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Abstract. We propose a generic and efficient learning framework that
is applicable to segment images in which individual objects are mainly
discernible by boundary cues. Our approach starts by first hierarchically
clustering the image and then explaining the image in terms of a cost-
minimal subset of non-overlapping segments. The cost of a segmentation
is defined as a weighted sum of features of the selected candidates. This
formulation allows us to take into account an extensible set of arbitrary
features. The maximally discriminative linear combination of features
is learned from training data using a margin-rescaled structured SVM.
At the core of our formulation is a novel and simple topology-based
structured loss which is a combination of counts and geodesic distance
of topological errors (splits, merges, false positives and false negatives)
relative to the training set. We demonstrate the generality and accuracy
of our approach on three challenging 2D cell segmentation problems,
where we improve accuracy compared to the current state of the art.

1 Introduction

Accurately segmenting a large number of objects of similar type in crowded im-
ages is challenging, e.g. when cells of interest touch or overlap. Therefore, the
development of robust and efficient algorithms, generic enough to be applicable
for different scenarios, is of great importance. Since local measurements are usu-
ally ambiguous due to noise and imaging artefacts, priors about the objects to be
segmented are needed. Two of the main challenges for automatic segmentation
are how to reflect those priors in the cost function of the segmentation problem,
and how to learn them from training data. Usually, the cost functions are de-
signed “by hand” for a particular segmentation problem, or have user-adjustable
tuning parameters like a foreground bias to adapt to different setups [15,14].

In this paper, we propose a generic framework for structured learning of the
cost function for cell segmentation. The cost function is defined on candidate
segments, of which we find a cost-minimal, non-overlapping subset to obtain a
final segmentation. The main contributions of our approach are: 1) The novel
counting-and-propagating topological loss is simple and generic. 2) Our formu-
lation supports a large set of expressive features on the segment candidates.
3) Optimal feature weights are learned from annotated samples to minimize a
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topological loss on the final segmentation. The capacity to combine and weigh au-
tomatically all features from a large set can reduce the effort previously required
to manually select suitable features and tune parameters. 4) By considering can-
didate segments obtained by iteratively merging superpixels [3,4,7], our method
is very efficient while still improving on the current state of the art.

Considering candidates from hierarchy of regions has demonstrated to be
an effective method for cell detection and segmentation [3,5,8,7,9]. It has been
shown that a globally cost-minimal and non-overlapping set of candidates can
efficiently be found, either by ILP or dynamic programming [3,7]. However, the
proposed methods differ greatly in the way the candidate costs are obtained.
For the cell detection proposed by Arteta et al. [3], the costs are learned using a
structured SVM, taking into account the non-overlap constraint of the inference
problem. In the context of cell segmentation from candidates obtained from
iterative merging [5,8,7,9], the costs are learned by providing samples of positive
and negative candidates to a binary classifier.

In the following section, we show how the structured learning framework can
be used to learn the candidate costs for segmentation under consideration of the
problem structure. For that, we introduce a novel loss function which minimizes
the propagated topological errors on the resulting segmentation. In Section 3,
we demonstrate the effectiveness of our approach on three datasets.

2 Method

Our method is based on selecting candidates extracted from a hierarchy of seg-
mentations, an approach that has recently attracted attention in a range of
computer vision problems [2,3,5,8,7]. The underlying idea is to extract a merge
tree of candidates (i.e., parent nodes are merged segments of their children, see
Fig. 2 for an example) that span the whole range from over- to undersegmen-
tation. A segmentation of the image can now be expressed by a selection of
non-overlapping candidates. It remains to rate different segmentations by as-
signing costs to each candidate, which represent the likelihood of being a correct
segment. We propose to train a structured SVM to learn those costs as a linear
combination of candidate features. For that, we propose a novel loss function
minimizing topological errors during learning.
Candidates Extraction. We perform a watershed transformation on a bound-
ary prediction image, for which we trained a random forest classifier using
the open source software ilastik [12], to obtain initial segment candidates. Let
G = (C,E, s) be the candidate adjacency graph of the initial segmentation,
where C = {c1, . . . , cN} are the initial candidates and E ⊂ C × C is a set of
edges representing adjacency, and let s : E 7→ R be an edge scoring function.
Iteratively, the candidates connected by the edge argminE s(E) with the lowest
scores are merged, and the adjacency graph updated accordingly. For the ex-
periments presented in this paper, we use s(ci, cj)=m(ci, cj) min(|ci|, |cj |), with
m(ci, cj) being the median boundary prediction value of all boundary pixels be-
tween ci and cj , and |ci| the size of a candidate. Note that this way we obtain
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a binary merge tree structure, but the candidates extraction is a replaceable
part of our pipeline. More sophisticated methods for a general tree like ultra-
metric contour maps [2], graph-based active learning of agglomeration [9], or
hierarchical planar correlation clustering [14] can be used as well.

Inference. Let T = (C, S, f) be a merge tree of candidates, where C is the set
of all candidates, S ⊂ C×C are directed edges indicating superset relations (for
an example, see Fig. 2), and let f : C 7→ R be a candidate cost function. We
introduce binary indicator variables y = (yi, . . . , yN ), where yi = 1 represents
the selection of candidate ci for the final segmentation. To ensure that only
non-overlapping candidates are selected, we restrict the possible configurations
of y to select at most one candidate per path in the merge tree and denote the
restricted set of configurations by Y. Let P be the set of all paths in T . We find
the cost-optimal selection of candidates with the following LP:

min
y∈RN

∑
i

f(ci)yi, s.t.
∑
i∈P

yi ≤ 1 ∀P ∈ P; yi ≥ 0 ∀i. (1)

Note that there is no need to explicitly express the integrality constraints, here,
since the constraint matrix is totally unimodular and the optimization problem
is known to have a polynomial-time solution [3].

Structured Learning of Candidate Costs. We propose to learn the candi-
date cost function f using a structured SVM [13] from labeled training data. For
that, we model the costs f(ci) as a linear combination of features φi extracted
for each candidate individually, i.e., f(ci) = 〈w,φi〉 . Note that here the linearity
can be relaxed, as features can also be a function of arbitrary combinations of
groups of features. The weights w can be learned to minimize a topological loss
on the training data. Let

E(y) =

N∑
i=1

f(ci)yi =

N∑
i=1

〈w,φi〉 yi = 〈w,Φy〉 (2)

be the cost of a segmentation represented by binary indicator variables y, where
Φ is a combined feature matrix for all candidates. In order to learn the weights
w, the structured SVM framework needs a training sample (y′,φ) with y′ ∈ Y.
Note that multiple training samples can easily be concatenated into a single
one. Since the extracted segment candidates may not perfectly correspond to
the (human annotated) ground truth (GT), the training sample y′ is obtained
by maximizing the spatial overlap to the GT. Therefore, y′ represents the best-
effort segmentation compared to the GT. Note that since the proposed learning
method uses only the best-effort solution for training, small imprecisions in the
human generated ground truth are tolerable.

Given a training sample (y′,Φ), we find an optimal set of weights w∗ by
minimization of the structured SVM objective

w∗ = argmin
w

λ

2
|w|2 + max

y∈Y
〈w,Φy′ −Φy〉+∆(y′,y), (3)
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Fig. 1: Illustration of the topological loss used for structured learning: splits,
merges, false negatives (FN), and false positives (FP). Starting from nodes with
known values (blue): Given the values of parent candidates, split and FN values
are propagated downwards; given the values of child candidates, merge and FP
values are propagated upwards.

where λ is the weight of the quadratic regularizer and ∆(y′,y) is an applica-
tion specific loss function to be minimized. This loss function can be seen as
a distance between the desired segmentation y′ and a potential segmentation
y. A proper choice of this function is crucial for the success of learning. How-
ever, the expressiveness of the loss function is limited by the tractability of the
maximization in Eq. 3, which has to be carried out repeatedly during learning.

Here, we propose a topological loss function that directly counts and prop-
agates the number of split, merge, false positive (FP), and false negative (FN)
errors of a potential segmentation compared to the best-effort. Due to the tree
structure of the candidate subset relations, this loss decomposes into a sum of in-
dividual contributions: For each candidate, we determine four values (s,m, p, n),
which represent the candidate’s contribution to the overall number of split,
merge, FN, and FP errors. The distribution of the values is based on the follow-
ing intuition: Whenever a best-effort candidate is selected, no topological error
was made by this selection. If, however, all k children of a best-effort candidate
are selected, k−1 split errors have been made. In a similar fashion, the selection
of a parent of k best-effort candidates causes k−1 merge errors. This observation
suggests a simple propagation scheme of topological errors: Initial split values
of all best-effort candidates and their ancestors are s = 0; merge values of all
best-effort candidates and their descendants are m = 0. In addition to that, the
FN value of each best-effort candidate is set to n = −1, i.e., as a reward, such
that an equivalent amount is payed by not selecting (and therefore missing) the
candidate. Initial FP values are set for all leaf nodes in the tree as p = 0 if the leaf
is a descendant of a best-effort candidate (in this case, selecting the candidate
does not cause an FP error), or as p = 1 if it is not a descendant of a best-effort
candidate. These initial values are then propagated up- and downwards the can-
didate tree using the rules presented in detail in Fig. 1. For a simple example,
see Fig. 2. The sum of the values of a candidate gives the topological error that
is caused by selecting this candidate.
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Fig. 2: Example split, merge, false negative (FN), and false positive (FP) values
of candidates in a merge tree. The best-effort solution is highlighted in green.

To combine the topological error values (s,m, p, n) of each candidate into the
final topological loss, we suggest a linear combination, i.e.,

∆(y′,y) =

N∑
i=1

(αsi + βmi + γpi + δni) yi + δc, (4)

where c is the number of best-effort candidates ensuring that the loss is positive.
The parameters (α, β, γ, δ) can be used to assign different weights to different
error types, which can be useful in situations where split errors are preferred
over merge errors, since they are usually faster to repair.

The resulting topological loss function is linear in y, which allows us to solve
the maximization in Eq. 3 efficiently using the LP formulation in Eq. 1 for any
given w. It remains to find the minimum of Eq. 3, which is a piece-wise quadratic
and convex function of w. For that, we use a bundle method [1].

3 Experiments and Results

Datasets. We validate our method on three datasets (see examples in Fig. 3 (a-
c)) which present high variabilities in image resolution, microscopy modality, and
cell type (shape, appearance and size): 1) phase contrast images of cervical cancer
Hela cells from [3] (cells for training/testing: 656/384); 2) bright field images
of in-focus Diploid yeast cells from [15] (cells for training/testing: 109/595);
3) bright field images of Fission yeast cells from [10] (cells for training/testing:
1422/240). Challenging problems in general include densely packed and touching
cells, intra shape and size variations within the same dataset, weak boundary
cues, out-of-focus artifacts, and similar boundaries from other structures.
Experimental setup. The used intensity- and morphology-based candidate fea-
tures are: size, intensity (sum, mean, variance, skewness, kurtosis, histogram (20
bins), 7 histogram quantiles), circularity, eccentricity, contour angle histogram
(16 bins). The intensity features are extracted from the raw and boundary pre-
diction images, on the whole candidate and on the candidate contours. For each
pair of features φi and φj , the product φi ∗φj is also added. All features are nor-
malized to be in the range [0,1]. The weights (α, β, γ, δ) for combining the four
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(a) Hela cancer cells (b) Diploid yeast cells (c) Fission yeast cells

ground truth (d) pCC (e) npCC (f) Hamming (g) cover (h) topological

Fig. 3: Example segmentation results on three datasets (a–c). Results (inset
views) using correlation clustering (d–e) and using our structured learning for-
mulation with different loss functions ∆(y′,y) (f–h).

topological errors are chosen through a Leave-one-out cross-validation, specifi-
cally, being (1,2,1,2), (1,2,1,5), and (1,2,1,10), for the three datasets respectively.

Comparison. We compare to the two correlation clustering variants (pCC and
npCC) on the investigated datasets [15]. For our structured learning formulation,
we also include results from using, as loss ∆(y′,y), a simple Hamming distance
and a cover loss. The latter counts the errors from GT region centroids that are
either not covered or wrongly covered by the picked candidates, which is similar
to the loss in [3]. As opposed to pCC and npCC, the flexible features enrich
learning with boundary and region cues, including e.g. texture and shape priors.
This can be seen in Fig. 3, where background regions are correctly identified,
owing to concavity or texture. Instead of assigning the same loss to each wrong
candidate as in Hamming and cover losses, our topological loss explicitly counts
errors proportional to the distance in the merge tree. This is more indicative and
robust, which is reflected on less FN and splits in the figure.

Evaluation. We report five quantitative measures: variation of information
(VOI) and tolerant edit distance (TED) [6] indicate both detection and segmen-
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VOI TED [6] DS dice overlap

split merge total FP FN split merge total prec. rec. F-sc.

planarCC 0.33 0.52 0.84 20 43 77 30 170 0.86 0.91 0.89 0.79 69.35
nonplanarCC 0.39 0.43 0.82 31 25 53 41 150 0.89 0.93 0.91 0.80 69.21

Hamming 0.33 0.44 0.77 2 41 62 6 111 0.95 0.99 0.97 0.83 72.40
cover 0.37 0.43 0.80 9 36 109 3 157 0.82 0.99 0.90 0.81 70.12

topological 0.35 0.42 0.77 5 33 49 11 98 0.95 0.98 0.97 0.84 73.20

Dataset 1

VOI TED [6] DS dice overlap

split merge total FP FN split merge total prec. rec. F-sc.

planarCC 0.72 0.24 0.97 237 36 11 74 358 0.70 0.86 0.77 0.87 79.99
nonplanarCC 1.61 0.21 1.81 402 22 5 59 488 0.59 0.92 0.72 0.86 78.07

Hamming 0.44 0.53 0.97 28 159 3 16 206 0.96 0.72 0.82 0.89 80.91
cover 1.04 0.30 1.34 121 50 2 13 186 0.83 0.91 0.87 0.87 79.51

topological 0.50 0.33 0.83 40 69 3 4 116 0.93 0.89 0.91 0.90 82.22

Dataset 2

VOI TED [6] DS dice overlap

split merge total FP FN split merge total prec. rec. F-sc.

planarCC 0.19 0.07 0.26 19 2 8 7 36 0.92 0.97 0.94 0.91 84.67
nonplanarCC 0.30 0.07 0.37 56 2 9 6 73 0.82 0.97 0.89 0.91 84.34

Hamming 0.84 0.16 1.00 67 37 1 12 117 0.81 0.86 0.83 0.89 82.05
cover 0.42 0.10 0.52 97 6 12 1 116 0.74 0.99 0.85 0.90 81.84

topological 0.19 0.14 0.33 6 25 1 8 40 0.99 0.90 0.94 0.90 82.85

Dataset 3

Table 1: Detection and segmentation results on three datasets. The best value
in each column is highlighted.

tation errors; Detection score (DS) measures detection accuracy only; Dice coef-
ficient and area overlap provide segmentation accuracy. For DS, we establish pos-
sible matches between found regions and GT regions based on overlap, and find
a Hungarian matching using the centroid distance as minimizer. Unmatched GT
regions are FN, unmatched segmentation regions are FP. We report precision,
recall, and F-score. Area overlap is computed between the true positive (TP) de-
tection regions Rtpd and the GT region Rgt: (Rtpd∩Rgt)/(Rtpd∪Rgt)×100. TED
measures the minimal number of topological errors under tolerable modifications
of the segmentation (here, we tolerated boundary shifts up to 10 pixels for Hela
cells, and 25 pixels for two datasets of yeast cells). Results are summarized in Ta-
ble 1. Our proposed method robustly outperforms for the two more challenging
datasets (1 and 2), and achieves amongst the best for dataset 3.

4 Discussion and Conclusions

We have proposed a generic framework for structured learning of the cost func-
tion for segmenting cells primarily only with boundary cues (Code available
at: http://github.com/funkey/tobasl). This reduces the effort previously re-
quired for manual feature selection or parameter tuning. The tree-topology based
loss from the hierarchical segment regions has demonstrated to be efficient and

http://github.com/funkey/tobasl
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can improve segmentation. The potential restriction on candidate regions im-
posed by using only trees can partly be lifted by, e.g., constructing multiple
trees, at least in test stage, in the spirit of perturb-and-MAP or as in [11] for
user correction. We have validated our approach in the context of biological ap-
plications, however we expect that it can be applied in other fields. Also, data
which has primarily region rather than boundary cues can be turned into the lat-
ter, and hence fit into this mould, by using, e.g., pixel-level classifier to delineate
region pixels that are on the border. These form part of our future work.
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