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ABSTRACT
We present DELTR, an automated pipeline for the analysis of
time-resolved light sheet fluorescence microscopy images of
zebrafish embryogenesis. It comprises 3D nucleus segmen-
tation using shape-regularized graph cuts, parallelized extrac-
tion of geometrical features, and cell tracking by means of
combinatorial optimization. We also discuss the interactive
visualization software used for validating the results, and de-
scribe our advances towards reconstructing the entire cell lin-
eage tree of the zebrafish. Our method achieves ca. 96 %
accuracy for cell nucleus detection and ca. 90 % accuracy for
the association of nuclei across subsequent time steps.

Index Terms— Cell Lineage Reconstruction, Segmenta-
tion, Shape Regularization, Cell Tracking, Visualization

1. INTRODUCTION

Digital scanned laser light sheet fluorescence microscopy
(DSLM) is a recent time-resolved 3D live-cell imaging tech-
nique which provides unprecedented spatio-temporal reso-
lution and signal-to-noise ratio at low energy load [1]. This
makes it an excellent tool for elucidating the embryonic de-
velopment of vertebrates by tracking every cell over time
and determining both its lineage and the subsequent fate of
its progeny: this information can be summarized into a cell
lineage tree. The zebrafish (Danio rerio) is a particularly
promising model organism for such studies due to the trans-
parency of the larvae and their nearly constant size in the first
24 hours of development.

However, manual data analysis is impracticable due to the
large amount of data: typical image volumes have a size of
several hundred megavoxels, and several hundreds of these
volumes are acquired over time: hence automatical image
analysis is called for. In this paper, we present an automated
pipeline for cell lineage reconstruction from DSLM data.

2. RELATED WORK

Cell lineage reconstruction has been pioneered in the nema-
tode C. elegans [2]. Recent work [3, 4] on cell lineage recon-
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struction culminates in the publication of the zebrafish lineage
tree up to the 1000-cell stadium, based on label-free micro-
scopic imagery [5]. However, the only published method for
DSLM data was presented in [1]: There the authors segment
cell nuclei by local adaptive thresholding and perform local
nucleus tracking by nearest neighbor search. By our segmen-
tation method, we improve upon the nucleus detection effi-
ciency of that paper.

Our segmentation method is most closely related to the
one presented in [6]. As in this paper, we use blob filter
responses that are coherent across multiple scales as initial
seeds for our segmentation and refine them via discrete graph
cut optimization. However, our approach differs by the use
of more flexible foreground cues based on discriminative
random forest classifiers [7] instead of the Poisson mixture
model employed in that article, and by explicit shape reg-
ularization using a multi-object generalization of the graph
cuts algorithm presented in [8]. An alternative approach uses
continuous optimization by level set evolution for nucleus
segmentation as well as for initial denoising and seed gen-
eration [9]: however, an advantage of discrete optimization
techniques is that convergence to the global optimum can be
guaranteed in many cases.

Our tracking approach based on integer linear program-
ming has the advantages that the tracking is interpretable as
the exact optimization of a defined energy functional and that
it can natively account for cell divisions; furthermore it is
computationally efficient given the segmented cell nuclei. Al-
ternative approaches combine segmentation and tracking in
one step by initializing a set of active contours in the first
time frame and updating these contours in the subsequent
time frames using motion filtering. This requires that cell di-
visions are handled in a special way, e.g. by stitching together
different single-cell trajectories [4].

3. AUTOMATED LINEAGE RECONSTRUCTION

3.1. Workflow Overview

Reconstruction of cell lineage mainly relies on two steps: seg-
mentation of cell nuclei and tracking of their movement and
division. Joint approaches [4] for both steps do exist, but we
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Fig. 1. Workflow of DELTR. Segmentation of the raw DSLM data produces cell nuclei on which features are extracted. These
two computation-intensive tasks are parallelized volume-by-volume. These features provide information of inter-frame nuclei
association for the tracking step, which is efficiently performed using IBM ILOG CPLEX. The final lineage tree is visualized by
a newly developed tool based on OpenSceneGraph, which also allows interactive viewing of the raw data and the segmentation.

choose to address these problems subsequently because of the
extremely high computational load (Fig. 1). Already the seg-
mentation of the volumetric data at a single time point (4×108

voxels) is pushing the limits of most computing systems that
are currently available, and a joint approach that has to propa-
gate temporal information over hundred of time frames would
be even more difficult to realize. In the following we discuss
the details of each step.

3.2. Segmentation with Shape Regularization

The segmentation of DSLM data poses the following chal-
lenges: relatively low SNR compared to 2D imaging tech-
niques, a striped background at early stages, severely clut-
tered cell nuclei at late stages, and high variability of cell
brightness (the intensities of the dimmest and the brightest
cells differ by a factor of 50). While various contributions
have previously been made to the segmentation of such vol-
umes, the quality of the segmentation results has not been suf-
ficiently evaluated before with respect to the regularity of the
shape. Segmented cell nuclei with irregular shape not only
hinder visual inspection and evaluation but also jeopardize
further tasks such as growth phase classification and tracking.

We model this problem using Markov Random Fields
(MRF) and propose a novel energy formulation with four
energy terms (Eq. 1): a data term as the probability of voxels
being assigned to foreground or background, a smoothing
term for spatial regularization, and a shape term and a flux
term for shape/length regularization. The maximum a pos-
teriori (MAP) solution of the MRF is obtained using the
max-flow/min-cut algorithm [8]. The details of our segmen-
tation method are explained elsewhere [10] and the software

will be made publicly available.

min
l

λdata

∑
p∈I

Edata(lp) + λsmooth

∑
{p,q}∈N

Esmooth(lp, lq)

+ λshape

∑
{p,q}∈N

Eshape(lp, lq) + λflux

∑
p∈I

Eflux(lp)


s.t. λdata + λsmooth + λshape + λflux = 1,

λdata > 0, λsmooth > 0, λshape > 0, λflux > 0.
(1)

3.3. Feature Extraction and Tracking

Connected component labeling is used to transform the binary
image generated by the segmentation step into a list of indi-
vidual nucleus objects. The individual objects are efficiently
stored in a dictionary of keys (DOK)-based sparse matrix rep-
resentation. We characterize them by computing various geo-
metrical and statistical features such as the intensity-weighted
mean position (center of mass), volume or central moments
and percentiles of the intensity distribution.

In order to efficiently track the large number of nuclei over
time, we find the optimal joint association between nuclei for
every pair of subsequent time frames. Formally, let i denote a
nucleus from frame T and j, k denote nuclei from frame T+1,
and let ø represent no association. We consider the follow-
ing events: move, division, disappearance and appearance.
While an (apparent) cell disappearance may be caused by
apoptosis, it is more typically due to a cell leaving the field of
view, misdetection in the segmentation step or erroneous re-
moval; an (apparent) appearance happens when it is detected
again at a later time. As shown in Table 1, all these events
have associated costs: the constants cdiv, cdis and capp are
chosen such that appearances and disappearances are heavily
penalized compared to divisions and moves. The results are
sufficiently robust towards moderate variations of these val-



ues, so that no parameter learning was performed. Also, in
order to rule out implausible events, we only consider at most
k nearest neighbors of i within a given distance threshold.

Event Notation Cost
i moves to j i→ j d2

i→j

i divides into j and k i→ j + k d2
i→j + d2

i→k + cdiv

i disappears in frame T i→ ø cdis

j appears in frame T + 1 ø→ j capp

Table 1. Summary of the events considered in the tracking.
Here di→j is the Euclidean distance between the center of
mass of the nuclei i (from frame T ) and j (from frame T +1).

LetM be the set of all possible moves and D the set of
all possible divisions. For each event inM and D, we define
a binary variable x indicating whether this event takes place
or not. Thus, finding the optimum joint association is then an
integer linear programming (ILP) problem:

min
x

 ∑
(i→j)∈M

xi→j(ci→j − ci→ø − cø→j)+

∑
(i→j+k)∈D

xi→j+k(ci→j+k − ci→ø − cø→j − cø→k)


s.t.

∑
j:(i→j)∈M

xi→j +
∑

j,k:(i→j+k)∈D

xi→j+k ≤ 1 ∀ i,

∑
i:(i→j)∈M

xi→j +
∑

i,k:(i→j+k)∈D

xi→j+k ≤ 1 ∀ j.

(2)
All cells not accounted for by either a division or a move

are assumed to appear or disappear. Typically there are a
few ten thousand variables (one for each division or move)
and a few thousand constraints (one for every nucleus in each
frame). We use a state-of-the-art ILP solver (ILOG CPLEX
12.21) to solve this problem to global optimality within less
than a minute per frame pair on a standard desktop machine.
Note that several frame pairs may be processed in parallel.

3.4. Visualization

We created a software for interactive visualization of the re-
sults, which is based on the OpenSceneGraph 3D graphics
API2. It offers the following capabilities:

• Visualization of all segmented nuclei in a given subvol-
ume by their center-of-mass positions along with the
principal component semiaxes or by volume rendering.

• Validation of individual nuclei by showing the cross-
section of a selected nucleus across the plane defined

1http://www.ilog.com/products/cplex/
2http://www.openscenegraph.org
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Fig. 2. Comparison between LAT [1] and our segmentation
method [10] in terms of shape extraction. The segmentation
is overlayed on the raw data.

by the leading principal components together with the
segmentation isocontour.

• Visualization of the 3D trajectories of individual cells
and their progeny over time.

• Synchronized display of the raw image data, nucleus
segments and the cell lineage tree topology.

4. RESULTS ON DIGITAL ZEBRAFISH EMBRYO

We applied our pipeline to reconstruct the cell lineage of the
first 80 frames (2 to 4 hours of development; from a 66 nuclei
stadium up to ca. 2400) of the animal view of a DSLM dataset
of zebrafish embryos. Only a single nucleus channel is avail-
able. Both the segmentation and the tracking are evaluated
with respect to manually generated ground truth.

4.1. Segmentation: Accuracy and Shape Extraction

Qualitatively, for 6 selected time steps our method achieves
a false negative rate of 4 ± 1 % for cell detection, which is
a reduction by 40 % over the original local adaptive thresh-
olding (LAT) method used in [1]. Also, as shown in Fig. 2,
our method extracts smooth and regularly shaped cell nuclei
which is not possible by LAT.

4.2. Tracking: Detection Rates

The cell lineage ground truth for the tracking evaluation was
manually generated for the first 25 time steps. To minimize
the dependency on the segmentation accuracy, we considered
only cell nuclei that were successfully found by the segmen-
tation. The detection rate is 91 % out of 3008 move events
and 71 % out of 180 division events; the number of appear-
ance and disappearance events is too low to report significant
rates. By visual inspection on the incorrect associations, we
found that errors were mainly caused by high intensity speck-
les that were mistaken for cell nuclei by the segmentation.



Fig. 3. Visualization of the pruned lineage tree using radial
layout. Black dots indicate cell divisions. Five synchronous
cell division cycles can be easily observed (up to frame 60).

4.3. Visualization: Interactivity and Efficiency

For our data with several thousand cell nuclei over 80 time
steps, initialization of the visualization tool takes less than one
minute. The computation of the lineage tree layout is instan-
taneous. Streaming technology allows to navigate the whole
data range in a matter of seconds. Well designed linking and
brushing among multiple views helps us to efficiently inspect
the cause of errors such as disconnected links or abnormal
branches (see Fig. 1, rightmost). After basic pruning that re-
moves abnormally short branches, the entire lineage tree is
visualized using radial layout, as shown in Fig. 3.

5. CONCLUSIONS & FUTURE WORK

In this paper we presented DELTR, an automated cell lineage
reconstruction pipeline, and reported its performance on cell
lineage reconstruction of the first 80 frames of the digital ze-
brafish embryo dataset. In comparison to manual or semi-
automated approaches, an automated pipeline that encodes
human knowledge (e.g. nucleus shape, temporal coherence)
is crucial. For example, to understand the mechanism of mu-
tation, a large number of such datasets have to be processed
and compared against each other.

Built upon state-of-the-art machine learning, computer vi-
sion and optimization techniques, DELTR shows promising
results. In the future, we plan to improve the pipeline as fol-
lows: (I) enhance robustness of segmentation against back-

ground structures; (II) improve the tracking energy formula-
tion by incorporating the result of probabilistic mitosis de-
tection; (III) devise a visualization method for efficient ex-
ploration of very large tree structures with smoothly synchro-
nized viewing of the raw data and the segmentation.
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