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Abstract. We present the application of ilastik, the open source inter-
active learning and segmentation toolkit, for brain tumor segmentation
in multi-modal magnetic resonance images. Even without utilizing the
interactive nature of the toolkit, we are able to achieve Dice scores com-
parable to human inter-rater variability and are ranked in the top-5
results for the BraTS 2013 challenge data set, where no ground truth is
publicly available. As careful intensity calibration is crucial for discrim-
inative models, we propose a cerebrospinal fluid (CSF) normalization
technique for pre-processing, which appears to be robust and effective.
Further, we evaluate different post-processing methods for the random
forest (RF) predictions obtained with ilastik.
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1 Introduction

Segmenting brain tumors from multi-modal imaging data is a very challenging
medical image analysis task due to the fact that magnetic resonance imaging
(MRI) is usually not quantitative and lesion areas are mostly defined through
intensity changes relative to surrounding normal tissue. Furthermore, the task
is complicated by partial volume effects and various artifacts, e.g. due to the
inhomogeneities of the magnetic field or motion of the patient during the exam-
ination. Hence, it is not surprising that even manual segmentations by experts
exhibit significant intra- and inter-rater variability, which is estimated to be up
to 20 % and 28 %, respectively [8].

The state-of-the-art brain tumor segmentation methods can roughly be di-
vided in discriminative and generative approaches. For a comprehensive recent
overview please see Menze et al. [9]. In general, the task of a discriminative
method is to perform a tissue classification of unseen data, based on the raw
data and voxel-wise or regionally extracted features. For training, supervised
approaches usually rely on labels that were assigned by human expert raters
and are considered to resemble ground truth. In the current study, we mostly
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follow this canonical approach, but introduce important variations during pre-
and post-processing (see Sec. 2). The core of the proposed segmentation pipeline
is ilastik4 that allows predictions in close to real time [10]. The generic frame-
work of ilastik has been used successfully in different domains, e.g [6, 7]. Instead
of exploiting the intended usage of ilastik, i.e. interactive machine learning via
a convenient graphical user interface, we non-interactively generate project files
with random labels drawn from the annotated training data and then use the
pixel classification workflow in batch prediction mode for training and prediction.
The pixel classification workflow is based on a random forest (RF) classifier [3].
Although possible, user interaction beyond pre-recorded groundtruth- and CSF-
labeling (see below) is not required. The proposed pipeline achieves accuracies
comparable to human raters and, at the time of writing, is ranked in the top-5
of all submitted results for the BraTS 2013 challenge data set.

In this workshop paper we elucidate the proposed method in detail (Sec. 2),
report (Sec. 3) and discuss (Sec. 4) the results achieved for the BraTS 2013 train-
ing and challenge data set [9].

2 Materials and Methods

2.1 Data

We use the BraTS 2013 training and challenge data set provided via the Virtual
Skeleton Database (VSD) [5]. The synthetic data was excluded, because it i)
was not evaluated in the 2013 challenge and ii) the synthetic data sets “are less
variable in intensity and less artifact-loaded than real images” [9].

The data stems from MR scanners of different vendors and with different field
strengths. It comprises co-registered native and contrast enhanced T1-weighted
images, as well as T2-weighted and T2-FLAIR images. The images contain low
grade (LG) and high grade (HG) tumors. For a detailed description please see
Menze et al. [9].

2.2 Pre-processing

The pre-processing comprises two steps. First we employ histogram normal-
ization as implemented by the HistogramMatching routine of 3D-Slicer5. As
reference images we used the four different modalities of an arbitrary data
set (HG0001). To exclude the background during matching, all voxels whose
grayscale values were smaller than the mean grayscale value were excluded. Next,
we normalized each individual modality with the mean value of the CSF. To ob-
tain these values we interactively trained ilastik with ten randomly chosen data
sets from the training set. This two class classification (CSF vs. rest) is a fairly
easy task, because CSF exhibits an unambiguous combination of intensity values
in the multi-modal images (dark in T1, T1c and FLAIR but bright in T2). The
effect of this proposed two-step normalization technique can be seen in Fig. 1.

4 https://github.com/ilastik
5 http://www.slicer.org
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Fig. 1. Effect of the proposed two-step normalization technique. On the left side his-
tograms of the raw intensity values of the BraTS 2013 training set (LG and HG,
N = 30) are plotted separately for each modality. The right side shows the histograms
after normalization with CSF.

After normalization we augmented the four base sequences by subtracting
each modality from every other. In combination with the original four images this
yields a stack of ten volumes that consecutively are used for voxel-wise feature
computation. For each channel we calculated the Laplacian of Gaussian (scale
1.0), the structure tensor eigenvalues (scale 1.6) and the Hessian of Gaussian
eigenvalues (scale 1.6), as implemented in the ilastik feature selection applet.

2.3 Pixel Classification

The ilastik project consists of three core software libraries: volumina, lazyflow
and ilastik. Lazyflow provides threading utilities for distributing concurrent work-
loads across multiple cores. To achieve close to real time computations in inter-
active mode, this library ensures, that only computations are preformed that are
strictly required to produce an output for the actually displayed data. Visual-
ization of the multi-dimensional data, that possibly can be larger than RAM,
is realized with volumina. These two frameworks are then orchestrated to an
integrated software tool via the ilastik library.

Pixel classification is one of the available workflows. It relies on ten random
forests with 10 trees each that are trained in parallel and eventually are merged
into a single forest. Gini impurity is used as a split criterion and the number of
randomly chosen features at each split is proportional to the square root of the
total number of features.

To use ilastik in an automatic fashion, we created project files off-line. For
each of the four tumor classes (edema, enhancing, non-enhancing and necrosis)
up to 200 training samples, i.e. multi-dimensional feature vectors, were randomly
chosen from the provided ground truth labels of every training data set. Another
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1000 random samples were taken from the normal tissue of each training data set.
Further, we introduced ’air’ as an additional class that was granted an additional
20 labels. Different classifiers were trained for LG and HG tumors.

2.4 Post-processing

For post-processing we evaluated different strategies with increasing computa-
tional costs. In the simplest case we use simple Gaussian smoothing to clean-up
the RF predictions. A more sophisticated approach relies on a guided filter as
proposed by He et al. [4]. This is an edge-preserving filter that does not suf-
fer from gradient reversal artifacts as for instance a bilateral filter and it can
be computed in linear time. We also employ graph-cut optimization via the α-
expansion algorithm [2] to adjust the labels. For this purpose we transformed
the pseudo-probabilities P of the RF into unary potentials:

U(x) = − log(P (x)) . (1)

If the labels of two variables differ we assign a cost of c = 0.4. The computations
are realized with the OpenGM library [1].

A common downstream processing of the labels consists of identifying con-
nected components (CC) and discarding all those that are < 3000 voxels. This
is realized with the VIGRA library6.

2.5 Evaluation of the Results

For comparison of the predicted segmentations we computed different standard
measures, with an emphasize on the Dice coefficient as suggested in Menze et
al. [9]. This metric characterizes the voxel-wise overlap of two segmented re-
gions, by normalizing the number of true positives with the average size of the
two regions. To evaluate the performance on the BraTS 2013 training data we
performed leave-one-out cross-validation (LOO-CV) and used the Comparison
and Validation of Image Computing (COVALIC) toolkit7 to obtain the com-
parison metrics. This toolkit is also used by the challenge organizers for the
evaluation. The challenge data, for which no ground truth is publicly available,
was evaluated through the challenge website8.

3 Results

Results for the LOO-CV of the training data are summarized in Tab. 1, for
the challenge data in Tab. 2. For a description of the different post-processing
methods please see Sec. 2.4.

6 https://github.com/ukoethe/vigra
7 https://github.com/InsightSoftwareConsortium/covalic
8 http://www.virtualskeleton.ch
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Table 1. Dice scores for BratTS 2013 training data with LOO-CV

whole core active
Method LG/HG LG/HG

Human Rater [9] 85 84/88 75 67/93 74

ilastik 75 73/76 60 58/61 65
ilastik + CC 80 78/81 64 60/66 69
ilastik + Gaussian Smoothing + CC 84 82/84 68 61/71 72
ilastik + Guided Filter + CC 83 81/84 68 61/72 71
ilastik + OpenGM + CC 83 81/84 67 61/70 72

Table 2. Dice scores for BratTS 2013 challenge data (only HG)

Method whole core active

Best 2013 87 78 74
Current Best 92 79 76
ilastik + OpenGM + CC 87 76 74

4 Discussion

Our results (Tab. 2) on the 2013 challenge data set are comparable to the inter-
rater variability reported for the BraTS data [9]. At the time of writing they are
ranked in the top-5 of all submitted results. On the training data we perform
slightly worse (rank 7). This might be explained by the fact that we omitted
the synthetic data, for which higher Dice scores were reached as for similar real
data [9].

In contrast to most methods reported in Menze et al. [9], we do not perform
a bias field correction with N4ITK [11] during pre-processing, because it did
not improve our result on the training data. Instead, we propose to perform
intensity normalization with the mean CSF value, which proved to be a robust
and effective technique (Fig. 1).

The evaluation of the different post-processing methods on the training set
with LOO-CV (Tab. 2) shows the added value of “cleaning-up” the RF predic-
tions. The three different methods used, exhibit a similar performance but come
at different computational costs. Especially, simple Gaussian smoothing is a fast
and effective method.

Looking at our segmentations in detail, we noticed the presence of ’holes’,
which –according to our predictions– correspond to islands of healthy neuronal
tissue. From a neuro-oncological point of view this is plausible and can not be
ruled out per se. However, due to the labeling instructions for the experts [9], it is
not very likely that those kind of islands occur in the ground truth data. Primar-
ily aiming at an interactive clinical workflow, we decided not to fill these holes
with a computational method, which supposedly would improve our challenge
results further.
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Future work aims at integrating the insights obtained during the challenge
into an ilastik workflow that can be easily deployed in clinical routine and for
clinical trials.
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ton database: an open access repository for biomedical research and collaboration.
J Med Internet Res 15(11), e245 (2013)

6. Kreshuk, A., Koethe, U., Pax, E., Bock, D.D., Hamprecht, F.A.: Automated de-
tection of synapses in serial section transmission electron microscopy image stacks.
PLoS One 9(2), e87351 (2014)

7. Kroeger, T., Mikula, S., Denk, W., Koethe, U., Hamprecht, F.A.: Learning to
segment neurons with non-local quality measures. Med Image Comput Comput
Assist Interv 16(Pt 2), 419–27 (2013)

8. Mazzara, G.P., Velthuizen, R.P., Pearlman, J.L., Greenberg, H.M., Wagner, H.:
Brain tumor target volume determination for radiation treatment planning through
automated mri segmentation. Int J Radiat Oncol Biol Phys 59(1), 300–12 (May
2004)

9. Menze, B., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J.,
Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al.: The Multimodal Brain Tumor
Image Segmentation Benchmark (BRATS), submitted to IEEE Transactions on
Medical Imaging

10. Sommer, C., Straehle, C., Koethe, U., Hamprecht, F.A.: ”ilastik: Interactive learn-
ing and segmentation toolkit”. In: 8th IEEE International Symposium on Biomed-
ical Imaging (ISBI) (2011)

11. Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., Egan, A., Yushkevich, P.A.,
Gee, J.C.: N4itk: improved n3 bias correction. IEEE Trans Med Imaging 29(6),
1310–20 (Jun 2010)


