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Combined Tensor Fitting and TV Regularization
in Diffusion Tensor Imaging Based on
a Riemannian Manifold Approach

Maximilian Baust, Andreas Weinmann*, Matthias Wieczorek, Tobias Lasser, Martin Storath, and Nassir Navab

Abstract—In this paper, we consider combined TV denoising
and diffusion tensor fitting in DTI using the affine-invariant
Riemannian metric on the space of diffusion tensors. Instead of
first fitting the diffusion tensors, and then denoising them, we
define a suitable TV type energy functional which incorporates
the measured DWIs (using an inverse problem setup) and which
measures the nearness of neighboring tensors in the manifold.
To approach this functional, we propose generalized forward-
backward splitting algorithms which combine an explicit and sev-
eral implicit steps performed on a decomposition of the functional.
We validate the performance of the derived algorithms on syn-
thetic and real DTI data. In particular, we work on real 3D data.
To our knowledge, the present paper describes the first approach
to TV regularization in a combined manifold and inverse problem
setup.

Index Terms—Combined denoising and diffusion tensor fitting,
diffusion tensor imaging, generalized forward-backward algo-
rithm, manifold-valued data, total variation minimization.

I. INTRODUCTION

D IFFUSION tensor imaging (DTI) is an imaging modality
based on nuclear magnetic resonance. It has become ex-

tremely popular during the last decades as it allows to assess the
diffusional characteristics of a specimen in a non-invasive way.
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Applications of DTI include, but are not limited to, determina-
tion of fiber tract orientations [1], which is of great interest for
planning surgeries, detection of brain ischemia [2], or investi-
gation of neurodegenerative pathologies such as schizophrenia
[3], [4], autism [5], or Huntington's disease [6].
In DTI, each pixel (or voxel), consists of a positive definite

matrix, a so-called diffusion tensor. These positive matrices –
seen as covariance matrices of multivariate normal distributions
– model the diffusivity of water molecules in space, which is
determined by a series of diffusion weighted images (DWIs).
Each DWI measures the directional diffusivity with respect to a
given gradient direction. As a consequence, the measured data
consists of one real-valued vector per voxel and the task of dif-
fusion tensor estimation is to estimate the diffusion tensor field
from this data. For a detailed description of the fundamental
principles of DTI we refer the interested reader to the articles
of Basser et al. [1], Johansen et al. [7], Assaf et al. [8], and As-
semlal et al. [9].
Unfortunately, however, DWIs typically suffer from Rician

noise which make the reconstruction of the DTI volumes a dif-
ficult problem, because the positive definiteness of the recon-
structed tensors is a non-linear constraint and as such hard to en-
force, see Fillard et al. [10] for instance. As a consequence, there
is a large body of literature on DTI reconstruction. In principle,
one may distinguish four different types of approaches: i) fitting
the tensors individually, i.e., independently per voxel, while ad-
ditionally imposing (soft or hard) constraints to enforce the pos-
itive definiteness of the reconstructed tensors [11], [12], ii) de-
noising the input data, i.e., the DWIs, and then fitting the tensors
individually [13]–[15], iii) regularizing the tensors after recon-
struction [16]–[22], and iv) reconstructing and regularizing the
tensors simultaneously [10], [23]–[27]. Methods related to the
latter approach are more intricate, but they show the best perfor-
mance with respect to reconstruction quality [10], [28]. In this
work, we propose a variational approach which belongs to the
latter category and thus aims for simultaneous reconstruction
and regularization. It is formulated in a manifold setting using
the manifold of symmetric positive definite matrices, and em-
ploys the manifold-valued version of the total variation (TV) as
a regularizer. To our knowledge, this is the first combined ap-
proach in this (nonflat) Riemannian manifold setting.
Due to the amount, diversity, and variety of related work, we

postpone its detailed discussion to Section II and continue with
the presentation of our approach.
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A. TV Regularization in the Inverse and Manifold Setting

We explain our new approach in the abstract setup and specify
the respective meaning in the DTI context. First, we need a
model or signal space which, due to (hard) constraints, typi-
cally constitutes a manifold endowed with a Riemannian dis-
tance, rather than a linear space. In DTI, a suitable model space
is the Riemannian symmetric space of positive matrices with
the underlying affine-invariant metric. In contrast to the model
space, the data space is typically a linear Euclidean space where
each component of the respective vectors is a real-valued mea-
surement. In DTI, the measured data at each voxel can be seen
as a vector of diffusion weighted values, i.e., the values of the
DWIs at the corresponding voxel with each component corre-
sponding to a different weighting direction . Hence, the DWI
data lives in a linear Euclidean space. Thus, the distance in the
model space is measured with respect to the distance in the man-
ifold, whereas the data fidelity is measured with respect to the
Euclidean distance. The measurement or modeling operator
maps from the manifold to this linear data space. In DTI, an ex-
ample of such an operator is the Stejskal-Tanner operator (which
is discussed later in detail).
On an abstract level, equipped with themeasurement operator
, and using the notation for the observed data,

the inverse and TV-regularized problem in the manifold-valued
setup is given by

(1)

Here, is a data term enforcing to fit to the data in DTI,
the reconstructed diffusion tensors are required to fit the
measured DWIs . An example is

(2)

where denotes the number of the measurement, i.e., the DWI,
and denotes the voxel number; for simplicity we consider the
univariate case here. In the context of DTI, the measurement op-
erator is given by (7). It is also possible to generalize (2) by
replacing the squared Euclidean distance by another computa-
tionally accessible differentiable function resulting in

(3)

The function employed in the context of DTI in this paper is
given by (9). Furthermore,

(4)

denotes the discrete total variation (TV) regularizer with the
distance measured in the manifold, and being a model pa-
rameter controlling the trade-off between data fidelity and reg-
ularity. For introductory purposes, we have only described the
1D case; in the detailed derivation later on we consider the mul-
tivariate case as well.
In order to give (1) a concrete meaning for DTI via (2), (3),

and (4), we next specify the distance , the function and the

Fig. 1. Orthogonal slices of a 3D reconstruction of a diffusion tensor volume
obtained from real data of the Camino project. The volume was reconstructed
using the proposed Algorithm 1 with data term for combined tensor fitting
and TV denoising with model parameter .

imaging operator . The distance is considered in Section I-B,
the function and the imaging operator are specified by (7)
and (9), respectively, in Section I-C.

B. The Affine-Invariant Riemannian Manifold in DTI

In DTI, the tensors may be viewed as elements in the Rie-
mannianmanifold of positive (definite) matrices; see [19] for in-
stance. The underlying distance corresponds to the Fisher-Rao
metric [29], which is statistically motivated as the positive ma-
trices represent covariance matrices modeling the diffusivity of
water molecules. Consequently, oriented diffusivity along fiber
structures is reflected by the anisotropy of the corresponding
tensors; typically, there is one large eigenvalue and the corre-
sponding eigenvector yields the orientation of the fiber. We will
denote the space of 3 3 diffusion tensors by and equip it
with the Riemannian metric

(5)

where the symmetric matrices represent tangent vectors
in the point . Equipped with this metric the space of
positive matrices becomes a Cartan-Hadamard manifold. This
means that it is complete, simply connected, and of non-posi-
tive sectional curvature. This class of manifolds enjoys partic-
ularly nice properties not shared by general Riemannian mani-
folds. For example, geodesics – in the sense of curves without
intrinsic acceleration when moving with constant speed – are
always, not only locally, shortest paths. Furthermore, the math-
ematically very important notion of convexity generalizes to
these spaces in a convenient way. This allows to derive global
results in the context of variational methods [30]–[32]. Instead
of considering as a Hadamard manifold with the above
Riemannian metric, it is also possible to take other points of
view, for example, by interpreting the positive matrices as the
positive cone in the space of matrices endowed with the corre-
sponding Euclidean distance. We discuss these issues in more
detail in Section V-A1.
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C. Combined Tensor Fitting and TV Regularization Using the
Affine-Invariant Riemannian Manifold in DTI
In order to apply the proposed model (1) for combined tensor

fitting and TV regularization, we have to specify the regularizer
(4) and the data term. For the regularizer, we utilize the distance
which is induced by the Riemannian metric discussed in the

previous subsection. It remains to specify the data term. One of
the most popular models for DTI tensor fitting is

(6)

using the imaging operator

(7)

which is based on the well-known Stejskal-Tanner equation
[33] (see Section III) and which corresponds to the setting
in (2). Here denotes the target variable representing the
sought tensor at position and is the vector-valued DWI
measurement at position . The vector corresponds to the
-th DWI measurement and encodes the gradient direction

according to which has been measured. Furthermore, and
are normalization constants, where depends on the spa-

tial position and corresponds to an unweighted measurement.
As a least-squares-type data term, (6) is matched to Gaussian

noise on the logarithm of the measurements. The Gaussian as-
sumption is not always appropriate. A frequently used model is
Rician noise. According to Fillard et al. [10], the data term

(8)

is particularly suited for Rician noise. Here,

denotes the predicted DWI intensity at the spatial location , and
is the modified (“cosh-like”) Bessel function of the first kind

of order zero. Referring to the discussion in [10], this data term
is particularly suited in the context of maximum a posteriori
(MAP) estimation with Rician noise of variance . We note
that the data term (8) matches the form of (3) with a well-be-
haved differentiable function given by

(9)

which can be differentiated analytically.

D. Contributions
In this paper, we propose an approach for simultaneous

fitting and TV regularization of diffusion tensors which take
the intrinsic geometry of into account. As discussed in

Section II, tensor fitting and denoising are well-studied as
separate tasks. To improve the reconstruction quality, combined
approaches have been developed in vector space setups; see
Section II-B. The novelties of this paper are as follows:
1) We propose a framework for simultaneous fitting and

TV regularization of diffusion tensors in a (nonflat) Rie-
mannian manifold setting. The proposed framework is
flexible in the sense that it can be combined with different
data terms and that it, with appropriate modifications,
carries over to other manifolds as well. To our knowledge,
this paper is the first one to address TV regularization for
manifold valued data in an inverse problem setup.

2) We propose a generalized forward backward scheme for
TV functionals of the form (1). The scheme combines an
explicit and several implicit steps performed in a cyclic
fashion on a decomposition of the functional. We apply
this strategy to DTI and derive a concrete algorithm for the
joint tensor fitting and regularization.

The choice of the name “generalized forward backward
scheme” is motivated by Raguet et al. [34] who consider related
algorithms in the vector space setting using this nomenclature.
Concerning the realization of the backward steps, we employ
efficient techniques based on geodesic averaging which we
developed in [30].

E. Organization of the Article
In Section II we discuss closely related work. In Section III,

we present our approach and derive the respective varia-
tional formulations in Section III-A. In order to solve the
corresponding problems, we derive a generalized forward
backward splitting in Section III-B, we provide the necessary
building blocks in the Sections III-CIII-D – III-E, and we
give a pseudo-algorithm in Section III-F. In Section IV, we
run experiments on synthetic as well as on real 3D data. In
Section V we discuss work related to the presented paper in a
wider sense and point out ways to apply our framework in more
advanced models beyond DTI. In Section VI we summarize
the contributions of the paper and work out topics of future
research.

II. RELATED WORK

Most approaches to tensor fitting in DTI make use of the well-
known Stejskal-Tanner equation

(10)

with constant and unweighted measurement ,
modeling the relation between the diffusion tensor at position
and the DWIs [33]. As explained in Section I-A, the actual

data measured in DTI are the DWIs , which capture the direc-
tional diffusivity in the direction .We note that (10) is the sim-
plified version of the Stejskal-Tanner equation in the sense that
consolidates several parameters, i.e., strength of the magnetic

field pulse gradients, gyromagnetic ratio, etc. [9]. Typically, 6
to 30 diffusion weighted images are acquired [7, 3. IV C]. A
first approach to obtain the diffusion tensors consists of a (vox-
elwise) least squares approach based on the Stejskal-Tanner (10)
using its logarithmic formulation as in (6). A central issue with
naive least squares fitting is, however, that there is no notion of
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spatial regularity enforcing that neighboring tensors, which be-
long to the same tissue type, are somewhat similar.
As the contribution of this paper is a variational approach for

joint diffusion tensor estimation and total variation regulariza-
tion, which takes spatial regularity into account, we focus on
related aspects in the following. We first discuss non-combined
approaches with emphasis on TV regularization in Section II-A.
Then, we consider combined approaches for tensor fitting and
regularization in Section II-B. At last, we discuss TV regulariza-
tion for scalar and vector-valued data in the context of inverse
problems (with a particular focus on forward-backward-type ap-
proaches) in Section II-C.
We postpone issues related to our work in a wider sense to

Section V. In particular, we briefly discuss different under-
lying mathematical structures used in DTI in Section V-A1.
Issues concerning (voxel-wise) tensor fitting are discussed in
Section V-A2 later on. For a general introduction to DTI and
related mathematical methods we moreover refer the interested
reader to the articles of Assemlal et al. [9] and Lenglet et al.
[35].

A. Non-Combined Approaches for Tensor Fitting and
Regularization
One possibility of achieving spatial regularity of the recon-

structed diffusion tensors is to denoise the DWIs prior to recon-
struction. In this regard we mention the work of Basu et al. [13]
who developed a method for removing Rician noise fromDWIs.
We also refer to the works of Bao et al. [14], and Luo et al. [15].
Another way of achieving spatial regularity is to recon-

struct the tensors first and regularize the resulting tensor field
afterwards. Early approaches for regularizing or denoising
DTIs are descendants of the well-known Perona-Malik model
[36]. One of the pioneering works in this field is the article
of Tschumperlé et al. [16]. Their approach has been further
generalized by Chefd'hotel et al. [17], [24] to regularizing flows
for matrix-valued data, by Arsigny et al. [26] who translated
this concept to the log-Euclidean case, and by Pennec et al. [19]
who presented a framework for deriving regularizing partial
differential equations in the context of DTI. A related approach
based on local anisotropic filtering and the affine-invariant Rie-
mannian metric was proposed by Castaño-Moraga et al. [21].
Another approach for DTI regularization has been proposed
by Gur and Sochen [22], which is a differential geometric
approach which considers the space of all possible DTI images
as the space of sections of a fiber bundle.
Besides regularization strategies in the spirit of Perona and

Malik [36], TV minimization is well-known for achieving edge
preserving regularization. Generalizations of the TV model
for manifold-valued data have gained a lot of interest in the
last few years – both from theoretical viewpoint [37]–[39] and
from an algorithmic one: Weinmann et al. [30], for instance,
introduced algorithms for total variation minimization for man-
ifold-valued data with a direct data term. They used a cyclic
proximal point algorithm as well as a parallel proximal point
algorithm to minimize TV functionals with -type data terms.
These algorithms have been applied to DTI data. For the class
of Cartan-Hadamard manifolds – which includes the data space
in diffusion tensor imaging – convergence of these algorithms

to a global minimizer was shown. Another algorithm suitable
for TV minimization on Riemannian manifolds was proposed
by Lellmann et al. [40]. This approach uses a reformulation
of the original problem as a multi-label optimization problem
and is closely related to approaches for circle-valued data by
Strekalovkiy and Cremers [41], [42]. However, the number
of labels grows rapidly with the dimension of the data space.
Recently, Grohs and Sprecher [32] proposed an approach for
TV minimization which is based on iteratively reweighted least
squares. Moreover, [32] features convergence statements for
the sphere.

B. Approaches for Combined Tensor Fitting and
Regularization
Instead of two-stage approaches consisting of separate re-

construction and denoising, it is reasonable to combine these
two tasks in one simultaneous task to improve the quality
of the reconstructed tensor field. Typically, this results in
more challenging problems. Some of the work discussed in
Section II-A has been extended to this setting. For example,
the constraint preserving (gradient) flows of Tschumperlé et
al. [16] and Chefd'hotel et al. [24] served as a basis for the
combined approach presented by Tschumperlé and Deriche in
[28]. A similar approach employing a different regularizer and
a projected gradient descent has also been proposed by Neji et
al. [25]. Furthermore, the log-Euclidean framework, see [26]
for instance, has been used as basis for a combined approach
proposed by Fillard et al. [10].
Concerning the goal of combined tensor fitting and regular-

ization as well as the choice of the employed data terms the
presented approach has similarity to [10]. However, we empha-
size that our method employs a different mathematical struc-
ture, i.e., the affine invariant Riemannian metric in contrast to a
log-Euclidean structure; see also Section V-A1. This implies a
significantly different setup in which the well known optimiza-
tion strategies developed for linear spaces are not applicable
anymore. We propose a generalized forward-backward splitting
which deals with the non-smooth TV regularizer in the manifold
setting. This also contrasts the method of [10], which employs a
gradient-descent-based minimization scheme for a smooth reg-
ularizer. We consider the idea of the generalized forward-back-
ward splitting scheme for TV regularization in a manifold setup
as one of the main contributions of this article.
Another approach for combined fitting and regularization is

described by Pasternak et al. [43], which is building on the
works [27], [44], [45]. There, the product space of and the
space of positive matrices (or, synonymously, the trivial bundle
over the base space with characteristic fibre consisting of
the positive matrices) is considered. For each target variable ,
the graph of is a section of this product space, which allows
the authors to consider the metric on the graph induced by the
product metric of the product space. Integrating the square-root
of the determinant of the corresponding metric over the base
space defines the employed regularizer. We note that not only
one Riemannian metric is considered, but as induced metric
from a product space, each target defines its own Riemannian
metric. We further note that the graph-energy employed in that



1976 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 35, NO. 8, AUGUST 2016

work typically yields non-zero values for constant grid func-
tions . The authors of [43] use gradient descent techniques to
compute the flow of the functional they consider. The regular-
izer employed in the mentioned paper is significantly different
from the TV regularizer we use here. As a simple example, a
constant function always has TV energy zero. Furthermore, our
regularizer is built on the affine-invariant Riemannian metric on
the space of positive matrices without considering families of
metrics induced on graphs. Moreover, our functional is non-dif-
ferentiable. To address the non-differentiability of our regular-
izer, we employ proximal mappings for the corresponding com-
putations contrasting the pure gradient descent techniques em-
ployed in [43] (for a different functional.)

C. TV Regularization for Inverse Problems in Linear Spaces

The first approach for TV regularization in image processing
is the Rudin-Osher-Fatemi (ROF) functional [46] proposed for
denoising scalar-valued data. Since then, many generalizations
and further applications have been proposed. For a comprehen-
sive overview on this topic we refer the interested reader to the
introductory article of Chambolle et al. [47]. Some recent ex-
amples of such generalizations, which also consider an inverse
setting, are [48], [49]. This means that the data term of the min-
imized functional can be written as , where is the
measured data, is a linear measurement operator, and is the
target variable.
Furthermore, total variation regularization in a vector-valued

setup has recently gained a lot of attention. It is still an active
topic of ongoing research; see for instance [50]–[52] and the
references therein. The central property of TV functionals in
the vector-valued setup is that they are well-behaved convex
functionals. Hence, all the powerful methods of convex anal-
ysis, convex geometry, and convex optimization are available
for their numerical treatment; see the book of Rockafellar [53],
for instance. One approach for convex optimization in vector
spaces is the so-called forward-backward splitting, which can be
traced back to the early works of Peaceman and Rachford [54]
and Douglas and Rachford [55], respectively. Based on their
work, Eckstein and Bertsekas [56] (among others) then paved
the way for modern splitting methods. The general idea of for-
ward-backward splitting schemes is to split the target functional
into a sum , where is minimized by an ex-

plicit step (e.g., a gradient descent step), and where is treated
implicitly (e.g., using proximal mappings). Recently, a general-
ized forward-backward splitting algorithm has been considered
in [34]. There, the underlying decomposition is

where is treated explicitly and are treated im-
plicitly. More precisely, for each , , the proximal
mapping of is computed. Finally, these results are averaged.
As the presented approach is similar to this strategy we also con-
sider it as a generalized forward-backward splitting.

III. THE PROPOSED GENERALIZED FORWARD-BACKWARD
SPLITTING APPROACH FOR JOINT TENSOR FITTING AND

TV REGULARIZATION IN THE MANIFOLD SETTING
In this section we develop the proposed model and the

proposed generalized forward-backward algorithm which
we implement for jointly fitting the tensors and regularizing
them. After describing the proposed variational model in
Section III-A, we explain how to split the considered func-
tionals in Section III-B. Then we explain in detail how to
compute the explicit steps in Section III-D as well as the
implicit steps in Section III-E. As both of these steps rely on
the exponential and inverse exponential map for , which
constitute the elementary operations on a manifold, we first
discuss their computation in Section III-C.

A. Proposed Models for Combined Fitting and TV Denoising
We have already described the basic ideas and the univariate

setup in the introduction. To be precise, and, in particular, to
explicitly incorporate the important bivariate case, we provide
a more detailed presentation. The respective quantities will be
denoted by . We stress that the proposed framework is not
at all restricted with regard to the dimensionality. For instance,
when we consider a 3D volume as domain, we only have to add
an additional index to obtain , but we do not have to change
the structure.
As we pointed out in Section II, the most common method for

fitting a tensor to given DWIs is via the Stejskal-Tanner equation
(10) by using a least-squares approach. This means that fitting
the tensor at location is achieved by minimizing the
atomic data term

(11)

with constants . As a consequence, we can write the
two dimensional version of the data term in (6) as

(12)

From a statistical point of view, this data term assumes the log-
arithm of the DWI measurements to be corrupted by Gaussian
noise. As we pointed out in [10], [13], a more reasonable noise
model for DWIs is Rician noise. Rician noise causes a so-called
shrinking effect which manifests itself in the reconstructed
tensor being too small. An atomic data term which accounts for
this noise model is given by

(13)

where ; see [10], [57].
Concerning the TV regularizer we use a coordinate-wise dis-

cretization related to the Manhattan metric, i.e.,
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where and . As this discretization
is known to produce so-called metrization artifacts, one can
also employ a larger system of vectors describing the neighor-
hood. For example, one might use , ,

, , in order get the more isotropic finite
difference discretization

with weights and . We
refer the interested reader to [58] for a more elaborate treatment
of this topic or the more recent works [31], [59], which in par-
ticular consider finer discretizations. Using these approaches,
anisotropy effects become practically invisible.
Combining the above expressions, we get the following com-

pact notation for the proposed functionals

(14)

and

(15)

We note that both functionals (14) and (15) are invariant
with respect to the parameter which appears both in the Ste-
jskal-Tanner equation and in the term . Saying this, we mean
that solving (14) and (15) with respect to results in
solutions which are related by . To see the in-
variance property for the data term, we notice that the error is
measured in the image space of the operator , and thus does
not see a reparametrization of the preimage space. To see the in-
variance of the regularizing term, we notice that, on the space of
positive matrices, we have affine invariance: this, in particular,
implies invariance with regard to any way of scaling matrices
by positive scalars, say . We emphasize that this is a par-
ticular property of the chosen Riemannian metric which is not
true for the Euclidean or the log-Euclidean metric.

B. The Proposed Splitting of the TV Functional

We consider the functionals (14) and (15). At first, we recall
that and can be split with respect to the corresponding
atomic data terms and . More precisely,

and (see
(12) and (13)). Employing the notation

where

(16)

can be written using the splitting

(17)

where the corresponds to the directions of the employed dif-
ferences. Analogously, we have

(18)

Here, we dropped the dependency on the arguments in order to
simplify the notation. The core idea of the proposed algorithm
is now to use this splitting in the following way: we treat all
atomic regularization terms implicitly while the differen-
tiable data terms and are treated explicitly. We observe
that since these data terms are separable, the computation of the
respective gradient results in computing the gradient of the cor-
responding atoms and . Based on this splitting, we de-
velop our algorithms in the following.

C. Computing the Riemannian Exponential Map and Its
Inverse

Let denote a positive matrix and
a tangent vector at . The Riemannian exponential mapping

maps to the point on the manifold reached on the
geodesic starting at with velocity after unit time. For the
particularly nice space of positive matrices, explicit formulas
are available; see, for example, [60]. We have

(19)

where themapping (without index) denotes the usual matrix
exponential. Furthermore, there is also a closed form expression
for the inverse of the Riemannian exponential mapping: for pos-
itive matrices it reads

(20)

where the matrix logarithm is well-defined since the ar-
gument is a positive matrix. After diagonalizing the argument

the matrix logarithm is just the logarithm of the
diagonal entries, which also applies to the matrix exponential.
Hence, both matrix functions can be efficiently computed by di-
agonalizing the symmetric matrix under consideration and then
applying the corresponding scalar functions to the eigenvalues.
Finally, we need the distance between two elements and ,
which simply equals the length of the tangent vector
and which explicitly reads

(21)

where is the eigenvalue of the matrix .

D. Computing the Explicit Gradient Descent Step for the Data
Terms and of the TV Functional

First, we note that is an open subset in the linear space of
symmetric matrices . Hence, the notion of the differential
in the manifold setting agrees with the differential in the (finite-
dimensional) vector space setting. As noted in Section III-B,
the separable structure of and allows for computing differ-
ential quantities in a componentwise way, i.e., by considering
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the atoms and . So let be an arbitrarily
chosen element in the tangent space of at . Then the
first variation of at in the direction can be expressed
via the Riemannian metric (5) as

(22)

where is called the Riemannian gradient of
at . Analogously,

(23)

for the Riemannian gradient of at .
In order to compute , we note that, due to the sym-

metry of all diffusion tensors, there is a canonical isomorphism
which maps any tensor to the six entries of its upper trian-

gular component, i.e.,

(24)

Using this isomorphism it is possible to reformulate the atomic
data term in the form

(25)

Here is the vector in with components from the upper
triangle of is determined by all gradient
vectors (independent of ) and is a vector with
-th entry given by . The first variation of

this least squares problem can now be represented by the stan-
dard scalar product of as

(26)

where for arbitrarily chosen .
Defining and we can rewrite this
first variation as

(27)

In other words, is the Euclidean gradient of . Employing
the Riesz representation theorem and using the definition of the
Riemannian metric (5) we thus find

(28)

As this equality holds true for all tangent vectors ,
we find that

(29)

Proceeding similarly for , we find that

(30)

where

(31)

Fig. 2. Concept of the Generalized Forward-Backward Splitting Algorithm
(With Cyclic and, Alternatively, Parallel Backward Step) for Manifold Valued
Data.

and denotes the logarithmic derivative of the Bessel func-
tion . Here, the are given as in (8) and is the rank
one matrix obtained from the direction . Once the gradients
are computed, we can perform a gradient descent step

(32)

using (29) (and (30) for , respectively) where denotes
the step size chosen at the -th iteration step.

E. Computing the Implicit or Proximal Mapping Steps for the
Atomic Regularizing Terms of the TV Functional
We treat all regularization terms given by (16) im-

plicitly, i.e., by proximal mappings. We do so in order to deal
with the non-differentiability of these terms. In this context, we
mention that applying related explicit schemes such as subgra-
dient descent typically show oscillatory behavior. We do not ob-
serve such behavior in our implicit approach. We consider the
atomic regularization terms which were given by

Taking a closer look at these terms, we note that they basically
take two positive matrices as arguments and map them to the
distance between them induced by the Riemannianmetric.More
precisely, they are mappings from the product manifold

to the nonnegative reals given by .
Thus, we need to compute proximal mappings of the form

where . These proximal mappings have closed form ex-
pressions, i.e., the minimizers can be given by explicit formulas.



BAUST et al.: COMBINED TENSOR FITTING AND TV REGULARIZATION IN DIFFUSION TENSOR IMAGING 1979

For their derivation we refer to the authors' paper [30]. Con-
sidering the geodesic starting at a point
and ending at another point we denote the
point reached after time (for constant speed parametrization)
by . Using this notation, the explicit formula for the prox-
imal mappings reads

(33)

which can be computed using (19) and (20).
At this point we make the following remarks. First, the intu-

ition behind these proximal mappings is that we solve the initial
problem locally while penalizing the deviation from the pre-
vious iterate, where the parameter controls how much
we penalize the deviation. This is obviously of implicit nature
since the conditions are imposed on the sought solution. Second,
the strength of the proposed method is that the proximal map-
pings for the atomic regularization terms can be computed ex-
plicitly. In contrast to this, we strongly believe that there is no
explicit formula for the proximal mapping of the TV regularizer
as a whole. Certainly, at the present time, there is no such for-
mula available in the literature. Furthermore, no analogues of
the well-known dual or primal-dual formulations are presently
available in the manifold setting. Finally, we note that the prox-
imal mappings are possibly multivalued in the general mani-
fold-setting since the uniqueness of the minimizers cannot al-
ways be guaranteed. However, in the scenario we consider, this
is a rather mathematical pathology which we did not observe in
practice. In fact, such situations only occur on negligible sets of
data; we refer to the discussion in [30].

F. Proposed Generalized Forward-Backward Algorithm

Aswe have discussed all building blocks, we can now explain
how to combine them within a generalized forward-backward
algorithm for manifold-valued data; we refer to Fig. 2 where
the concept of the algorithm is presented.
Starting from the decomposition (17) of , we first apply the

gradient descent for the data term this results in performing
the gradient steps (32) for all atoms of the data term. Then, we
proceed with the backward step, where we apply the proximal
mappings for the atomic terms in a cyclic fashion. More
formally, we impose a linear ordering on the three indices ,
i.e., we consider a mapping . We
denote the inverse of this mapping by and so
obtain a series of intermediate iterates

(34)

at the “macro”-step . We point out that we use the notation
for the outcome of the previous gradient descent step.

This approach amounts to the cyclic variant in Fig. 2. It is im-
portant to note that the ordering of the indices , , and in this
cyclic variant provides a considerable degree of freedom which

can effectively be used to exploit peculiarities of the computing
architecture, for example, for partially parallel implementations
in a GPU, or the employed storage scheme. Instantiating the
gradient of the data term as described in Section III-D and the
atoms of the TV term as in Section III-E, we obtain generalized
forward-backward algorithms for the joint fitting and regular-
ization of diffusion tensor fields; see Algorithm 1.
Besides being suited to Riemannian data, the difference of

our algorithm to the generalized forward-backward splitting of
Raguet et al. [34] is that we apply the proximal mappings in
a cyclic fashion whereas Raguet et al. apply them in a parallel
fashion. Such a parallelization, however, requires the outputs of
the individual proximal mappings to be averaged. This can be
done in a Riemannian manifold using the well-known concept
of intrinsic means which are frequently called Riemannian
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Fig. 3. Synthetic Experiments (Examples). The unregularized tensor fitting is heavily affected by the noise which makes regularization necessary. All TV based
regularization methods yield edge-preserving regularizations. We clearly observe an undesired shrinking effect for the schemes based on the LSQ data term.

centers of mass, Karcher and Frechet means. For a related dis-
cussion in the context of proximal point algorithms (including
faster approximative variants) we refer to [30]. Using the no-
tation for the intrinsic mean, the parallel variant of our
generalized forward-backward algorithm reads

(35)

where is the iterate after complete forward-backward
steps. We note that (35) comes with the additional cost of com-
puting the mean.

IV. EXPERIMENTS

We evaluate the proposed method on synthetic data, see
Section IV-A, as well as real data from the UCL Camino
Diffusion MRI Toolkit [61], see Section IV-B. The algorithm
is implemented in C++. The operations which are necessary
for computing matrix roots, logarithms, and exponentials have
been implemented using Eigen v.3.2.41. The parameter in
Algorithm 1 was chosen as , with . For
the visualization, we used a modified version of the fanDTasia
ToolBox by Angelos Barmpoutis [62].

A. Experiments on Synthetic Data
We perform a quantitative evaluation using synthetic test

data. We generated synthetic data similar to the one in Fillard
et al. [10]: we use the diffusion tensors

1Available at http://eigen.tuxfamily.org.

to generate a volume of size 16 16 16. This ground truth
volume has two “phases” of tensors, i.e., one half of the volume
consists of copies of the first tensor and one half consists of
copies of the second tensor; see Fig. 3. Next, we use the Stejskal-
Tanner equation to create ten ground truth DWIs ,

. Here, we have chosen for all tensors as
well as , and the ten gradient directions

Then we impose Rician noise on the produced DWIs. This
means that we replace the true intensity of the -th DWI
at location by

(36)

where real and imaginary parts are Gaussian
distributed. We use three different noise levels ,

, and .
We start out by reconstructing the tensor field using the de-

veloped joint reconstruction and TV regularization methods. In
Table I, we employ the least squares (LSQ) data term as well
as the data term based on the maximum likelihood estimator
(Rice-MLE) particularly suited to Rician noise. We compare
these methods under different noise levels, i.e., ,

, and , and under different choices of the reg-
ularization parameter, i.e., , , , , and
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TABLE I
LSQ-BASED VS. RICE-MLE-BASED ESTIMATION

We use the least squares (LSQ) data term as well as the data term based on the
maximum likelihood estimator (Rice-MLE) particularly suited to Rician noise.
The Rice-MLE-based estimation performs better w.r.t. tensor reconstruction
(measured by MSE) as well as in terms of the DWIs derived from the recon-
structed tensors (measures by SNR). Furthermore, the Rice-MLE-based esti-
mation also much better preserves the trace value.

. The quantitative evaluation in Table I uses the following
means of comparison:
1) MSE on the DTIs: we compute the mean squared error be-

tween the reconstructed tensors and the ground truth ten-
sors using the Riemannian metric (5).

2) on the DWIs: we compute the signal-to-noise ratio
improvement , see [66]. It is given by

(37)

where denotes the -th DWI reconstructed from the
fitted tensors at position .

3) trace: we compute the average percentage of the traces of
the fitted tensors in comparison to the ground truth
tensors , i.e.,

(38)

We observe in Table I that the joint estimation based on
the Rice-MLE data term performs better with respect to
MSE as well as with respect to . Furthermore, the
Rice-MLE-based combined fitting and TV regularization pre-
serves the trace much better.
Focusing on the Rice-MLE based data term, we compare the

proposed combined method with the corresponding (uncom-
bined) sequential baseline method which works as follows: we

TABLE II
SEQUENTIAL VS. JOINT RICE-MLE-BASED ESTIMATION

For the data term based on the maximum likelihood estimator for Rician noise
(Rice-MLE), we compare the sequential approach of first fitting the tensors and
then denoising with our proposed joint approach. The joint approach is better
w.r.t. MSE (measured by the DTIs directly) for higher noise level; for lower
noise level, both approaches yield very small MSE. With respect to SNR (mea-
sured on the DWIs derived from the reconstructed tensors), the proposed com-
bined approach performs better throughout.

first fit the tensors using the data term without any regulariza-
tion. Then, in a subsequent step, we perform TV-regularization
on the fitted tensors using the method described in [30]. For the
experiment in Table II, we consider different noise levels, i.e.,

, , , and . For each noise
level, we consider the regularizers
and compute the MSE and for both the proposed com-
bined fit and TV regularization and its sequential counterpart.
In Table II, the best value of the respective quality measure, i.e.,
MSE and , for the respective scheme, i.e., combined and
sequential fit and TV regularization, is shown. The approaches
which combine diffusion tensor fitting with TV denoising per-
form better with respect to mean squared error (MSE) on the
DTIs as well as with respect to on the DWIs. Hence, the
combined approach yields a measurable gain.
For illustration, we plotted some examples in Fig. 3. For com-

pleteness, we here also include the sequential method of first
tensor fitting using the data term , corresponding to a least
squares fit, followed by TV denoising. As this approach showed
no superior performance than the joint least squares fitting and
TV regularization, we omitted the detailed quantitative compar-
ison in the paper. Fig. 3 in particular illustrates the shrinking ef-
fect when using the LSQ data term for higher levels of Rician
noise.
In our synthetic experiments, we make the following obser-

vations: (i) The combined fitting and TV denoising approach
using the Rice-MLE data term yields better results than the
combined LSQ-based approach. (ii) The combined fitting and
TV denoising approach using the Rice-MLE data term yields
better results than the corresponding baseline approach which
first fits the tensors using and subsequently performs TV reg-
ularization. (iii) The data term prevents the shrinking effect
[10] caused by Rician noise. Hence, the proposed method of
joint fitting and TV regularization using the data term shows
the best performance in reconstructing the ground truth in our
synthetic experiments which indicates the potential of the pro-
posed method.
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Fig. 4. Joint Fitting and TV Regularization (Proposed Approach) on Real Data. We display four axial sections of the 3D volume reconstructed from the Camino
dataset using the proposed approach with the Rice-MLE data term. All tensors were color-coded according to the principle direction: the color red encodes left-right
principal orientation, green corresponds to anterior-posterior, and blue corresponds to superior-inferior. We observe that the proposed approach constructs a regular
tensor volume and that it preserves sharp boundaries between oriented structures at the same time.

B. Experiments on Real Data

In order to demonstrate the potential of the proposed method
on real data, we applied it to diffusion weighted data of the
human brain from the Camino project [61]. This data is freely
available. Thus it is particularly suitable as a test data set since
it allows researchers to compare their algorithms on the same
data set. We reconstructed the tensors in three dimensions with
the proposed approach using the joint tensor fitting and TV-reg-
ularization using the Rice-MLE data term, where we performed
1000 steps ( ). We estimated a Rician noise level of

using the method proposed by Koay and Basser
in [64]. Since the maximum DWI magnitude is of order ,
and the magnitude of the unweighted measurements is of order

the noise level can be considered as low to moderate. Based
on the experiences gained during the synthetic experiments,
shown in Table I we considered different results with being
chosen in the range and found to be a
reasonable choice for the regularization parameter. The results
are shown in Fig. 4 where we show four axial sections of the

reconstructed 3D diffusion tensor volume; see also Fig. 1 for a
3D impression.
For comparison, we computed the DTI volumes using the

Camino software; see Fig. 5. We furthermore compare with the
sequential approach of plain fitting using the Rice-MLE data
term followed by regularizing by the TV method proposed in
[30]. Sections of the resulting volume are displayed in Fig. 6.
We determined the regularization parameter for the
method of [30] empirically (by exploring results for in the
range ). Comparing Figs. 4 and 5, we observe
that the tensors obtained by the Camino software are slightly
smaller than the ones obtained by our method. This effect might
be explained by using a least squares fit on data corrupted by
Rician noise. We avoid this effect by using the Rician MLE
data term. Comparing Figs. 4 and 6, we notice that the pro-
posed method performs considerably better than the sequential
approach. In particular, the sequential approach exhibits severe
outliers which are not present in the combined approach. We
remark that we used twice the number of iterations for the regu-
larization step of the sequential approach, than for the combined
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Fig. 5. Reconstruction using the Camino Software. To provide the reader with a reference for comparison, we show results obtained by the Camino software
(http://cmic.cs.ucl.ac.uk/camino/) on the same dataset as used for the joint approach (Fig. 4). We note that the reconstructed tensors are slightly smaller than the
tensors obtained by our approach in Fig. 4. This might be explained by the effects of least squares fitting in the presence of Rician noise which we avoid using the
Rician MLE data term.

method (where we used .) This was done
to ensure that, in the experiment, the computational costs for the
proposedmethod do not exceed those of the sequential approach
(actually only the regularization step). This illustrates the gain
of the proposed method when bounding runtime by that of the
baseline approach.
Next, we compare the above methods on the DWI level. This

means that we show the DWIs induced by the corresponding
tensors fields; see Fig. 7. First, we observe that all constructed
DWIs contain less noise than the actually measured DWIs. Fur-
thermore, the sequential method yields DWIs with more homo-
geneous regions than the Camino software and the proposed
method again yields results with even more homogeneous re-
gions than the sequential method. We emphasize that the er-
roneously large tensors in Fig. 6 correspond to the unnaturally
dark pixels in the corpus callosum in the fourth row of Fig. 7.
Finally, in order to indicate the relevance of the proposed

method in a practical application, we conducted a qualitative
comparison regarding the suitability of the proposed reconstruc-
tion technique for fiber tracking. The fiber tracking has been

conducted with 3D Slicer (www.slicer.org). For all experiments
we used the following settings: 1.0 seed spacing (in voxel), 0.3
min seed FA, 0.3 stopping min FA, 0.1 mm integration step,
0 mm minimum path length, 2000 mm maximum path length.
Panel (a) in Fig. 8 shows the results of a weighted least squares
reconstruction. Panel (b) in Fig. 8 shows the fiber tracking re-
sults obtained with the UKFT-module (Slicer plugin) which im-
plements the method proposed by Baumgartner et al. [65]. Panel
(c) shows the result obtained with the proposed reconstruction
algorithm. Note the improved reconstruction of the (vertical)
fibers corresponding to the cingulum (indicated by white ar-
rows).

V. DISCUSSION

The purpose of this section is two-fold. First, we discuss pre-
vious work related to the present paper in the wider sense in
Section V-A complementing the discussion in Section II. In par-
ticular, we here review different mathematical structures which
have been used in DTI in Section V-A1. We address this to mo-
tivate the use of the affine-invariant Riemannian metric which
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Fig. 6. Sequential Fitting and TV Regularization. We here visualize the result of first reconstructing the tensors individually using the Rice-MLE data term fol-
lowed by TV regularization using the -TV approach for manifold valued data proposed in [30]. We use the same 3D dataset as used for the joint approach and
we display the same slices (Fig. 4). We observe several very large tensors which are most probably caused by erroneous fitting. This assumption is supported by
the fact that the mean diffusivity of these tensors is more than two times higher than the one of water at 35 degree Celsius, i.e., , as reported
in [63]. Note that no outlier rejection was performed in this example in order to show that a posteriori regularization is not sufficient for removing such outliers.

is basic for the proposed algorithmic scheme. In Section V-A2,
we discuss further work on plain voxel-wise tensor fitting. The
second major purpose of this section (Section V-B) is to discuss
the limitations of DTI and to point out the applicability of the
proposed method to more recent imaging setups such as Q-ball
imaging which overcome certain limitations of DTI.

A. Discussion of Work Related in a Wider Sense
1) DifferentMathematical Structures for DTI: Aswe pointed

out in Section I-A, it is reasonable – in the context of DTI – to
endow with the Riemannian metric in (5). This has been
done for various tasks in DTI, such as by Pennec et al. [19] who
presented a computational framework for interpolation, basic
statistics, diffusion filtering, etc. Another work in this regard is
the one of Fletcher [67] for performing statistical computations,
such as principal component analysis on for instance. A Rie-
mannian setting has also been employed in the context of seg-
mentation by Cheng et al. [68] who implemented a Chan-Vese
model for DTI data based on the previous works of Wang and

Vemuri [69], [70] which are based on information theoretic (but
non-Riemannian) distance measures. We emphasize that using
the Riemannian metric (5) makes the powerful machinery of
manifolds available for which a lot of theory and methodology
has been developed. Examples include, but are not limited to,
wavelet-type multiscale transforms [71]–[73], manifold-valued
partial differential equations [74], and statistics on Riemannian
manifolds [60], [75]–[79].
Instead of endowing with the Riemannian metric (5)

and considering it as a manifold, there are also approaches
which take a different point of view and impose different
underlying mathematical structures. One approach is to con-
sider the positive matrices as the positive cone in the space
of matrices and to equip it with the corresponding Euclidean
distance. This approach has been taken in a lot of related
work; as examples we refer to [80], [81] on median and
related filtering, to [82] on segmentation and smoothing of
DT-MRI fields, and also to [83] and the references therein.
Methods based on this Euclidean concept typically have to
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Fig. 7. Regularization Effect on the Reconstructed DWIs. We display DWIs constructed from the tensors computed with the Camino software (see Fig. 5), with
the sequential fitting and TV regularization (see Fig. 6) and with the proposed joint fitting and TV regularization approach (see Fig. 4). We further display the
actually measured DWIs (second row) and the unweighted acquisitions (first row). Visually, we observe an increasing regularity of the DWIs from top to bottom;
the average Rician noise level estimated using the method Koay and Basser [64] equals for the original DWIs, in case of the Camino
software, and for both the sequential and the joint fitting. We noted that the sequential fitting produces erroneous tensors which are indicated by
the unnaturally dark areas in the corpus callosum; see also Fig. 6.

ensure that the computations done in the ambient space do not
leave the cone of positive matrices. This is usually achieved
by projection. We note, however, that projections are a some-
what problematic concept in this context, since the positive
matrices form an open set which means that they have no
clearly defined boundary onto which one could project. Also,
using the Euclidean metric for DTI data, a so-called swelling

effect has been reported in [16], [18], [24]. This means that
the dispersion of the corresponding covariance matrices, i.e.,
the determinant of the corresponding matrices, tends to be
larger than the original ones [18] when reconstructing noisy
data with known ground truth. Also in the context of TV
regularization in the Euclidean (non-manifold) setup, a slight
swelling can be observed [30].
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Fig. 8. Impact on Fiber Tracking. Panel (a) shows the fiber tracking results for a weighted least squares reconstruction (as implemented in Slicer). Panel (b) shows
the tracking results obtained with the UKFT-module (Slicer plugin) [65]. Panel (c) shows the fiber tracking based on the proposed reconstruction algorithm. All
results are displayed using mean orientation color coding. We apply the fiber tracking implemented in Slicer to the result obtained with the respective reconstruction
method. We note that the proposed method leads to an improved reconstruction of the (vertical) fibers corresponding to the cingulum. Note that fiber tracking has
only been performed for a rectangular region of interest. (a) Weighted least squares (WLS). (b) UKFT module. (c) Proposed.

Another suitable mathematical structure for DTI is the
so-called log-Euclidean framework as employed by Arsigny et
al. [18], [26] and Fillard et al. [10]. By using a Log-Euclidean
metric, one essentially works in the tangent space of the identity
matrix and then solves the present problem in this linear space.
Fillard et al. [10] perform estimation, smoothing, and fiber
tracking in the log-Euclidean setup and demonstrate the poten-
tial of this approach for both synthetic and real clinical data.
One of the main advantages of the log-Euclidean approach is
that it is computationally very efficient. This advantage comes
at the cost of not being affine invariant and the drawback of
being restricted to a particular base point, i.e., the identity
matrix. Hence, this approach of going to a tangent space at the
identity matrix yields good results for nearby points, but one
loses quality when they are not in a vicinity of the identity.
2) Voxel-Wise Tensor Fitting: While the (voxelwise) least

squares approach based on the Stejskal-Tanner (10) ensures the
symmetry of the fitted tensors by restricting the sought tensor
coefficients to the upper triangular part of , it does not guar-
antee that the resulting objects are positive (semi-) definite. Be-
sides imposing more sophisticated mathematical structures, it
is possible to enforce this constraint (voxel-wise) by projecting
the eigenvalues of the respective tensor to the positive real axis,
for example, by letting negative eigenvalues equal zero [16].
Alternatively, one might use a so-called Cholesky parameter-
ization of the tensors which leads to non-linear least squares
problems as suggested by Koay et al. [11] and Wang et al. [12].
It has been shown by Fillard et al. in [10] that the log-Euclidean
framework has advantages over the Cholesky parametrization.
For example, in the latter approaches, it is possible to reach the
zero tensor via geodesic shooting which might be an undesire-
able feature.

B. Limitations of DTI and the Proposed Framework in the
Context of More Advanced Models

The major limitation of classical DTI appears in the represen-
tation of intravoxel crossings of fibers [84], [85]. In such cases
the diffusion process is no longer well described by a single
tensor which leads to falsely fitted plate shaped or even sphere
shaped tensors.

In order to deal with such crossings, several approaches
have been proposed; see for instance [84], [86]–[88]. These
approaches can be classified into two groups. In the first group
the single-tensor-model is replaced by a multi-tensor one. This
means that instead of one tensor in each voxel one uses multiple
ones; see for instance [85], [89], [90]. The second group is
based on a model-free approach. The major assumption is that
the diffusion process can be described by a orientation distri-
bution function (ODF) on the 3D unit sphere; see for example
[86], [88], [91]–[97]. This imaging approach is also called
Q-ball imaging. For a review on both types of approaches we
refer to the article of Alexander [92].
We note that – similar to the standard DTI case – the model

space in the Q-ball setup can be interpreted as Riemannian man-
ifold, see Goh et al. [98] for instance. Hence, the framework pro-
posed in the present paper can be applied to the corresponding
manifold as well. In this context, we refer the reader to the recent
paper by Weinmann et al. [31] where the authors describe an a
posteriori regularization method in the Q-ball setup. In [31], the
needed differential-geometric operations are described so that
the implementation of the framework proposed in the present
paper for the manifold in Q-ball imaging is already principally
described. The concrete implementation of the proposed algo-
rithm for the the Q-ball setting is, however, a topic of future
work.
Furthermore, the approach proposed here is also flexible

enough to be applied in multi-tensor setups. For example, it is
possible to combine our TV regularizer with the data term in
[43] to deal with free-water elimination. This is another topic
of future research.

VI. CONCLUSION AND FUTURE RESEARCH
In this paper, we have proposed a novel approach for com-

bined tensor fitting and edge-preserving regularization. To this
end, we have introduced an energy functional consisting of a
data fidelity term adapted to Rician noise on the DWIs and,
as regularizer, the total variation on the tensors with respect to
the Riemannian manifold of positive matrices. As minimization
strategy, we have developed a generalized forward-backward
scheme which employs implicit steps based on geodesic aver-
aging on the manifold and explicit gradient steps for the data
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fidelity term. We validated the performance of the derived al-
gorithms on synthetic and real DTI data. To our knowledge, the
present work is the first one to propose TV regularization in a
combined (non-flat) manifold and inverse problem setup.
We saw that the employed techniques are fairly general. In

particular, to make the approach work for another manifold,
we basically need an implementation of the gradient of the
measurement operator as well as methods to compute the
Riemannian exponential mapping and its inverse.
As such, our framework is also applicable to more recent

models which overcome limitations of DTI. For example, the
above operations are available for Q-ball imaging as indicated in
Section V-B which makes the implementation of the proposed
framework for Q-ball imaging a first concrete topic of future re-
search. A second topic is the application to multi-tensor setup
as also pointed out in Section V-B.
Further directions of future research are validating the par-

allel approach, considering further manifolds (such as rotation
groups or shape spaces) as well as different inverse and mod-
eling problems, respectively.
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