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Abstract

The following paper presents a model to predict the systematic errors
and statistical uncertainties of TOF (Time-of-Flight) 3D-imaging systems.
The experimental data obtained with a custom build test setup show that
the standard deviation of the depth signal rises approximately quadrat-
ically with the depth. The most significant systematic depth error is
periodic with an amplitude of around 50mm. It is provoked by the in-
harmonic correlation function. The inhomogeneity in each pixel (fixed
pattern) accounts for a depth error of about 20mm, while illumination
and reflectivity variations cause depth errors of less than 10mm, provided
that no overflows occurs.

1 Introduction

The invention of Time-of-Flight (TOF) camera systems with a modulated light
source for illumination which measure the phase-shift directly by correlation
on chip (see R. Schwarte et al. (1997), X. Luan et al. (2001)) makes depth-
measuring imaging systems almost as simple as standard intensity measuring
cameras. For practical usage, it is important to specify in detail the systematic
and statistical errors of this new type of cameras. While simple linear models
for TOF-cameras are well known and some limited studies of the accuracy of
the depth measurement are available (e.g. M. Lindner and A. Kolb (2006), M.
Strehler (2007), T. Kahlmann et al. (2006)), a systematic investigation is still
missing.

This paper discusses the first steps of such a systematic study. It is based on
a detailed model of a TOF-camera, which includes an error-propagation model
from the measured intensities to the estimated distance (Sec. 2). A test stand
with motor-driven linear tables was used to acquire data with targets at precise
distances from the camera (Sec. 3.3). The statistical and systematic errors in
the distance measurements are analyzed in detail (Sec. 4.2 and Sec. 4.1) as well
as the pixel-base non uniformity of the depth signal (Sec. 4.1.3).
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(a) PMD[vision] 19k camera
system

(b) Principle of correlating TOF-System

Figure 1:

2 TOF-Camera Model

A correlating TOF-system (Fig. 1(b)) always includes an active modulated light
source to illuminate the scene, normally in the infrared spectrum (with wave-
lengths of around 850 nm). Currently, all systems use LEDs. Future systems
will likely also deploy other light sources, e.g. vertical lasers.

This light travels from the camera to the target and back again and thus
experiences a phase shift

ϕd =
4πν

c
d, (1)

which is directly proportional to the distance d.
The outgoing optical signal is amplitude modulated with a fixed frequency ν,

is reflected by the scene and returns to the camera. Inside the camera – directly
on chip in most modern systems – the returning optical signal is correlated with
the electrical reference signal which is in phase with the modulated outgoing
light. The system therefore directly measures the correlation function (CF) of
the emitted and recorded signals.

The CF contains information about the returning optical signal: the constant
DC offset c, the modulation amplitude A and the phase shift ϕd, from which
the distance d between the camera and the measured object can be computed
according to (1). The shape of the CF is known if the exact form of the light
modulation is known. Because the CF can only be sampled at a small number
of points, the parameters c, A, and ϕd are inferred from a regression on three
or more sample points.

A mathematical model of the TOF-camera was first published by Z. Xu
(1999) and B. Schneider (2000). This paper follows the mathematically equiva-
lent discussion of M. Plaue (2006) which is shorter and more flexible and elegant
due to the use of complex notation.

Given some modulation function O(ν, t) with fixed frequency ν, the recorded
intensity I(ν, t) will have the same frequency and shape. The n−th correlation
frame is then calculated with various constant phase shifts αn:

In(ν, αn) =
1

t− t0

∫ t

t0

I(ν, t) ·O(ν, t +
αn

ν
+ td) dt (2)
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If N ≥ 3 the optimal solutions for the three unknowns are given by

ϕd = arg

(
N−1∑
n=0

Ine−2πi n
N

)
, c =

1
N

N−1∑
n=0

In, A =
2
N

∣∣∣∣∣
N−1∑
n=0

Ine−2πi n
N

∣∣∣∣∣ (3)

Given that the variance of the In are all equal to σ2, the variances of the
parameters become:

var(ϕd) =
σ2

2A2
, var(c) =

σ2

4
, var(A) =

σ2

2
(4)

In all available systems, N = 4 and α0,1,2,3 = 0, π/2, π, 3π/2. Z. Xu (1999)
showed that this solution is exact for sinusoidally modulated signals. If either
the optical or the reference signal is not symmetric or if they differ in form (e.g.
one is a rectangle function, the other a sinus) the CF will have a different shape.
This results in periodic systematic errors in the phase calculation and therefore
in the depth. This effect was mentioned by B. Schneider (2000), a mathematical
explanation and discussion can be found in M. Plaue (2006).

3 Experimental Setup & Data Processing

This section describes briefly the experimental setup and the data acquisition
and processing. Though this section contains some informations on how to
enhance the data delivered by the PMD[vision] 19k – the camera system used
for the acquisition – this is not the main focus of this paper and therefore only
discussed briefly. A detailed description of the experimental setup and an exact
explanation of the data processing can be found in H. Rapp (2007).

3.1 The Camera System

All experimental data for this paper was gathered using the PMD[vision] 19k
camera system by PMDTechnologies GmbH1 (Fig. 1(a)). The camera uses LEDs
with a wavelength of 870 nm and a total optical power of around 3W. The
LEDs are mounted in two arrays, one on either side of the camera. For all
experiments, the modulation frequency was kept at the default value of ν =
20 MHz resulting in an unambiguous depth range of dmax = c

2·ν = 7.5 m. The
camera acquires samples at four phase shifts for each CF, taking two samples
on each measurement (one with αn and one with αn + π/2). This redundant
information is used to correct inhomogeneities in the Photon Mixing Device
(PMD) (see R. Lange (2000) and D. Justen (2001) for details), but contains
more valuable information as discussed in section 3.4.2.

The correlation inside the camera is performed using a CMOS based optical
semiconductor called Photonic Mixer Device (PMD). This technique increases
speed and decreases cost and noise of the system. The camera has a resolution
of 160 × 120 pixels with a frame rate of 5 to 12 fps. The data is digitized with
12 bit and delivered to the host through a firewire interface. Since the camera
has no suppression of background illumination (SBI), all measurements were
performed in a dark room without any IR light source that might interfere.

1http://www.pmdtec.com
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(a) Checkerboard Target (b) High-Reflectivity Target

Figure 2: Targets used for data acquisition

3.2 Targets

The targets (Fig. 2) were custom built for this experiment with the theory of
TOF cameras in mind. Therefore, special care was taken to make sure that
the reflectivity of the targets at all points is known: The frames were covered
with black cardboard to ensure a low reflectivity at the borders, the reflecting
areas were made from Photo-Cards by Fotowand-Technic2. The high-reflectivity
target uses photocards with 84 % reflectivity, the checkerboard consists of 90×
90 mm squares with reflectivities of 12.5 %, 25 %, 50 % and 84 % in a regular
pattern.

3.3 Experimental setup

The experimental setup (Fig. 3, H. Rapp (2007)) includes a camera fixed on a 3 m
long linear position table with an accuracy of < 1 mm. The target is mounted on
a similar table which is aligned precisely with the first table. This setup allows
a sub millimeter precise depth positioning in the range of d0 ≈ 0.2 m < d <
6 m+ d0. The two tables are mounted on lockable rolls and can be separated to
move the complete experiment to other surroundings (e.g. into plain sunlight).
To remove systematic errors through unwanted reflections of the IR light from
the linear position tables, a zig-zag shading has been installed. The camera
and tables are remote controlled through a PC, so automated measurements
are possible. The PC also processes and displays the data.

The room has been held dark for all measurements and all objects in the
vicinity of the experiments have been covered with black velvet to avoid reflec-
tions from the room that could deteriorate the data.

3.4 Processing of the Acquired Data

The most fundamental data delivered by the camera are the eight raw channels3.
The camera already delivers depth, amplitude and phase shift for convenience,
but most of the problems discussed below can only be avoided by directly ac-
cessing the raw data, enhancing it and then doing the math.

2http://www.fotowand.de
3When delivered, the camera operates in the Diff Mode and only delivers 4 channels. A

firmware update gives full access to the eight raw channels. Eight channels are also needed
for masking of overexposed pixels (see Sec. 3.4.2).
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Figure 3: Experimental setup

3.4.1 Correcting Inhomogeneities

As mentioned in section 3.1, the camera takes 2 samples on 4 phase shifts. This
redundant information is used to correct inhomogeneities in the two gates of the
PMD chip. Theoretically

IA
αn

= IB
αn+ π

2
:= In (5)

with IB and IA being the correlate measured on the first (gate A) and the
second (gate B) gate of the PMD respectively. But due to technical reasons,
each gate has a constant offset error: IA

αn
= ÎA,B

αn
+ δa and likewise for B. To

calculate for example d := I0 − I2 there are two possibilities:

d = (ÎA
0 + δa)− (ÎB

0 + δb) (6)
d = (ÎB

π + δb)− (ÎA
π + δa) (7)

Adding these two equations and dividing by two cancels all constant offsets from
the data and yields:

d =
1
2
(ÎA

0 − ÎB
0 )− (ÎA

π − ÎB
π ) (8)

3.4.2 Detecting and Correcting Overexposed Pixels

Detecting overexposed pixels can be difficult with TOF-cameras. But the PMD
camera offers an easy solution to this problem: The eight raw channels are
monotonically increasing with intensity of exposition:. All pixels that are below4

a certain digit (2500) in all raw channels are over exposed.
This method avoids using the amplitude as an indicator, because there are

ranges where the amplitude takes all possible values while the pixel is still
overexposed.

3.4.3 Taking a Correct Mean

For a proper investigation of the systematic errors, the data in all measurements
were taken as a mean of 100 measured frames at each stop of the linear position
table, if no mean was taken this is noted explicitly in the text.

The mean was taken from the raw data before any calculation took place.
This has mainly two reasons. The first is that incorrect circular averaging of

4Note that the camera delivers a high digit in the raw channels on low exposure
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Figure 4: Plot of four pixels near target center, high-reflectivity target

the data – which leads to problems where the depth error is higher than the
unique measurement range (at low distance or low amplitude) – is avoided. The
raw data is normally distributed and therefore uncritical to handle. The second
is that by averaging the raw data, the amplitude is implicitly used as weight.
This reduces the impact of totally outlying measurements on the mean.

Taking the mean of the raw amplitudes also gives a benefit with the quanti-
zation taking place inside the camera. Taking the mean of some discrete frames
will bring a higher granularity into the calculation. Note, though, that the
amplitude-dependent quantization error can not be avoided in this way, see M.
Frank (2007) for a more detailed discussion of these problems.

3.4.4 Spherical Correction

As with most 3D data acquisition systems, TOF cameras can only measure the
spherical distance to a point in space. Therefore a plane positioned parallel to
the picture plane is detected as a hyperbolic object. To avoid theses errors here,
the parabolic depth was transformed to the depth perpendicular to the image
plane.

4 Experimental Results

4.1 Systematic Errors

4.1.1 Near Field

The attachment of the LED arrays on the left and the right side of the camera
causes a near field effect. Up to d ≈ 1.5 m, the two LED arrays do not work
as a point light with a unique amplitude, instead the light from each array has
a different path length and time of flight. This results in a systematic error of
exponential shape as can be seen in Fig. 4(a). The amplitude though behaves
as expected as shown in Fig. 4(b)
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Integration time [ms] 5 12 20 30 50
Mean depth error [mm] -18.76 -11.09 -14.28 -16.90 -16.78

Table 1: Mean depth error, high-reflectivity target, mean of depth error in range
3.75 m < x < 5.75 m.

4.1.2 Dependency of Depth Error on Amplitude

In Fig. 5 a plot of depth to depth error for various integration time is shown.
With increasing integration time, the amplitude also increases for a fixed posi-
tion. There is no fundamental connection visible: the curves lay very well on top
of each other, only the 12 ms curve varies a little stronger, it is below the others
at 2m < x < 3 m and above for 4 m < x < 5.5 m, but in the second interval, its
variance is already quite high (the variance does depend on the amplitude, see
Sec. 4.2).

Taking the mean depth error in the range between 3.75 m < x < 5.75 m
supports this arguments. Table 1 shows that 12 ms has the smallest error, but
there is no relationship visible.

4.1.3 Inhomogeneities of Pixels

We have already discussed how to handle the inhomogeneities of the gates inside
each pixel of the camera, now we’ll turn to the inhomogeneities of the pixels in
respect to each other.

Each CMOS camera has a fixed pattern offset created through the inhomo-
geneities of the various pixels. In Fig. 4(a), four pixels are plotted. Apart from
the near field, the four lines keep a constant offset to each other, therefore the
inhomogeneities of the pixels only results in a constant offset for each pixel in
the depth calculation.

4.1.4 Inharmonic Correlation Function

As discussed in section 2, an inharmonic CF results in a periodic systematic
error which depends on the distance to the measured object.

The cameras LED signal is highly anharmonic and it correlates internally
with a square wave reference function. The resulting systematic error can be
seen in Fig. 4(a) as soon as the near field errors loose significance (x > 1.5 m).
Of the four pixels plotted in the figure, two pairs have the same inhomogeneity
each. They stay on top of each other for the whole depth range. This leads to
the conclusion that this error depends only on the distance between camera and
object and is therefore the same for all pixels – exactly as the theory predicts.

4.2 Statistical Uncertainty of Depth Measurements

According to the model of a point light source and the variance predictions in
(4), the following holds:

A ∝ 1
d2

and Var(d) ∝ 1
A2

=⇒ σd ∝ d2 (9)

Fig. 6 shows the corresponding plot. The relationship holds approximately.
But since the LED arrays are no point light source and due to quantization
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systematic errors on low amplitudes, the exponent is estimated to around 2.5,
while other experiments investigating the depth-amplitude proportionality5 ask
for a smaller exponent of around 1.9.

5 Discussion and Conclusion

This paper gave a general conspectus about TOF cameras. A model was pre-
sented and verified with experimental data using the PMD[vision] 19k camera
and systematic and statistical errors were discussed. The model proved suc-
cessful for this camera, but to check its general validity further investigations
are required with other TOF camera systems. The investigated system shows a
lot of systematic errors. The periodic variation due to the inharmonic CF pro-
vokes a periodic depth error of around 50 mm, the inhomogeneity of the pixels
accounts for 20 mm and the statistical error rises quadratically with the depth.
Most of the errors are very easy to correct, though: overexposed pixels can be
masked and the periodic offset due to the inharmonic CF and the constant pixel
offsets can easily be removed with a calibration and a lookup table. With these
corrections, reliable 3D data can be acquired even with today’s systems.

Current TOF-systems are most seriously limited by their narrow depth dy-
namics at a constant exposure time. A much better performance could be
obtained by autoadapting the integration for each individual pixel according to
the local irradiance, thus providing a sufficiently high global dynamic range.

The correlating TOF camera 3D measurement technology is a young but
promising new technology which shows a convincing performance even in a
prototype state. It is reasonable to expect significant progress in the near future.
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