for optimization.
We present a third way via the dual problem in which edges are labeled.

3.2 Graph Segmentation by Edge Labeling
Indeed, we represent any segmentation of a finite graph (V,E) by an edge labeling
y ∈ {0, 1}|E| that indicates for each edge e ∈ E whether its incident nodes belong to
the same segment (curve dormant, ye = 0) or not (curve active, ye = 1). A probability
mass function p : {0, 1}|E| → [0, 1] on the set of all possible edge labelings can now
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Figure 3: A set of superpixels (a) and its corresponding adjacency graph (b). The
current configuration of curves / edges labeled as active (blue) or dormant (gray) is
inconsistent: the closed path depicted in green does not meet the requirements from
Definition 1 or Lemma 1. The section between the orange dots indicates that the re-
spective superpixels should belong to different segments; while the remainder of the
path claims the contrary.

be defined in terms of a graphical model with |E| binary variables. This representation
has received little attention so far, with the notable exception of [17, 28].

The state space of all 2|E| possible edge labelings is still too large because not
every edge labeling is consistent. The notion of consistency is clarified in Fig. 3 and
the following

Definition 1: Given a finite graph G = (V,E), an edge labeling y ∈ {0, 1}|E| is
termed consistent if, for all closed paths (v1, . . . , vn = v1) in G, either none or more
than one edge is labeled as active (1), i.e.

∑n−1
j=1 y{vj ,vj+1} 6= 1 .

The number of these paths can be exponential. Therefore in practice, to determine
which inequalities are violated, if any, it is more convenient to look for paths that short-
circuit two nodes that lie on opposite sides of an activated edge. Such short-circuiting
paths are the subject of

Lemma 1: An edge labeling y ∈ {0, 1}|E| of a graph G = (V,E) is consistent if and
only if, for all edges {v, v′} ∈ E with y{v,v′} = 1 and all paths (v1, . . . , vn) from
v1 = v to vn = v′:

∑n−1
j=1 y{vj ,vj+1} > 0.

See [6] or the appendix for a short proof of the lemma.
Thus, while the number of inequalities can be exponentially large, violated con-

straints can be found in time O(|V | + |E|) and added iteratively until the solution is
feasible. One simple algorithm for this purpose labels the connected components of
the graph G0 = (V, {e ∈ E|ye = 0}) in time O(|V | + |E|) and then tests for each
edge {v, v′} ∈ E that is labeled 1 whether v and v′ belong to the same component, in
timeO(1). If this is the case, the edge labeling is inconsistent, and any path inG0 from
v to v′ yields a violated inequality, including a shortest path that can be found in time
O(|V |+ |E|) using breadth-first-search.

This insight is crucial for the implementation of our model which is designed to
allow only consistent edge labelings. Each consistent edge labeling relates bijectively
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Figure 4: The segmentation of a pixel grid (a) partitions the continuous image
plane into regions s1, . . . , s5, curves c1, . . . c8 that bound these regions, and junctions
(points) j1, . . . , j4 that bound these curves. The topology of this segmentation is cap-
tured in a cellular complex [13] that relates each region to its bounding curves and each
curve to its bounding junctions (b).

to a segmentation. This bijection is the subject of the multicut problem in optimization
[7]: the set of consistent edge labelings corresponds to the vertices of the multicut
polytope [9, 6]. Inconsistent edge labelings lie outside the multicut polytope. In this
sense, any heuristic that generates a segmentation from an inconsistent labeling can be
seen as some kind of (and typically suboptimal) mapping onto the multicut polytope.
As shown in [7], the multicut problem can be formulated as an integer linear program
which is usually solved with cutting plane methods [10, 5].

4 A Probabilistic Higher-Order Graphical Model for
Image Segmentation

4.1 Representation, Terminology and Notation
So far, we have discussed graph segmentation. Image segmentation is a special case,
where the initial graph is an adjacency graph [20] whose nodes are either individual
pixels or superpixels (connected subsets of pixels).

The initial segmentation partitions the continuous image plane into (i) regions, (ii)
curves that bound regions, and (iii) junctions where several curves meet (Fig. 4).

It is important to note that the topology of these sets can have a richer structure than
the region adjacency graph reveals. For example, in Fig. 4, the two curves c3 and c6
bound the same regions s2 and s4. However, in the adjacency graph, these regions are
connected by a single edge. From the viewpoint of topology, c3 and c6 are distinct and
need to be handled separately. We use a topological grid [4] to represent all regions,
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curves and junctions, and a cellular complex [13] to capture their topology, see Fig. 4.
The topology of curves and junctions can be expressed as a bipartite graph (C, J, T ),

Fig. 4, in whichC is the set of curves and J is the set of junctions. A relation (c, j) ∈ T
indicates that the curve c ∈ C is bounded by the junction j ∈ J . Due to the regularity
and discreteness of the nearest-neighbor Cartesian pixel grid, junctions can only bound
either three or four curves. For future use in our graphical model, we call these corre-
sponding sets of junctions J3 and J4. All junctions that delimit a curve and vice versa
are referenced by N (c) = {j ∈ J |(c, j) ∈ T} and N (j) = {c ∈ C|(c, j) ∈ T}.

Summarizing, then, in this representation a segmentation is defined indirectly through
a given configuration of curves that are either switched on (active) or off (dormant).

4.2 The Probabilistic Model
We now come to the core of our modeling effort. Based on the arguments from Sec-
tion 3, we assign a binary random variable to each curve of an initial segmentation
which determines if that curve is active or dormant. We further propose a probability
mass function p : {0, 1}|C| → [0, 1] that assigns a probability to every conceivable
configuration of active and dormant curves. It assigns zero probability to all inconsis-
tent curve labelings, thus guaranteeing that each admissible solution has a one-to-one
correspondence to a closed-contour segmentation. We define p in terms of a graphical
model as a probability mass function conditioned on local features of junctions and
curves, as well as on the topology of the segmentation.

Qualitatively, we learn unary potentials that look to the underlying image for evi-
dence of “boundariness”. If there is strong local evidence for a boundary, these poten-
tials encourage a curve becoming active. The third and fourth order junction potentials
allow to express Gestalt laws such as good continuation [23, 28]. The combination
of all potentials in a single model trades off the potentially conflicting local beliefs
encouraged by the different potentials.

The potentials depend on features f (1)c of curves c ∈ C and features f (n)j of junc-
tions j ∈ Jn=3,4. The curve features are standard descriptors of the color distribution
and filter responses across curves and adjacent regions (cf. [23] and supplementary ma-
terial). The junction features are the angles between incident curves (cf. supplemen-
tary material). The collection of all features extracted from an image is abbreviated as
F := (f (1), f (3), f (4)).

We introduce random variables over the states y of the model, over the features F
and over the topology T 1 and denote these by Y,F and T , respectively.

We now make a series of conditional independence assumptions that are all detailed
in the appendix. While having to make such assumptions is always undesirable, at
least being able to state them explicitly is to be preferred. The first assumption is that
the features and topology are statistically independent, F ⊥⊥ T , thus making for the

1Recall that the topology of junctions and curves is described by the bipartite graph (C, J, T ).
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factorization

p(y|F, T ) =
p(y, F |T )
p(F |T )

=
p(F |y, T )p(y|T )

p(F |T )
(1)

=
p(F |y)p(y|T )

p(F )
=
p(F |y)
p(F )

p(T |y)p(y)
p(T )

∝ p(F |y)p(T |y)p(y) . (2)

In the last line, we have discarded the denominator since we are only interested in that
configuration y which has highest probability, and not the probability itself. We now
address the modeling of each of the three remaining factors in turn.

The Curve Prior p(y). We assume that the prior for labeling curves as dormant (0)
or active (1) is identical for all curves. We here introduce our only design parameter
β ∈ (0, 1),

p(yc)
!
=

{
1− β if yc = 0

β if yc = 1
(3)

that states if, without looking at an image, we would prefer to keep curves active (re-
sulting in a fine-grained segmentation) or dormant (resulting in a coarse segmentation).
This crucial parameter thus trades off boundary detection precision vs. recall (Fig. 6).

The Likelihood of a Topology p(T |y) given a configuration y is set to nil if y is in-
consistent for the topology T , and to a constant otherwise. Learning the true likelihood
of topologies for a given configuration from data is certainly interesting but very chal-
lenging and beyond the scope of this work. In order to avoid over-fitting, we assume a
uniform distribution over all consistent topologies.

The Likelihood of the Features p(F |y). Given the conditional independence as-
sumptions stated in the Appendix, the likelihood p(F |y) factorizes according to

p(F |y) = p(f (1), f (3), f (4)|y) (4)
= p(f (1)|y)p(f (3)|y)p(f (4)|y)
=

∏
c∈C

p(f (1)c |yc)
∏

d∈{3,4}

∏
j∈Jd

p(f
(d)
j |yN (j)) .

We propose to learn the approximate probability p̂(yc|f (1)c ) from class-balanced train-
ing data. We then have p̂(yc) = 0.5 and thus

p(f (1)c |yc)
!
= p̂(f (1)c |yc) ∝ p̂(yc|f (1)c ) p̂(f (1)c ) . (5)

For each junction j ∈ J3 of three curves {c1, c2, c3} ∈ N (j), we also learn the like-
lihood p̂(yN (j)|f

(3)
j ) = p̂(yc1 , yc2 , yc3 |f

(3)
j ) from training data2 under the assumption

that p̂(yN (j)) is constant. Plugging in this estimate, we have

p(f
(3)
j |yN (j))

!∝ p̂(yN (j)|f
(3)
j ) p̂(f

(3)
j ) . (6)

2Among the |{0, 1}3|=8 possibilities of removing or preserving the three curves incident to a junction,
the three assignments (0, 0, 1), (0, 1, 0) and (1, 0, 0) are inconsistent and thus not represented by any sam-
ples in the training data. We assume a uniform distribution of these three assignments to obtain a likelihood
term that is agnostic with regard to topology.
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Junctions j ∈ J4 with four incident curves are rare in practice, and a reliable esti-
mate of the likelihood of all possible assignments is hard to obtain from limited training
data. In order to avoid over-fitting, we assume a uniform distribution p(f (4)j |yN (j)).

The Full Model: A Conditional Random Field. In summary, then, the proposed
probabilistic model for segmentation is the Conditional Random Field

p(y|F, T ) ∝
∏
c∈C

p̂(yc|f (1)c )
∏
j∈J3

p̂(yN (j)|f
(3)
j ) p(T |y) p(y).

The optimization problem of finding a segmentation with maximum posterior proba-
bility

argmax
y∈{0,1}|C|

∏
c∈C

p̂(yc|f (1)c ) p(y)︸ ︷︷ ︸
exp(−g(1)(y))

∏
j∈J3

p̂(yN (j)|f
(3)
j )︸ ︷︷ ︸

exp(−g(3)(y))

· p(T |y)︸ ︷︷ ︸
exp(−g(T )(y))

is equivalent to the high-dimensional binary minimization problem

argmin
y∈{0,1}|C|

g(1)(y) + g(3)(y) + g(T )(y) (7)

The term g(1)(y) includes local evidence whether a curve should be removed or pre-
served, the Gestalt term g(3)(y) supports the smoothness of segment contours, and the
topological term g(T )(y) enforces their closedness. The effect of these terms is illus-
trated in Fig. 1. Using only g(1)(y) + g(3)(y) is not optimal because the consistency of
the edge labels cannot be guaranteed, Fig. 1(b). The segmentation using the full model
is depicted in Fig. 1(c).

5 Optimization
The combination of all three terms can be formulated as an Integer Linear Program3

in which g(T )(y) is encoded as the set of constraints in eq. (9) whereas g(1)(y) and
g(3)(y) are encoded in the weights w ∈ R2·|C|+8·|J|. The labeling y is represented by
an overcomplete indicator vector µ.

min
µ

∑
c∈C

∑
a∈{0,1}

wc,aµc,a +
∑
j∈J

∑
a∈{0,1}3

wj,aµj,a (8)

s.t. µ ∈ {0, 1}2·|C|+8·|J|

∀c ∈ C : µc,0 + µc,1 = 1

∀j ∈ J3, b ∈ {0, 1}, k ∈ {1, 2, 3} :∑
a∈{0,1}3,ak=b

µj,a = µN (j)k,b

∀ cycles (c1, . . . , cn) :
n∑
i=2

µci,1 ≥ µc1,1. (9)

3This over-complete representation [27] can be simplified; it is used to support readability.
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Figure 5: (a) Average boundary detection precision and recall (over all 100 images in
the BSD test set) of closed contours obtained by [1] (red) and by the proposed method
(blue: full model, other colors: simplified models, eq. 7), for different β. (b) Quality of
segmentations obtained by the proposed method, for each BSD test image, in a fixed-
parameter setting (blue), and in a setting where β is optimized for each image (green).
(c) Those images for which our segmentations have maximum precision (1), minimum
recall (2), maximum recall (3) and minimum precision (4).

Without eq. (9), the number of constraints is only polynomial and a commercial ILP
solver4 can be applied. Including the topological constraints (9), however, is not
straightforward because their number can be exponential. Luckily, thanks to Lemma 1,
we can find violated topological constraints in polynomial time and add these itera-
tively so as to solve the full problem to global optimality by a branch-and-cut approach
[5]. In our experiments, a few hundred topological constraints are sufficient to solve
the full ILP.

6 Experiments and Benchmark Results
Model Description. To apply the proposed model to the color images of the BSD, we
first need to learn the likelihood functions from Section 4.2. To that end, we start from
a watershed segmentation5 of the training images (Fig. 1(a)), and use a simple tool that
displays training images and curves between segments to annotate in total 8000 curves
each as active or dormant. The curve likelihood p̂(ye|f (1)e ) is then learned by a Random
Forest, using these labels and a set of features of each curve and its adjacent segments
(cf. supplementary material). For the junction likelihood p(ye1 , ye2 , ye3 |f

(3)
j ), the fea-

tures f (3)j consist of the angles between those curves e1, e2, e3 that are incident to the
junction j. Their distribution is learned by a Gaussian mixture model while respect-
ing the sum constraint (all angles add up to 2π). The learned model is applied to the
watershed segmentation of the BSD test images, using all bias settings from β = 0.01

4Here: IBM CPLEX 12.1
5Depending on the image, the number of curves between segments varies between 439 (minimum) and

10970 (maximum). The median over all images is 4276. It can be seen from Fig. 6, for high β, that the initial
watershed segmentations are in fact over-segmentations with many excessive curves.
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to β = 0.99 (cf. Fig. 6). For each image and each boundary bias β, we obtain one
segmentation.

Evaluation on BSD. The BSD [15] is the standard benchmark for assessing these
segmentations. It compares the closed contours of the estimated segments to those of
human-made segmentations in terms of precision and recall (and F-Score). It has also
been used to evaluate boundary detectors which need not produce closed contours. As
is best practice [2], we compare segmentations to the BSD ground truth also in terms
of the Variation of Information (VI) [16] and Rand index (RI) [21] which measure the
discrepancy of partitions. Results are shown for two settings, one in which β is chosen
optimally for the entire BSD test set, and one in which β is chosen optimally per image,
see Table 1 and Fig. 5(b). It is apparent from this figure that closedness constraints are
necessary. Perhaps surprisingly, the Gestalt terms seem to add little information in
addition to the boundary terms.

At the time of writing, the quality of the partitioning as measured by the F-Score
in the setting where the same (optimal) parameterization of algorithms is used for all
images is on a par with [1] and second to no other algorithm that produces closed
contours. But note that pure boundary detectors that need not produce closed contours
[14, 22] still have a higher F-Score, that [2] achieves a higher RI and lower VI, and
that [1] performs better in a different setting where parameters of the algorithms are
optimized separately for each image.

Closedness constraints arguably alleviate the risk of under-segmentation: If two
objects in an image which should be separated by a segmentation meet in n pairs of
adjacent superpixels, n independent decisions to merge these pairs, with an average risk
p ∈ (0, 1) of false mergers, lead to an exponential average risk 1− (1− p)n of falsely
merging the objects. A remarkable achievement of e.g. [1, 2] is that p is low enough on
the BSD to achieve top performance despite this risk. Closedness constraints enforce a
consistent decision for all pairs and thus avoid the exponential risk.

Runtime. The runtime for the construction of the model, including the watershed
segmentation, feature extraction and random forest prediction, is about 100 s in the
median, cf. Fig. 7. The runtime spent on the optimization is small in the median (4 s)
and no longer than 400 s for the most complex image of the BSD test set (Fig 7). It
takes between one (for two out of 100 test images) and 18 cutting plane iterations (four
in the median) until all constraints are satisfied and thus, the global optimum has been
found. The warm-start mechanism of CPlex is used.

The runtimes we observe are interesting even for inter-active applications since
most operations can be parallelized.
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Image β = 0.03 β = 0.10 β = 0.30 β = 0.50

Figure 6: Different segmentations of the same image can be obtained by adjusting the
prior probability β ∈ (0, 1) of preserving curves between regions. The closed contours
of all regions are depicted in yellow. The perceptually optimal β differs w.r.t. the
image, and for the same image, several settings of β can correspond to meaningful but
different segmentations.

F (Prec, Rec) [15] VI [16] RI [21]
Parameters [1] 0.67 (0.66, 0.69) 1.74 0.78

fixed [2] 0.59 1.65 0.81
Ours 0.67 (0.64, 0.74) 1.88 0.78

Parameters [1] 0.71 (0.72, 0.72) 1.53 0.83
optimized [2] 0.65 1.47 0.85
per image Ours 0.70 (0.68, 0.76) 1.68 0.83

Table 1: Segmentation quality. A good algorithm has high F-measure, low index of
variation (VI), and high Rand index (RI).
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Figure 7: The absolute runtime for segmenting a BSD color image is about 100 s on
average and about 500 s in the worst case.
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7 Conclusion
We have proposed a new probabilistic graphical model for image segmentation. In-
troducing the topology of a cellular complex as a random variable has allowed us to
exclude inconsistent edge labelings from the state space of this model. The likelihood
of topology given an edge labeling is represented by a set of linear inequalities that
enforce closed contours. In conjunction with appropriate conditional independence as-
sumptions, the overall prior probability for merging adjacent regions is the only free
parameter of this model. For any setting of this parameter, the edge labeling with maxi-
mum a posteriori (MAP) probability has closed contours. The MAP inference problem
is a multicut problem and is amenable to a practicable solution, as we show, using
a branch-and-cut algorithm. The quality of the resulting segmentation is comparable
with the state of the art in closed-contour segmentation on the BSD benchmark. First
experiments indicate that the model scales to 3D segmentation problems. We are cur-
rently working on interactive extensions where constraints can be added based on user
input.
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Appendix

Proof of Lemma 1
Proof. If an inequality in Definition 1 is violated, there exists an n ∈ N, a closed path
(v1, . . . , vn), and a j ∈ N such that all edges of the path except {vj , vj+1} are labeled
zero. Thus, there exists a path from vj to vj+1 along which all edges are labeled zero,
and y{vj ,vj+1} = 1. Hence, at least one inequality in Lemma 1 is violated.

Conversely, if an inequality in Lemma 1 is violated, there exists an n ∈ N and a path
(v1, . . . , vn) along which all edges are labeled zero, and there exists the edge {v1, vn}
that is labeled one. Thus, the closed path (v1, . . . , vn, v1) violates an inequality in
Definition 1.

Conditional Independence Assumptions

F ⊥⊥ T
∀c, c′ ∈ C|c 6= c′ : Yc ⊥⊥ Yc′
∀c, c′ ∈ C|c 6= c′ : Yc 6⊥⊥ Yc′ |T

∀d, d′ ∈ {1, 3, 4}|d 6= d′ : F (d) ⊥⊥ F (d′)|Y
∀c, c′ ∈ C|c 6= c′ : F (1)

c ⊥⊥ F (1)
c′ |Y

∀c ∈ C : F (1)
c ⊥⊥ YC\{c}|Yc

∀d ∈ {3, 4}∀j, j′ ∈ Jd|j 6= j′ : F (d)
j ⊥⊥ F (d)

j′ |Y

∀d ∈ {3, 4}∀j ∈ Jd : F (d)
j ⊥⊥ YC\N (j)|YN (j)
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