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Abstract

The arrival of appearance-based image features has dramatically influenced the field
of visual object recognition. Previous work has shown, however, that contour curvature
and junctions are important for shape representation and detection. We investigate a lo-
cal representation of contours for object detection that complements appearance-based
information, such as texture. We present a non-parametric representation of contours,
curvature, and junctions which enables their accurate localization. We combine contour
and appearance information into a general, voting-based detection algorithm. Besides de-
tecting objects, we demonstrate that this approach reveals the most relevant contours and
junctions supporting each object hypothesis. The experiments confirm that our contour-
based representation compliments appearance information and the performance of base-
line voting methods is significantly improved.

1 Introduction
Contour-based representations have a long history in object recognition and computer vision.
Considerable effort was spent in the past matching geometric shape models of objects to
image contours [5, 6, 7, 8, 15, 22]. Although these approaches enjoyed some success, it is
clear that finding contours exactly belonging to the shape of an object is a hard problem. This
insight has given rise to an emphasis on local texture descriptors [13], the dominant approach
today. These appearance-based descriptors summarize local texture information in the form
of histograms of gradients [9], shape context [3], geometric blur [4], and many others [2, 16].
While prominent edges are roughly encoded, exact shape location has been replaced by a
representation of texture. It is well known, however, that curvature of contours and junctions
provide crucial shape information [1, 5]. Thus we believe it is time to investigate a contour
representation alongside appearance-based descriptors.

In this paper we show that local contour descriptors produce significant gains in object
detection and complement texture descriptors. Object contours are a strong representation of
shape, whereas texture-based representations summarize contours to avoid matching them to
an object exactly. We demonstrate in this work the value of bridging the assets of both. We
propose a local contour representation that complements texture features by flexibly encod-
ing junction information and curvature. The representation discretizes contour orientation at
an interest point and records the intensity of the contour at each angle as feature elements.

Our local contour representation is a non-parametric distribution over oriented line seg-
ments, or bars, sampled densely along contours. Recent work has modeled a number of
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Figure 1: Oriented bar codebook learned from the Applelogos category of the ETHZ dataset.
The representation summarizes local contour strength in a discrete set of 16 orientations.
The oriented bar features were sampled uniformly along detected image contours (left) and
clustered using kmeans. The example illustrates the repeatability of local contour orientation.

adjacent contour segments to represent shape [11]. The descriptor in this case has a fixed
junction degree, utilizes long segments and requires them to be ordered. Other recent contour
representations typically break contours into view-dependent segments and assemble them
by voting or with constrained splines [12, 21, 24]. The length of the segments in these ap-
proaches pushes the descriptor outside the bounds of local information, precluding a simple
association with local texture descriptors. We also make a distinction with appearance-based
descriptors, such as HoG [9], that integrate over edge orientations in image regions and
produce a texture summary that marginalizes contour detail. In contrast, our oriented bar
descriptor defines a distribution over local curvature and junctions at points along contours.

The contour representation we introduce is highly repeatable throughout an object cate-
gory and encodes local curvature information. Object shape contours contain local structure
that repeats throughout standard views of a category. The corners of a mug, for example,
and the junctions where a handle attaches, appear in most exemplars with some angular vari-
ation. In Figure 1 we visualize this notion of repeatability, which was inspired by [23]. For
this example we computed oriented bar features over Applelogos of the ETHZ shape dataset
and clustered them into 64 groups using kmeans. We observe that much of the object shape
can be explained by a combination of these local contours.

In addition to being repeatable, our contour representation describes local curvature. Un-
derstanding angle information in contours is important because shape cues concentrate there;
segments with high curvature encode more information about shape than straight lines [1, 5].
This is illustrated in Figure 2, where we sampled interest points uniformly over detected
edges and computed oriented bar features. We then rendered the features in order of their
contour strength and curvature. The latter is measured by the outer product of an oriented
bar feature with itself, weighted by angle difference, e.g., ∑ fi j e−|θi−θ j |. We observe that
the object is identifiable after rendering a relatively small number of oriented bar features.
Curvature clearly concentrates shape information, and the oriented bar descriptor captures
this at contour interest points.

The advantages of a local contour representation complement those of texture descriptors
and improve object detection. We demonstrate this by joining contour and texture informa-
tion in a widely used, voting-based detection algorithm. We evaluate our approach on the
ETHZ shape dataset and INRIA horses. Our results demonstrate that explicitly representing
contour orientations alongside texture-based features, specifically geometric blur [4], signif-
icantly improves detection. Another contribution is the evaluation process itself. We average
our performance over many random trials and report standard error statistics over mean per-
formance, yielding a more meaningful comparison within this work and between others. We
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Figure 2: Shape information is concentrated at points of high curvature. The oriented bar
features are ordered and rendered by contour strength and amount of curvature. The first
column shows images from the ETHZ shape dataset. The second column shows 10 oriented
bar features and continues to the right with 30, 50, 100 and 200 features. Notice that with
just 10 oriented bar features most of the categories are discernible. This illustrates that our
contour representation encodes curvature in a way that is highly informative of shape.

first describe our voting-based detection strategy and then summarize the contour and texture
features we rely on. We finish with an empirical evaluation and discussion.

2 Detection
We first briefly outline the detection strategy for evaluating the combination of contour and
texture information. We evaluate the proposed representation based on the widely used
Hough transform for object detection. The approach is kept general to allow for wide appli-
cability rather than specializing on a specific object category. The emphasis is on evaluating
local contour properties, not the voting or verification stages. Nonetheless, we found that this
simple detector, based on our object representation, is surprisingly effective; it exceeds many
state-of-the-art voting-based detection systems. Figure 3 outlines the detection process.

To make a detection we first extract edge contours E from an image using the Berkeley
edge detector [17, 19]. We sample N interest points locations x1, . . . ,xN uniformly along con-
tours. At each of the locations we compute our oriented bar contour representation b1, . . . ,bN
and the texture-based geometric blur [4] features g1, . . . ,gN . The details of these local image
descriptors are in Sect 3. We then concatenate the descriptors at the i-th interest point into a
feature vector fi = (bi, gi).

Citation
Citation
{Maire, Arbeláez, Fowlkes, and Malik} 2008

Citation
Citation
{Martin, Fowlkes, and Malik} 2004

Citation
Citation
{Berg and Malik} 2001



4 SCHLECHT, OMMER: CONTOUR-BASED OBJECT DETECTION

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: Outline of our approach to detect a Mug in image (a). We identify edge con-
tours (b), uniformly sample interest points (c), and compute features (d). Example geometric
blur features (top) and oriented bar representation (bottom) were computed where the handle
attaches. Features are matched to training examples and shift vectors are extended through
scale space (one scale shown) (e). A density over object hypotheses is estimated (f). Interest
points belonging to a strong hypothesis are identified (g) as well as a scaled bounding box
with rendered oriented bars (h).

For each of the features fi in the test image, we find a nearest neighbor f̂i in a training
set. We use euclidean distance for matching and a kd-tree to make the retrieval efficient.
We could quantize the features into a codebook, as in Figure 1, if matching performance
becomes an issue. As part of the training process, we store a shift vector vi that points
to the object center for each of the training instances f̂i. Then for matches f1, . . . , fN , we
have a corresponding set of a shift vectors v1, . . . ,vN . We combine the vi with interest point
locations xi to cast votes for the position of an object.

In addition to voting for object position, we cast each of the votes through a set of discrete
scales. Formally, we vote for object hypotheses over position and scale space in a Hough
accumulator

H(x,σ) =
N

∑
i=1

wi δ (‖xi +σ vi− x‖) , (1)

where δ is the Dirac delta function. This equation has been used numerous times and the
weights have been estimated in many ways, including probability models [14], max-margin
classifiers [18], and constrained co-activations [20]. Surprisingly, we found in our experi-
ments that uniform weights exceeds the performance of most of these methods (excluding
post-processing verification stages).

We estimate a discrete density over image position and scale space using a 3-D Gaussian

h(x,σ) = c ∑
x,s

H(x−x,σ − s)η(x,s;ωx,ωσ ) . (2)

This is a convolution of the Hough accumulator with a kernel function η that has ω2
x and ω2

σ

on the diagonal of its covariance matrix. The constant c normalizes the discrete density. We
can efficiently compute h using the fast Fourier transform. We identify object hypotheses
as local maxima according to their 26-way neighborhood. A watershed segmentation over
position in each scale of h gives the features casting votes for a hypothesis.
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Figure 4: Image edge map convolved with four oriented bar filters. The oriented bar feature
is computed by sampling from each channel at interest point locations xi.

3 Object representation
In this section we present a representation for the complimentary characteristics of object,
their contours and appearance. We first summarize our oriented bar descriptor for contours,
followed by the geometric blur descriptor for texture.

3.1 Contours as oriented bars
To represent object contours, it is important to capture local curvature as well as junctions
of various degrees and angles. Thus, we seek a non-parametric representation that describes
contours at an interest point as a distribution over oriented line segments, or bars. The
oriented bars are a set of filters F1, . . . ,FD that have a line segment with one endpoint in the
filter center and orientation angle θ ∈ [0,2π]. We create the filters by rendering a line of
length L and blurring it with a Gaussian. This works to offset the discretization effects of
orientation angles; a smoothed line will give a partial response to a contour that has almost
the same angle.

The edge map E is convolved with each of the oriented bar filters, creating D channels
of contour orientation responses

Bd(x) = ∑
x

E(x−x)Fd(x) . (3)

Figure 4 shows four examples of the oriented bar filters and their responses to an edge map.
Note that this is different from the oriented edge descriptor [19], since the filters are elon-
gated bars, not gradients, and the signal is an edge map. Further, we are not integrating over
gradient orientations in an image region, as is done with HoG [9].

We sample each channel at the interest points to create a feature vector

b̂i = B1(xi), . . . ,BD(xi) . (4)

The feature is then normalized by its magnitude, bi = b̂i/‖b̂i‖. We want the distance between
local contour orientations to be similar regardless of the relative contour intensities.

We choose the number of orientations as D = 16 and a bar length of L = 20. The oriented
bars in Fd are smoothed with a Gaussian that has a standard deviation of 2 pixels.

3.2 Texture as geometric blur
Besides contours, appearance information such as texture is key to representing objects.
To describe local texture in the vicinity of interest points, we compute the geometric blur
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descriptor [4]. This descriptor summarizes the response of a signal under all affine trans-
formations at a point. It gives best results when the signal is sparse, such as an edge map.
For a discrete signal E, the descriptor centered at location x is a convolution with a spatially
varying Gaussian kernel,

Gx(y) = ∑
x

E(x+ y−x)η(x;α‖x− y‖+β ) . (5)

That is, the signal is convolved with a Gaussian kernel η whose standard deviation is a linear
function of distance from the descriptor’s center, x. In this work, we use the parameters
α = 0.5 and β = 1.

We sample Gx at locations y1, . . . ,yC arranged in concentric circles about x. Each location
is defined in polar coordinates by a radius r and angle θ . We use 7 radii ranging from 0 to 50
pixels. At each radius the points are sampled with equally spaced angles θ ∈ [0,2π]. This
ranges in frequency from 1 point at r = 0, to 18 at the largest radius. For each signal, we
sample a total of C = 71 points from the descriptor. An example can be seen in Figure 3(d).

Each of the point locations from the set of radii and angles are computed under the
geometric blur descriptor and concatenated into a feature vector. The feature at interest point
xi is then given by

ĝi = Gi(y1), . . . ,Gi(yC) . (6)

As with the oriented bar descriptor, we normalize the feature by its magnitude, gi = ĝi/‖ĝi‖.
This masks differences in pixel intensities due to lighting changes and other affects.

We compute the geometric blur feature over multiple sparse signals to increase its de-
scriptiveness. We use 8 oriented edge responses [19] given by the Berkeley edge detector.
We simply concatenate the features over each signal to produce an extended descriptor. The
dimensionality is then reduced by half using PCA. Doing so maintains over 90% of the signal
variation and yields a texture feature with 284 dimensions.

4 Experiments and results
We evaluate the proposed object representation in the context of multi-scale object detec-
tion in cluttered scenes. We perform a rigorous evaluation using the ETHZ shape dataset
and INRIA horses. We create 10 random training and testing trials for each category within
these datasets. Each of the ETHZ trials is constructed by randomly selecting half the target
category from the data and an equal number of non-target images distributed evenly among
the other categories. For INRIA each trial contains 50 positive and 50 negative examples, as
is common. We separately evaluate our approach on the ETHZ and INRIA datasets against
several comparable state-of-the-art approaches. We further show a comparison of our com-
bined representation (OB+GB) against two baselines of only oriented bars (OB) or geometric
blur (GB). This isolates any performance gains to the effects of our approach.

We configure the detector with the following options. The maximum number of interest
points sampled in a test image N is 1000, with at least a 5 pixel spacing between each. We
ignore contours in the edge map that have an intensity less than 25% of the maximum. In the
Hough accumulator we choose a bin size of 5 pixels for position and divide the scales into 20
bins. The kernel bandwidth ωx for position is 12 pixels, and the scale bandwidth ωσ is set to
0.25. We found that weighting the contour and texture components of the combined feature
equally gave the best results. Finally, as previously mentioned, we empirically determined
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Figure 5: Example detections on ETHZ demonstrating the accuracy and localization ability
of our representation. Ground-truth bounding boxes are in red and our detections are in blue.

that setting all per vote weights wi to a uniform value yields good performance. We use
exactly this configuration for experiments on both the ETHZ and INRIA datasets.

Quantitative performance is reported in terms of precision-recall and false-positives per
image (FPPI). We average performance results over 10 random trials and estimate a standard
error. The latter has not been reported before; averaged results have been given in the past,
but no indication of accuracy in the mean was provided. Further, when comparing perfor-
mance, it is often the case one algorithm claims a performance improvement that could be
within this standard error. We provide this information to lay a solid foundation for compar-
ison with other work in the past and future. The computation time of our approach is low
(about 15s per image), so these experiments are feasible in a reasonable amount of time.

In Figure 5 we see the detection results qualitatively. For a few examples in each of the
ETHZ shape classes we show a detection bounding box and ground-truth box, followed by
the interest points that voted for the detection and the rendered oriented bars. Our repre-
sentation directly explains which contour pixels in the image support the object hypothesis.
Compared to KAS [11], significantly more local details are captured. In Figure 6 we show
more examples of true and false-positives from the ETHZ dataset. The quality of the con-
tour representation is quite high in most detections. In the right-most column of each row
we show a false-positive detection with a high score. In the case of Applelogos, a circular
pattern on one of the mugs is the cause, while a bottle is detected in the pattern of a mug.
The latter is due to a bottle label matching well to the clutter on a mug face. The legs of a
Giraffe are seen in the upper contours of a bottle’s neck and an occluded mug is detected in
a bottle image. Finally we see a swan hallucinated in the swirl pattern of an apple logo. In
all, we observe that the objects are generally detected well.

In Figure 7 we show the precision-recall curves for each of the classes in ETHZ and
INRIA horses. We also report the mean average precision in Table 1. In all categories but
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Figure 6: Example detections on ETHZ with rendered oriented bar descriptors. The right-
most image in each row (category) shows a false detection.

OB ± GB ± OB+GB ±
Apples 67.4 2.6 45.5 2.9 67.0 2.9
Bottles 69.0 2.6 71.1 2.9 79.4 2.6
Giraffes 14.0 1.4 54.9 2.1 59.1 1.4
Mugs 35.7 2.2 50.2 2.0 55.3 2.3
Swans 34.5 2.1 56.6 1.7 65.2 2.4
Horses 37.6 2.0 74.4 0.9 78.1 0.7

Table 1: Mean average precision for the
ETHZ and INRIA datasets. We compare
our combined representation against the
individual components as a baseline. The
combined contour and texture representa-
tion shows a significant increase in per-
formance.

Applelogos we see a significant gain of our combined representation. We further observe
that the Applelogos are the only category that OB outperforms GB, which could be due to its
simple shape. Figure 8 gives the average FPPI curves compared against a few comparable
voting-based methods. Table 2 summarizes a comparison at 0.4 FPPI against our baselines
and several comparable methods. In most of these cases our approach outperforms these.

One of the crucial points of this paper is that current approaches which are mainly based
on texture representation are insufficient for representing object contours. Similarly edge
representations such as KAS [11] are not capable of capturing the fine scale details of contour
curvature and junctions with varying degree. Our evaluation demonstrates that the proposed
representation is successful in modeling object appearance and also provides an accurate
description of the fine-scale, local characteristics of object contours. Thus, this representa-
tion is widely applicable in part-based object models [10, 25], which are one of the leading
paradigms for object detection.
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(f) Horses

Figure 7: Average precision-recall for the ETHZ and INRIA datasets. Red is oriented bars
only, green is geometric blur only, blue is the two together.

OB ± GB ± OB+GB ± [11] PAS[12] TPS[12] [18]∗ [20]
Apples 76.1 2.5 65.5 2.7 81.4 2.5 60.0 28.9 83.2 85.0 75.0
Bottles 83.2 2.2 89.3 2.1 93.4 2.8 92.9 56.4 81.6 67.0 89.3
Giraffes 27.0 2.3 68.4 2.1 70.0 1.8 51.1 34.1 44.5 55.0 62.0
Mugs 52.8 2.5 69.2 2.2 74.6 2.6 77.4 35.5 80.0 55.0 65.0
Swans 54.8 3.5 84.5 2.3 90.2 3.4 52.9 44.9 70.5 42.5 53.0
Horses 40.4 2.1 77.4 2.4 79.2 0.8 76.9 45.0 68.0 52.0 −

Table 2: Average detection rate at 0.4 false-positives per image on the ETHZ and IN-
RIA datasets. We compare against several voting-based reference methods. The results
for [11, 18, 20] are from voting only, no verification. Note that [18] is reported at 1.0 FPPI.
PAS[12] is voting only and TPS[12] is their full system. Our combined contour and texture
representation provides a clear gain and is competitive with state-of-the-art.

5 Discussion
For object detection to work, a robust and powerful representation is required. Objects are
characterized by their appearance, especially their texture, and by the shape of their contours.
We have presented an effective and computationally efficient representation of contours and
junctions that accurately localizes and describes the local shape of contours. Contour rep-
resentation and a semi-local appearance descriptor have been combined in a voting-based
object detection approach. In addition to detecting objects, we showed that our approach can
find the most relevant contours and junctions in each object hypothesis. Experiments have
confirmed that contours and appearance are complimentary. Consequently, their combina-
tion has significantly improved the performance of baseline voting methods.
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Figure 8: Average false-positives per image for ETHZ categories and INRIA horses. Red is
oriented bars only, green is geometric blur only, blue is the two together.
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