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Abstract

We present an approach for the automatic reconstruction
of neurons from 3D stacks of electron microscopy sections.
The core of our system is a set of possible assignments, each
of which proposes with some cost a link between neuron re-
gions in consecutive sections. These can model the con-
tinuation, branching, and end of neurons. The costs are
trainable on positive assignment samples. An optimal and
consistent set of assignments is found for the whole volume
at once by solving an integer linear program. This set of
assignments determines both the segmentation into neuron
regions and the correspondence between such regions in
neighboring slices. For each picked assignment, a confi-
dence value helps to prioritize decisions to be reviewed by
a human expert.

We evaluate the performance of our method on an an-
notated volume of neural tissue and compare to the current
state of the art [26]. Our method is superior in accuracy
and can be trained using a small number of samples. The
observed inference times are linear with about 2 millisec-
onds per neuron and section.

1. Introduction

Neuroscientists are currently imaging multi-terabyte vol-
umes of neural tissue for the purpose of reconstructing neu-
ronal circuitry with synaptic resolution [2, 5, 6, 8], but this
unfortunately requires an impractical amount of time to be
spent on manual labeling. This young field, often termed
“connectomics” [20], challenges the computer vision and
machine learning community to develop accurate and effi-
cient techniques for automatic neuronal reconstruction. The
accuracy requirement is extremely high: a fraction of a per-
cent of error results in unusable neuronal circuitry wiring
diagrams [7, 1 1].

In this paper we focus on the problem of segmenting
neural tissue in anisotropic volumes with high x- and y-
resolution but low z-resolution, as obtained by serial section
electron microscopy (EM) imaging procedures [8]. Due to
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Figure 1. Overview of our approach. For all slices in the volume
(a), different segmentation hypotheses are created (b). All possible
assignments between these hypotheses are enumerated (c) and, ac-
cording to assignment specific costs (obtained by a trainable clas-
sifier), a global optimum of both segmentations and assignments
is found (d).

this anisotropy, often also accompanied by registration er-
rors, we prefer to treat the image data as a collection of 2D
slices instead of a continuous 3D volume.

To begin, we generate different segmentation hypotheses
for each slice of the volume individually, i.e., without con-
sideration of spatial context in the z-direction (Fig. 1). This
is achieved by a sequence of parameterized graph-cut seg-
mentations (see Sec. 2). Then, all possible assignments of
these segmentation hypotheses, between each pair of con-
secutive slices, are enumerated and represented by binary
assignment variables. Each possible continuation, branch-
ing, and end of a neuron is explicitly represented by an
assignment variable of its own (see Sec. 3). To keep the
number of variables low we discard assignments between
candidates with an x-y-displacement that is above a cer-
tain threshold, assuming a coarse registration of the vol-
ume [24]. An assignment cost function that is pre-trained
on positive samples is giving the costs for selecting an as-
signment variable. The final segmentations of the slices and
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assignments between them are jointly found as the optimal
solution to an integer linear program (ILP).

Related Work Several authors have contributed to
the problem of neural reconstruction from electron mi-
croscopy (EM) data for isotropic volumes [1,9, 10, 12,21]
as well as for anisotropic volumes [14-16, 25-29]. Al-
though the majority of these publications focus on the
detection of neuron boundaries for direct reconstruc-
tion [1,9-11, 14-16, 25, 26, 28, 29], there have also been
successful efforts in the detection of cell organelles like
mitochondria [21], the increase of depth resolution in
anisotropic volumes [27], and the invention of meaningful
low-level feature detectors [26], all aimed to facilitate the
detection of neurons.

Most approaches for the processing of anisotropic vol-
umes are based on an oversegmentation that is carried out
for each slice individually and then merged within and be-
tween the slices [25, 26, 28, 29]. On the other hand, it
has also been shown that the direct segmentation of neuron
membranes is a possible approach: either by using a series
of neural networks [14] or by extension of the graph-cut
formulation with a “good-continuation” term that is also in-
corporating context from adjacent slices [16]. However, the
joint segmentation of several images is a promising tech-
nique to increase the overall accuracy [23]. Merging of
segments found between (and possibly within) slices is a
special case of this technique and a common problem for
neuron reconstruction that has mainly been solved approxi-
mately, for instance, by problem relaxations [28] or greedy
assignment strategies [15,29]. A noteworthy exception to
these solutions, which is also the closest one to our ap-
proach, solves the merging problem optimally [26]. As in
that work, we enumerate possibly contradictory segmenta-
tion hypotheses in individual slices, similar to the region se-
lection approach in [19]. The hypotheses in [26] are fused
in pairs between two slices, while our work also allows
split and merge assignments. A simple linear function of
a few weighted features of the involved image patches is
used in [26] to compute the cost of accepting a pair, while
we use a Random Forest classifier on many features. The
resulting optimization problem of which assignments to ac-
cept is solved efficiently by an ILP that ensures consistency
of the resulting segmentation. Our work goes beyond [26]
by handling branching of neurons and providing confidence
feedback. The approach in [26] is also restricted to a small
number of features for computing the costs of an assign-
ment: since there is no obvious way to learn the weight
of each feature, the difficulty of tuning the weights limits
the number of features. In contrast, we use Random For-
est classifiers, which are well known to be able to handle a
large number of features.

Contributions We provide a method for the reconstruc-
tion of branching neurons, based on assignments between

slices. The cost function for assignments is trainable on
a few samples. We give a confidence measure that can be
used for directing an expert’s attention during proof-reading
and semi-automated segmentation correction. Training and
inference are fast enough to respond to corrections inter-
actively. We implemented our approach as an open-source
Fiji' plug-in, which is available under http://ini.ch/
~funke/research/sipnet.

2. Segmentation Hypotheses

In this section we describe our method to extract seg-
mentation hypotheses from individual slices of the volume
using a sequence of graph-cuts. We also show how the num-
ber of considered segmentation hypotheses can be reduced
without altering the topological properties of the possible
results.

Practically, in order to identify neurons in slices of a vol-
ume, we face a binary segmentation problem: it suffices to
detect membrane pixels versus inner neuron pixels. Every
connected component labeled as neuron would be the cross-
section of one neuron. To the best of our knowledge, there
exists no reliable method to discriminate between neuron
and membrane pixels in a single slice. In situations with
high ambiguity, even human experts cannot unequivocally
draw boundaries without inspection of adjacent slices.

However, direct incorporation of spatial context in the
segmentation task is impractical. The presence of registra-
tion errors — even in the scale of the width of a membrane
— makes it very hard to model the influence of one pixel
to its partners in adjacent slices [16]. Therefore, we pro-
pose to extract a set of possible connected components that
might represent neuron sections. These connected compo-
nents, that we will call segmentation hypotheses in the fol-
lowing, are allowed to overlap and thereby contradict each
other. Thus, we increase the scale of ambiguity from pix-
els to larger regions. It remains to find consistent subsets of
segmentation hypotheses. In Sec. 3 we show how this can
be done with consideration of all slices at once.

2.1. Hypotheses Extraction

The segmentation hypotheses are extracted for each slice
of the volume independently by performing a series of
graph-cuts to optimize a parameterized energy term [3].
Given a field of per-pixel local features x, a binary segmen-
tation y is obtained by minimizing

E(y,x) =Y (D(xi,yi) + Avwi) + Y As(1—dy,—y,).
1€Q i,JEN
(1)

Here, 2 C R? is the image domain and D(z;,y;) =
—log p(y;|x;) is the log-likelihood of pixel i € €2 belonging

lFiji (Fiji Is Just Imagel), http://fiji.sc
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Figure 2. Segmentation results of nearby image regions for differ-
ent values of An. This parameter determines how many of the
pixels are being labeled as neuron (white). The desired segmenta-
tion result for each case is highlighted in green.

to membrane or neuron, as given by a pre-trained Random
Forest classifier [4]. The set N' C Q x  contains all pairs
of 8-connected neighboring pixels. The second term in the
exponent ensures smoothness of the segmentation.

The parameter Ay is a prior on the expected number of
pixels assigned to neuron and Ag controls the influence of
the smoothness term. Finding an optimal set of parameters
is a non-trivial task and one cannot expect a fixed set of pa-
rameters to perform well on all images [18]. We claim that
a fixed set of parameters cannot even be expected to per-
form well on all areas of one image. Therefore, we enumer-
ate several local segmentation hypotheses by variation of
An (Fig. 2). This can be done efficiently by several warm-
started graph-cuts [17], from which we obtain a series of
segmentations. Each segmentation consists of a set of con-
nected components C' C Q that are labelled as neuron.
Each of these components is considered as one segmenta-
tion hypothesis. As Ay decreases, these components can
grow and merge, thus establishing a tree-shaped subset hier-
archy, the so-called component tree [13] (Fig. 3). Let C* de-
note the set of all segmentation hypotheses of slice z. Any
consistent subset S* C C* of these hypotheses yields a valid
segmentation of this slice. A subset is consistent if none of
the containing components overlap, i.e., C' N C? = & for
all C*,C? € 8% with i # j.

2.2. Downsampling of Component Trees

To reduce the number of segmentation hypotheses, we
propose to discard segmentation hypotheses that are already
well represented by others and do not introduce a new inter-
pretation of the image. In particular, we are not interested
in only children of the component trees, i.e., components
that are the only child of their parent (Fig. 3). These seg-
mentation hypotheses are the only subset of their parent and
therefore carry the same information (there is a neuron) on
a smaller set of pixels. In other words, if there are different
conflicting segmentation hypotheses with the same topolog-
ical properties, we choose to consider the biggest one only.

The effect of this downsampling is that the average dis-

Figure 3. Visualisation of the segmentation hypotheses extraction.
For different values of the prior parameter Ay (shades of blue)
connected components of the segmentation are found (left side).
The subset relation of these connected components define the com-
ponent tree (right side). The candidate C° gets removed since it is
the only child of its parent.

tance between neighboring segmentation hypotheses is re-
duced — a fact that makes sense, considering that mem-
branes are fairly thin compared to the diameter of neurons.

3. Assignment Model

In this section we describe our model for possible as-
signments of the segmentation hypotheses across slices. We
introduce binary assignment variables and costs for select-
ing them. We show how we ensure the consistency of any
solution with linear constraints and how to find the optimal
solution with an ILP. In addition, we present our training
method for the assignment costs, as well as our confidence
measure that can be used to evaluate the solution.

3.1. Assignment Variables

For each possible assignment of a segmentation hypoth-
esis in one slice to a hypothesis in the previous or next slice,
we introduce one binary assignment variable. This variable
is set to 1 if the involved hypotheses and their mutual as-
signment are accepted.

Let m be the number of all possible assignments. A bi-
nary vector a € {0, 1}"™ of assignment variables is created
similarly to the method proposed in [22]. Each possible
continuation of a segmentation hypothesis C" in slice z to
C’ in slice z + 1 is represented by a variable a’~7. A split
of C* in slice z to C? and C* in slice z + 1 is represented
as a’77%_ Similarly, each possible merge is encoded as
a’J—k_ Appearances and disappearances of neurons are en-
coded as assignments to a special end node FE, i.e., for each
hypothesis C* we introduce two variables ¢’ and a®".
For the possible assignments, only components within a
threshold distance 0p to each other are considered. Thus,
the number of assignment variables is linear in the number
of segmentation hypotheses. See Fig. 4 for examples of as-
signments of a single segmentation hypothesis.

For each assignment variable we define costs represent-
ing the compatibility of the involved segmentation hypothe-
ses. For that, a vector ¢ € R™ is constructed. The costs for
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Figure 4. Examples of the four outgoing assignment categories for
a single segmentation hypothesis (orange): A continuation (red)
is modelled for each hypothesis in the next slice that is within a
threshold distance. Possible splits (green) and merges (blue) are
enumerated for neighboring hypotheses in the respective slices.
The possible sources or targets of splits and merges are segmenta-
tion hypotheses within a threshold distance. The disappearance of
a neuron is represented by a single assignment (black).

one-to-one assignments are modelled as:
A7 = Ac(CH,CY) + 05S(CY). 2)

Here, we write C'" as a shorthand for C* U C”. The term
Ac(C*,C) is the negative log-probability of a continua-
tion, as obtained by a Random Forest classifier (see Sec. 3.3
for details). The term S(C') gives the cost of assigning all
pixels of C' to neuron as given by Eq. 1, i.e.,

L(C) =Y (D(x;,0) = D(z;,1)) + Y As(1=8y,—y,)-

jeC J,kEN;
JEC, k¢gC

3)

In a similar way, we define the costs for splits:
¢TIk = Ap(C',C7,C*) +05S(CYF), (@)

where Ap(C*, CY, C*) is the negative log-probability of a
branching. The merge cases are defined analogously and the
appearance or disappearance of neurons cause the following
costs:

¢ = B = AR (CY) + 055(CY). (5)

The segmentation likelihood weight 65 is a parameter of the
model.

3.2. Consistency Constraints

A solution to both the segmentation of slices and the as-
signments between the segments can be found by finding
the subset of assignment variables with minimal costs: ev-
ery segmentation hypotheses that is involved in a selected
assignment is taken to be a valid segmentation of a neuron.

However, overlapping segmentation hypotheses are con-
tradictory and thus impose constraints on the assignment

(a) hypothesis consistency

(b) explanation consistency
Figure 5. Visualization of the two types of consistency constraints.
The hypothesis consistency (a) ensures that no pixel is assigned
to more than one segmentation hypothesis: For each path of the
component tree (blue), the sum of all incoming assignment vari-
ables (gray) has to be at most one. The explanation consistency
(b) ensures a continuous sequence of assignments: For each seg-
mentation hypothesis (orange), the sum of all incoming assign-
ment variables (from the previous image) has to be equal to the
sum of all outgoing assignment variables (to the next image). The
incoming or outgoing assignment variables for a component are all
assignment variables that have the component as target or source,
respectively.

variables that can be picked. In particular, we have to en-
sure that for every path P in every component tree (i.e.,
for every set of overlapping segmentation hypotheses) the
number of assignments that connect them in any direction
(to the previous or next slice) is at most 1. We call this the
hypotheses consistency constraint. Furthermore, we have
to ensure that a segmentation hypotheses that was picked
from an assignment to a previous slice will also be picked
by an assignment to the next slice. We call this the expla-
nation consistency constraint, since it ensures a continuous
sequence of assignments, one continuing where the previ-
ous one ended. See Fig. 5 for a visualisation of these con-
straints. Both types of constraints can be expressed by the
following linear (in)equalities:

Y a<i VPeP  (6)
i€P gca—t
da- ) =0 1<i<n ()
aca—i a’cai—

where P is the set of all paths in every component tree and
n the number of all segmentation hypotheses. The sets a=*
and a’~ denote all assignment variables that involve seg-
mentation hypotheses C* to the previous or next slice, re-
spectively.

The optimal solution can now be found by solving an
ILP that minimizes c"a subject to the linear constraints 6
and 7.

However, with this formulation, the optimal solution
would favour segmentation hypotheses that are high in the
component tree, since this would minimize the number of



assignments. Therefore, we scale the costs for each possi-
ble assignment by the sum of leaves that are under the in-
volved segmentation hypotheses. The intuitive meaning of
this strategy is the following: for an assignment involving a
high segmentation hypotheses to be favoured, its cost has to
be less than the average cost of the assignments involving
lower segmentation hypotheses.

3.3. Training

The training of our assignment model consists of learn-
ing a Random Forest classifier on possible assignments be-
tween regions. The idea to use a classifier to help merg-
ing regions is not entirely new [15,28]. The biggest differ-
ence here is that we use the same classifier for continuation,
branching, and end assignments. For that, we create a fea-
ture vector for each assignment variable. This vector has
the same components regardless of which assignment case
it refers to. For features that do not exist in all cases (for
example, there is no center distance measurable in end as-
signments) the respective components are set to a dummy
value.

To train the classifier, we need both positive and negative
samples of assignments. However, only positive samples
need to be provided by a user. Due to the hypotheses con-
sistency constraints on the assignment variables, every pos-
itive assignment has a number of conflicting assignments
that we take as negative samples.

The features we are using belong to two groups: geom-
etry features and texture features. For the geometry fea-
tures, we measure the distance between the centers of the
segmentation hypotheses, the symmetric set difference of
their pixels and the plain size of them. For the texture fea-
tures we perform a cross-correlation between image patches
surrounding the segmentation hypotheses in question and
use the position and value of the maximum in two differ-
ent scales. In addition, we use the difference of normalized
intensity histograms between the segmentation hypotheses
that are supposed to be assigned to each other. A complete
list of features with more details can be found in the supple-
mental material.

3.4. Confidence Measure

To provide a confidence measure, we exploit again the
hypotheses consistency constraints on the assignment vari-
ables: for each assignment variable o' that is part of the
solution, we determine the minimal cost & of any of its di-
rectly conflicting assignment variables:

@ = min(c*), ®)

where, ¢ denotes the set of costs of all assignment vari-
ables that are in direct conflict with a’. According to the
hypotheses consistency constraint, these are all assignments

that link to any segmentation hypothesis that shares a path
with the segmentation hypotheses that are involved in a’.
The confidence of an assignment is now given as

)

conf(a’) = <. ©)

(]

ol

4. Experiments

We evaluated the performance of our approach on an an-
notated sample of Drosophila larva neural tissue [6]. This
publicly available dataset consists of 30 serial sections, im-
aged with transmission electron microscopy at a resolution
of 4x4x50 nm/pixel. The dataset covers a 2x2x1.5 micron
cube of neural tissue and provides labels of cellular mem-
branes, cytoplasms and mitochondria of 170 neural pro-
cesses.

Hypotheses Generation We used the same segmenta-
tion hypotheses for all experiments. To that end, we took
100 equidistant samples of the neuron prior A\ in an inter-
val that ranged from obvious over- to undersegmentation.
The limits of this interval and the weight of the Potts term
in the segmentation energy (1) have been found by visual
inspection on the first slice of the training dataset using an
interactive graph-cut implementation.

After the downsampling of the component trees
(Sec. 2.2) we were left with 5800 segmentation hypothe-
ses, distributed in 3633 trees with a mean depth of
0.252 (+0.491).

Training Data We tested our approach by splitting the
dataset into two parts: the first 5 slices have been used
for the training, while the remaining 25 slices have been
used for evaluation. From the gold standard of the first 5
slices we extracted 510 positive assignment samples, for
which our assignment model found 10340 negative assign-
ment samples that have been made impossible (details on
the selection of negative training samples can be found in
Sec. 3.3). Fig. 6 shows qualitative results of our approach on
three subsequent slices of the evaluation dataset. In Fig. 7
we show examples of successfully found branchings.

Error Measure In order to evaluate the performance of
our approach, we use an error measure that reflects the num-
ber of steps a human expert would have to take at least to re-
store the gold standard from the result [12]. For that, we dis-
tinguish between errors that have been made between slices
(additional or missing assignments) and within slices (addi-
tional or missing segments). We will call these errors inter-
and intra-slice errors, respectively.

For the inter-slice errors, we say that two segments are
linked, whenever there was an assignment selected that in-
volves both of them. Hence, a selected continuation as-
signments introduces one link between two segments, a
branching assignment introduces two links between three
segments, and an end assignment has no effect. We count
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Figure 6. Segmentation result of three subsequent slices. Assignments between slices are represented by the use of the same color.

Figure 7. Examples of successfully found neuron branchings. In
(a), the central neuron (left) bisects into two parts (right) and is
correctly segmented (yellow color). In (b), two smaller processes
(left) merge into one neuron (right). Again, the segmentation is
correct (brown color).

every link that is in the gold standard but not in the result as
a false negative inter-slice (inter FN) error and every link in
the result that is not in the gold standard as a false positive
inter-slice (inter FP) error.

The intra-slice errors are being computed similarly: Ev-
ery segment of the gold standard that has no corresponding
segment in the result is a false negative intra-slice (intra FN)
error, and vice versa for the false positive intra-slice (intra
FP) error.

We normalized these errors by the number of segments
in the test dataset, i.e., by the sum of all neuron sections
over all slices.

Pipeline Parameters Given a trained assignment clas-
sifier, only two parameters of our pipeline are open: the
distance threshold € for the generation of the assignment
variables and the weight 65 for the influence of the segmen-
tation energy in the assignment costs. Errors for different
values of fp can be found in Fig. 8. Beyond a distance of
about 30 pixels there is no mentionable improvement on the
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Figure 8. Influence of the maximal assignment distance on the
errors of the result. After about 30 pixels there is no mentionable
improvement.

accuracy anymore. Changes due to perturbations of g were
very little. We found a value of 1.0 to work well.

Comparison We compared our method to the segmen-
tation fusion (SF) approach presented in [26], which was
shown to be superior to other existing methods. There,
the cost function for assignments is a linear function of
weighted features of the involved segmentation hypotheses
(x-y-displacement and cross-correlation). Since their ap-
proach does not provide a way to learn the feature weights
from a training set, we performed a simple grid-search to
pick weights that provided good results. However, what
constitutes a good result is an application dependent ques-
tion: a false positive might be harder to fix than a false neg-
ative. Therefore, instead of just taking the result with the
best F1-score (SF-1), we decided to take two more results
that reflect the range of the trade-off between false positives
and negatives: one that had the smallest intra FN error (SF-
2) and one that had the smallest inter FN error (SF-3). To
keep the comparison fair, we performed the grid-search on
the same five slices that we used for training and not on
the whole dataset. We also used the same segmentation hy-
potheses for both approaches to obtain an objective view
on the assignment model performances. The results on the
evaluation dataset can be seen in Fig. 9. In the same Figure
we also give a lower bound on the errors based on the ex-
tracted segmentation hypotheses, i.e., errors that stem from



0.6 U0 intra FP U0 inter FP

[ 0intra FN 0 Binter FN

0.4
| |
. DH DHD DHD lio uu_l

SF-1 SF-2 SF-3 ours  bound
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Figure 10. Influence of the number of training samples on the ac-
curacy. After about 300 training samples there is almost no im-
provement.

missing or wrong segmentation hypotheses that cannot be
compensated for by the assignment search.

4.1. Training

The training has been carried out with different numbers
of (positive) training samples and classifier parameters, i.e.,
the number of trees in the Random Forest and the number
of features per node in the trees. The results with respect
to the number of training samples can be seen in Fig. 10.
The performance converges after about 300 training sam-
ples. Regarding the training parameters, we found an op-
timum at 100 trees and 20 features per node, while further
increases did not have a substantial effect.

4.2. Confidence Measure

To show the usability of our proposed confidence mea-
sure, we sorted all selected assignment variables by their
confidence values and evaluated the errors that are con-
tributed by the upper k%, i.e., by the assignment variables
our model is most confident about. For that, we limited our
attention to the false positive errors (inter- and intra-slice),
since the false negative errors lose their meaning if we de-
liberately remove assignments from the solution. The errors
have additionally been normalized by the number of assign-
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Figure 11. Relative FP errors contributed by the upper k% of the
confidence sorted assignments. To account for the differences in
the solution sizes, the values have been normalized by the num-
ber of assignments in the respective portion. Note that the upper
10% of the confidence sorted assignments do not contain inter-
slice FPs.

ment variables in the respective fraction to compensate for
the decrease of false positive errors due to selecting less as-
signments.

The results can be seen in Fig. 11. The 20% most con-
fident assignment variables contribute only 0.00163 inter-
slice FPs per segment and 0.047 intra-slice FPs per segment.
In the top 10% there were no inter-slice FPs at all and only
0.015 intra-slice FPs per segment. We also found that the
assignment variables with the lowest confidence measure
contributed the most FPs.

4.3. Inference Time

We solved the ILP to find the best set of assignments us-
ing the Gurobi solver?, which is free for academic use. The
average inference time for the whole stack was 6.2 seconds
(£ 0.13), giving 2.02348 milliseconds (& 0.04242) per seg-
ment on a 12 core Intel Xeon CPU at 3.47GHz.

5. Discussion

We have shown that the learning of assignment costs be-
tween multiple segmentation hypotheses can effectively be
done by the use of Random Forests. Not only did this elim-
inate the need to grid-search feature weights, we also ob-
served higher accuracy of the resulting solution compared
to the current state of the art approach [26]. We further
improve on the state of art by detecting branches — a key
feature in the reconstruction of neurons.

Currently, the output of any neuron segmentation algo-
rithm must in practice be proof-read by human experts. The
confidence measure produced by our algorithm can be used
to prioritize areas for human review.

Our method is trainable on a few hundred positive as-
signment samples and the inference is fast, providing the
ability to retrain and resegment immediately in response to
interactive error correction.

2Gurobi Optimizer Version 4.6, www . gurobi.com
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