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Zusammenfassung

Mit der fortschreitenden technologischen Entwicklung bildgebender Verfahren mittels
magnetischer Kernspinresonanz (MR) gewinnen Aufnahmetechniken, welche Auf-
schluss über physiologische Prozesse geben, immer mehr an Bedeutung für die klini-
sche Anwendung. Beispielsweise können mittels der dynamischen kontrastverstärkten
MR Bildgebung räumlich aufgelöst Rückschlüsse über Perfusion und Permeabilität
des Gewebes gezogen werden oder mittels der MR spektroskopischen Bildgebung die
räumliche Verteilung gewisser Zellmetabolite studiert werden.

Diesen Techniken gemein ist die Gewinnung vektorwertiger Bilddaten, welche für eine
effiziente diagnostische Auswertung ungeeignet sind und zunächst algorithmisch auf-
bereitet werden müssen. Die möglichst völlig automatische Aufbereitung hat dabei
zum Ziel, den Informationsgehalt der hochdimensionalen vektorwertigen Ausgangs-
daten auf eine aussagekräftige und überschaubare Anzahl von Größen zu reduzieren
welche sodann gut visualisiert werden können. Hierbei können generell zwei Heran-
gehensweisen unterschieden werden, nämlich der datenorientierte Mustererkennungs-
ansatz und der modellorientierte Quantifizierungsansatz. Beide werden in der vorlie-
genden Arbeit behandelt und führen im Ergebnis zu Wahrscheinlichkeitskarten im
einen Fall und zu Parameterkarten im anderen Fall.

Üblicherweise beschränken sich bestehende Methoden der Einfachheit halber auf eine
voxelweise Auswertung. Der grundsätzlich neuartige Ansatz in der vorliegenden Ar-
beit behandelt dagegen die Einbeziehung räumlicher Bildinformation. Diesbezüglich
werden moderne statistische Methoden vorgeschlagen welche es ermöglichen, den
räumlichen Kontext in konsistenter Weise zu berücksichtigen. Zum Einsatz kom-
men hier insbesondere probabilistische graphische Modelle, welche sowohl eine in-
tuitive Modellierung erlauben als auch eine attraktive Auswahl effizienter Inferenz-
Algorithmen anbieten. Auf dem Gebiet des maschinellen Lernens und maschinellen
Sehens gewinnen diese Verfahren augenblicklich zunehmend an Bedeutung und sind
Gegenstand aktiver Forschung.

Die im Rahmen der vorliegenden Arbeit durchgeführten Experimente zeigen, dass
die Ausnutzung von räumlichem Kontext mittels graphischer Modelle zu deutlich
verbesserten Resultaten führt, sowohl für den Quantifizierungsansatz als auch den
Mustererkennungsansatz.





Abstract

With the advancing technological development of imaging techniques based on nu-
clear magnetic resonance (MR), modalities that carry information about physiolog-
ical processes gain ever more importance for clinical purposes. Dynamic contrast-
enhanced MR imaging, for example, provides spatially resolved insight into tissue
perfusion and permeability. The spatial distribution of certain cell metabolites can
be studied using MR spectroscopic imaging.

These techniques have in common that the acquired vector-valued image data is not
amenable to an efficient diagnostic evaluation and requires algorithmic preprocessing.
The objective of an ideally fully automatic preprocessing is to reduce the information
contained in the original high-dimensional vector-valued data to a meaningful and
concise set of values that can well be visualized. Two general approaches can be
distinguished, namely data oriented pattern recognition and model oriented quantifi-
cation approaches. Both are examined in the present work and result in so-called
probability maps and parameter maps, respectively.

For simplicity, existing approaches usually evaluate such data in a voxel-wise fashion.
Beyond that, the present work examines the usage of spatial image information. To
this end, modern statistical methods are proposed that consistently include spatial
context. In particular, the application of probabilistic graphical models is proposed,
which allow for intuitive modelling and also provide a attractive pool of inference
algorithms. Currently, these models increasingly gain importance in machine learning
as well as in computer vision.

The experiments conducted in the present thesis demonstrate that the exploitation
of spatial context by means of graphical models leads to significantly better results
for quantification as well as for pattern recognition approaches.
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Tübingen) who provided MRSI data that I could start working on.

I am deeply grateful to Anke Henning and Prof. Dr. Ulrike Dydak from the Swiss
Federal Institute of Technology (ETH, Zürich) for acquiring high resolution MRSI
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Chapter 1.

Introduction

1.1. Motivation

In 2003, Paul C. Lauterbur and Sir Peter Mansfield jointly received the “Nobel
Prize in Physiology or Medicine for their discoveries concerning magnetic resonance
imaging”. Their seminal work enabled modern magnetic resonance imaging (MRI)
as it is available in medical diagnostics today and initiated manifold research into an
exciting, useful and versatile imaging modality.

Magnetic resonance imaging has always been an interdisciplinary challenge [116]
and the success of clinical MR tomography has only been possible because of the
mutual exchange of ideas between physicists, engineers and physicians. Interdisci-
plinarity is still of crucial importance for the field and is reflected in the diversity
of researchers that meet at conferences like the annual meetings of the International
Society for Magnetic Resonance in Medicine (ISMRM, http://www.ismrm.org/) or
the European Society for Magnetic Resonance in Medicine and Biology (ESMRMB,
http://www.esmrmb.org/).

Measuring magnetic properties of atomic nuclei in vivo has several advantages over
other clinical imaging modalities, such as for example Computer Tomography (CT) or
Positron Emission Tomography (PET). First of all, MR does not pose any radiation
risk to the patient and images can be acquired completely non-invasively. It has
proved very useful for imaging soft tissue and using fast imaging techniques such as
Echo-Planar Imaging (EPI), anatomical cross sections of the human body can be
acquired in less than 100ms on modern clinical MR scanners. Last but not least,
magnetic resonance is extremely versatile and allows for a whole family of modalities
that record different anatomical and physiological properties.

Most often, MR is used to record resonance signals from the protons (1H) of water
molecules using a suitable sequence [115, 125]. Various magnetic properties of the
water protons can be recorded such as the spin-grid-relaxation time T1, the spin-spin-
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Chapter 1. Introduction

relaxation time T2 or simply the echo strength revealing proton density (PD) [135,
66]. Nowadays, these techniques are so well-understood that even whole-body scans
can be performed in a few minutes on commercially available MR scanners.

Beyond these standard MR sequences other, more advanced MR modalities are used
for research in an in vivo situation. In functional MRI (fMRI), for example, the
BOLD (blood-oxygenation-level dependent) effect is used to visualize brain activ-
ity. The diffusivity of tissue can be visualized with diffusion tensor imaging (DTI)
which provides the basis for tractography. Although very interesting for research,
these modalities are meaningful mostly in the brain and of limited utility for clinical
purposes.

Two MR modalities that are highly relevant for the diagnosis of pathophysiologies,
in particular tumors, are dynamic contrast-enhanced MR imaging (DCE-MRI) and
magnetic resonance spectroscopic imaging (MRSI).

Dynamic Contrast-Enhanced MR Imaging (DCE-MRI) is used to track the
diffusion of a paramagnetic contrast medium (CM) such as Gd-DTPA and study
tissue perfusion and vascular permeability in vivo [135, 41]. During the intravenous
injection of the CM, a sequence of several T1-weighted MR image volumes is recorded
at intervals of a few seconds (Fig. 1.1). Hence, a T1 signal-time curve is obtained
for every voxel (Fig. 1.2). A diagnostic evaluation of this signal-time curve is usually
based on a pharmacokinetic model whose parameters characterize the uptake and the
washout of the CM from the underlying tissue (e.g . [41]). Since these parameters
change characteristically in pathologic tissue, DCE-MRI can be used to detect and
localize tumors. Its application comprises but is not limited to the diagnosis of
breast [40], bone-marrow [86] and prostate cancer [223, 178, 104].

Magnetic Resonance Spectroscopic Imaging (MRSI) is used to obtain a spa-
tially resolved information on the concentration of certain biomolecules [22, 170]
(cf. Fig. 1.3). It can be acquired completely noninvasively using standard clinical
MR scanners. In 1H NMR spectroscopic imaging, resonance signals from the water
are suppressed and one is interested in the resonance signals from protons that are
bound to cell metabolites instead. These can be detected by a characteristical shift
of their Larmor frequency. Since the chemical environment of molecules can damp
the magnetic field, protons bound to different metabolites resonate at slightly differ-
ent frequencies which is called chemical shift (cf. 1.4). However, the concentration
of metabolites is much smaller than that of water which results in metabolite reso-
nances that are orders of magnitudes (∼ 105) smaller than for water. Thus, in vivo
1H NMR spectroscopic imaging yields spectral images with information about the
local cell metabolism but usually with very poor signal-to-noise ratio (SNR). This
poses problems to any signal processing procedure. Additional problems can arise

18
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t

Figure 1.1.: In Dynamic Contrast-Enhanced MR imaging (DCE-MRI) a sequence
of T1-weighted MR images is recorded after the injection of a paramagnetic contrast
medium. Its abundance can be monitored as intensity time-curves in every voxel which

allows to draw conclusions about tissue perfusion and permeability.

Figure 1.2.: Signal-time curves from adjacent voxels of a DCE-MR image of the
prostate. Without postprocessing of the vector-valued DCE-MR image its diagnostic
content could only be assessed by an experienced radiologist and would require inspect-
ing each voxel individually. Certainly this way of extracting diagnostic information lacks

objectivity.
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Chapter 1. Introduction

(a) T2-weighted MR image. (b) 1H-MRS image.

Figure 1.3.: T2-weighted MR and 1H-MRSI image of the same slice of a prostate
tumor. The 1H-MRS image carries metabolic information which, however, can only be
accessed after appropriate postprocessing of the spectral image. One such approach is

shown in Figs. 1.5 and 1.6.
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(a) Spectrum from healthy voxel
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(b) Spectrum from tumor voxel

Figure 1.4.: In 1H-MRSI each voxel contains a spectral signal that reveals metabolic
information. The shown examples are typical prostate spectra and show the three res-
onances of choline (Cho), creatine (Cr) and citrate (Ci). Tumors can be identified by

high choline and reduced citrate concentrations.

from artifacts such as susceptibility artifacts, foldover artifacts, overlapping peaks or
broad baselines stemming from macromolecules [106].
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1.2. Scope

Figure 1.5.: Patient from Fig. 1.3 evaluated with a pattern recognition method. Red
voxels indicate high probability for tumor whereas green voxels indicate low probability.
Instead of evaluating every voxel individually, probability maps can be generated fully

automatically with pattern recognition methods proposed in the present thesis.

On an abstract level, both modalities thus produce vector-valued MR image data
that captures information about physiological processes. Currently, both are actively
researched for their applicability and clinical utility.

In contrast to common MRI modalities which can be depicted as gray valued images,
both DCE-MRI and MRSI produce data that require automatic postprocessing in
order to reduce their dimensionality for display. If no such dimensionality reduction
was performed, the signal in every voxel would have to be analyzed individually
which, at high spatial resolutions, quickly becomes impractical. Clearly there is a
need for automatic and reliable evaluation strategies for vector-valued MR image
data such as, for example, DCE-MRI and MRSI.

1.2. Scope

Depending on what kind of information is to be gained from the data, two principally
different evaluation strategies can be pursued which are termed quantification and
pattern recognition in the present thesis:

Quantification denotes the process of deriving physically meaningful parameter
estimates from the given data. It usually consists of constructing a parametric model
for the vector-valued signal and subsequently determining parameters in every voxel
that best explain the observed data. The spatially resolved data is then represented
by parameter maps (or images) that can be depicted and interpreted by the physician.

Pattern Recognition (PR) attempts to tackle the (diagnostic) decision problem
directly. Based on a training data set, created by an expert, PR reduces the amount
of physical modelling and concentrates on the available data instead. It does this
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Chapter 1. Introduction

Figure 1.6.: 1H-MRSI data from a patient with brain tumor evaluated with pattern
recognition methods. After the automatic processing of the whole MRSI data volume
the physician can quickly browse through all slices and concentrate on suspicious regions

only (image courtesy of Björn Menze [16]).

by mimicking or imitating the human expert (a physician) in deriving diagnostic
information.

Both approaches, quantification and pattern recognition are usually applied in a
voxel-wise fashion, thus neglecting the spatial nature of the MR data. In the present
thesis, methods are proposed and investigated that incorporate information from a
local neighborhood in processing the data in each voxel. Thus, the focus is shifted
from evaluating a collection of voxels to evaluating image data. Based on the theory
of graphical models the proposed methods pay special attention to the application
of global and sound probabilistic models. It is shown that both quantification and
pattern recognition can significantly gain from utilizing spatial context.

22



1.3. Outline

1.3. Outline

All chapters of the present thesis are largely self-contained in that they may be read
and understood individually though the thesis is organized around the described
distinction between quantification and pattern recognition. Theoretical background
on methods and mathematical tools is collected in the appendices.

Chapter 2 sets off with a comparison of quantification based and pattern recognition
approaches applied to the estimation of tumor probability from prostate MRSI based
on the independent evaluation of single voxels. Parts of chapter 2 have been published
in [4] and [9].

The following two chapters describe ways to employ spatial context for improving
quantification and pattern recognition, respectively. In chapter 3, the application
of a generalized Gaussian Markov random field (GGMRF) is proposed to introduce
spatial prior knowledge in the fitting of nonlinear model functions. An efficient
blocked version of the iterated conditional modes algorithm is proposed for tackling
the resulting high-dimensional but sparse optimization problem. Parts of chapter 3
are found in [10, 2] and [1].

In chapter 4, approaches for pattern recognition using spatial context are proposed.
For this purpose the sought label map is represented by a discrete-valued random
field and generative as well as discriminative probabilistic graphical models for si-
multaneous segmentation and classification are derived. A conditional random field
(CRF) with Tikhonov-like parameter prior is shown to provide a sound and inter-
pretable approach for spectral data. Results on simulated MRSI data show that both
accuracy and the area under the receiver operator characteristic can be significantly
improved over the single voxel approach, in particular with increasing signal noise.
Thus, using spatial prior knowledge in form of the proposed CRF will allow to record
MRSI at even higher spatial resolutions. Parts of chapter 4 are found in [3].

The thesis concludes in chapter 5 with a short summary of the most important
results.
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Chapter 2.

Estimating Tumor Probability From
Magnetic Resonance Spectra

2.1. Introduction

Clinical studies have shown significant diagnostic value of 1H magnetic reso-
nance spectroscopic imaging (MRSI) for the detection of tumorous tissue in the
prostate [173, 51, 221, 175, 190, 149]. Despite the promising results of these and other
studies, the integration of MRSI in the clinical routine remains difficult. Among the
reasons are

• Technical Problems. The acquisition of high quality MRSI data in vivo is not an
easy task and still requires a lot of experience. In general, the acquired signals
have a very low signal-to-noise ratio and frequently the signal is distorted in a
way that completely obscures the metabolic information of interest (e.g. peak
broadening, baselines from residual water and lipid resonances).

• Signal Processing. Inaccurately quantified metabolite ratios resulting from
noisy or distorted signals lead to questionable results in the statistical eval-
uation. A fully automatic evaluation, based on either quantified signals or on
spectral patterns, cannot be trusted if information is provided without a clue
on its reliability.

• Medical Interpretation. It is not exactly clear according to which rule the
metabolic information should be evaluated. A lot of knowledge and training
is required in order to correctly interpret the spectra. Even then, the result is
not objective and might differ from person to person.
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• Efficiency. The manual evaluation and visual classification of multiple single
spectra in MRSI data sets is very time-consuming, especially with increasing
spatial resolutions. In the clinical routine, MRSI also competes with other
imaging modalities. If the evaluation is too time-consuming and the risk of
gaining only little diagnostic information is high, other modalities might be-
come more attractive. Certainly there is a non-trivial cost-benefit tradeoff to
consider.

Two basic approaches to the evaluation of MRSI can be distinguished: the quan-
tification based approach and the pattern recognition (PR) approach. Quantification
aims at estimating relative metabolite concentrations as accurately as possible. For
that purpose, the most likely parameter estimate for a given signal model is usually
determined with a nonlinear least squares (NLS) approach. However, quantification
may fail for various reasons. In particular, in the presence of artifacts and severe
noise the NLS objective can have many local optima and the result becomes very
sensitive to the choice of initial values. Prior knowledge about the expected signal
shape can help to alleviate these problems [204], but it also leads to an estimation
bias and can be harmful in unanticipated cases where the employed prior knowledge
is inadequate. A subsequent statistical analysis which gains diagnostic information
from the spectral data relies on these parameter estimates and therefore inherits all
problems associated with the quantification.

Pattern recognition approaches do not require an explicit quantification step. Al-
though the same methods and classifiers (e.g . logistic regression [85], artificial neural
networks [85, 67], support vector machines (SVM) [179], etc.) can be used for both,
quantified signals and spectral patterns, only methods applied to the latter will be
referred to as “pattern recognition” (PR) approaches in accordance with, for exam-
ple, [84]. The PR approach is characterized by minimal preprocessing, thus avoiding
errors introduced by feature calculation steps. It is left to the classifier to construct
features and extract the relevant information to distinguish random effects from sig-
nificant changes in the spectral pattern. Since it is not exact quantification that is
the main goal in clinical applications but accurate diagnostic information, it is sug-
gested to address the diagnostic problem directly without prior quantification (cf.
Fig. 2.1).

In the following, related work is briefly reviewed in order to emphasize common
ideas and highlight differences with the proposed approach. Recently, encouraging
results have been reported [193, 61, 123, 62, 184, 124] from studies on the automated
classification of brain tumor spectra in the context of the INTERPRET project
(http://carbon.uab.es/INTERPRET/). Tate et al . [193] show that the influence
of acquisition parameters (manufacturer, sequence, TE, TR) on the spectral pat-
tern is small enough to allow for stable classification results across multiple centers.
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Figure 2.1.: Two approaches to the diagnostic evaluation of NMR spectroscopic data.
After quantification of the signal, concentration ratios are used to answer a diagnostic
question. In contrast, pattern recognition approaches address the diagnostic question

directly based on the spectral pattern.

In [61] and [123], Devos and Lukas et al . examine and compare different preprocess-
ing strategies and classifiers for long and short echo time brain spectra respectively.
They show that the best results are obtained with L2-normalized magnitude spectra,
omitting for example baseline and phase corrections. Although a nonlinear classifier
has been employed, no improvement over linear classifiers could be observed in both
studies, which the authors attribute to the limited amount of available data.

Laudadio et al . [113] propose a PR approach using magnitude spectra that incor-
porates spatial context. It is applied to simulated as well as in vivo prostate MRSI
data and focuses on evaluating the benefit of incorporating spatial information.

In [7], Menze et al . examine classifiers for the discrimination of recurrent tumor and
brain lesions after radiotherapy based on single voxel MRS. An exhaustive combi-
nation of feature extraction methods and classifiers is benchmarked according to
several error measures. Regularized linear classifiers with preceding dimensionality
reduction (binning) are found to perform best on the given data set.

A similar comparative study has not been performed on prostate MRSI data yet. In
the present chapter an extensive collection of linear subspace methods and a repre-
sentative set of state-of-the-art nonlinear classifiers are evaluated on prostate data.
For the first time also the influence of different quantification algorithms on the clas-
sification results is examined. Furthermore, experiments are conducted comparing
the use of magnitude and real spectra. Since it is common practice in prostate MRSI
to analyze the acquired data based on quantification [173, 51, 221, 175, 190, 149], the
comparison of quantification based approaches with PR approaches is emphasized.
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2.2. Methods

Only approaches that can be used for a fully automated analysis of MRSI data are
considered in this study because extensive user interaction is not acceptable in clinical
routine use. An emphasis is put on methods that can provide tumor probability
estimates, a much richer description of classification results than hard class labels.
Finally, all selected methods have either been proposed for NMR spectroscopic data
before or are closely related to such methods.

The section starts with a short description of the employed data set. Subsequently,
the used feature extraction and classification methods are concisely summarized with
ample references to the literature. The last subsection is devoted to the error measure
used to compare the different approaches.

2.2.1. Data

1H-NMR spectroscopic image volumes from an ongoing prostate MRSI study have
been collected at the German Cancer Research Center (dkfz, Heidelberg). The data
was acquired on a clinical 1.5T scanner (Magnetom Symphony; Siemens Medical So-
lutions, Erlangen, Germany) with a disposable endorectal coil (MRInnervu; Medrad
Inc., Indianola, PA, USA) and the protocol described in [174, 173]. 512 datapoints
with a bandwidth of 1000-1250 Hz were acquired (TE/TR=120/650 ms). The field
of view (FOV) and the volume of interest (VOI; selected with PRESS pulses) were
adapted to the size of the individual prostates. Typical FOVs were around 60-66
× 78-84 × 66-78 mm. An elliptical k-space acquisition scheme and apodization
with a Hanning filter was employed [174]. The total acquisition time was limited to
10 minutes and the spectral data was interpolated to yield a volume of 163 voxels.
Along with the MRSI data, T2-weighted axial MR images (turbo-spin echo, TE=129,
TR=4000-4800 ms, FOV= 140 × 140 mm, matrix size 512 × 512, 20-25 slices, slice
thickness = 4 mm) were acquired. Two exemplary spectra are shown in Fig. 2.2.

For 12 of the 36 recorded patients, poor shimming, ineffective fat suppression or
problems with the endorectal coil resulted in corrupted MRSI data. These patients
have been excluded from the data set. For several patients, results from a histologic
step-section examination were available. These could be used as “gold standard” for
a qualitative evaluation. The training set was created using a semimanual analysis of
the spectra according to standard decision rules based on the metabolite resonances
of Cho, Cr and Ci [149, 190, 220] . Altogether, 76 slices with 256 voxels each have
been labeled with respect to their spectral pattern class (healthy, undecided, tumor)
and the signal quality (not evaluable, poor, good). In judging the signal quality both,
low signal-to-noise ratios and artifacts (nuisance resonances, heavy baselines) have
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Figure 2.2.: Two example spectra (left: healthy, right: tumor) after HSVD water/lipid
removal and zerofilling to 1024 datapoints. The top row shows manually phased real
absorption spectra whereas the bottom row shows the corresponding magnitude spectra.
A slight increase in line width can be observed when switching from real to magnitude

spectra.

Table 2.1.: Distribution of labels in the prostate data set (76 slices from 24 patients).
quality \ class healthy undecided tumor all
not evaluable – – – 15268
poor 721 437 284 1442
good 1665 629 452 2746
all 2386 1066 736 19456

been considered. An overview of the collected data is given in Tab. 2.1. Only spectra
that are evaluable (signal quality “poor” and “good”) have been used in this study.
The large number of “not evaluable” voxels is due to outer volume suppression and
the limiting coil sensitivity profile in prostate MRSI. Only about one fourth of the
voxels in the FOV actually lie within the prostate.

2.2.2. Preprocessing and Feature Extraction

Both quantification and PR profit from the prior removal of nuisance peaks and
baselines in the spectra. Therefore, prior to further processing, the residual water
and lipid resonances were removed by time-domain selective HSVD filtering (cf. ap-
pendix A), i.e. by removing all signal components with poles outside the interesting
frequency range of 2.4 to 3.6 ppm.
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Table 2.2.: FID components used for quantifying prostate MRSI. The parameters have
been initialized with the given value and constrained to the range given in brackets.

Metabolite Model Frequency [ppm] Line Width [Hz]
Choline Lorentzian 3.22 [±.03] 6.25 [0, 31.25]
Creatine Lorentzian 3.04 [±.03] 6.25 [0, 31.25]
Citrate-1 Lorentzian 2.65 [±.03] 6.25 [0, 31.25]
Citrate-2 Lorentzian 2.60 [±.03] 6.25 [0, 31.25]

Quantification. Three different methods have been used for the quantification:
QUEST [160] and AMARES [204] from the jMRUI tool [139] and a custom im-
plementation of a constrained VARPRO approach which used an interior trust re-
gion algorithm for optimization [52] (cf. appendix A). Quantification was performed
with four Lorentzian components (cf. Tab. 2.2). Besides small frequency shifts of
±.03 ppm for the individual components, a common shift of up to ±.625 ppm was
allowed for in the VARPRO approach. Furthermore, the zero-order phases of all
components have been tied. Similar constraints have been used for AMARES. Since
AMARES does not support constraints on the overall frequency shift, the individual
components have been constrained to ±.625 ppm. In addition, the amplitudes of the
two citrate peaks have been tied. For QUEST, three metabolite templates have been
constructed by simulating noise-free Lorentzian lines according to Tab. 2.2.

Spectral Patterns. For the PR approach, zerofilling yielded an interpolated spec-
trum at 1024 frequencies. Automatic zero-order phase correction was performed
based on the first recorded data point. From both magnitude and real spectra, 40
values at equidistant frequencies between 3.34 ppm and 2.36 ppm have been calcu-
lated by linear interpolation to account for differences in the imaging frequency and
the bandwidth. Finally the spectral patterns have been L1-normalized, i.e. each
channel was divided by the sum of the absolute values over all channels. Fig. 2.3
shows robust statistics of the extracted spectral magnitude patterns as obtained from
the evaluable spectra in the prostate data set. The general tumor pattern of elevated
Cho + Cr peak (channels 8/14) versus a reduced Ci peak (channel 31) is clearly
recognizable.

Different subspace methods have been used for dimensionality reduction of the spec-
tral patterns. They are particularly appropriate for prostate MRSI since, ideally,
only three metabolites contribute to the spectral shape. In particular, four subspace
methods have been considered: principal components analysis (PCA), partial least
squares (PLS), independent component analysis (ICA) and nonnegative matrix fac-
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Figure 2.3.: Spectral patterns in the prostate data (3.34-2.36 ppm). From left to
right typical patterns of healthy, undecided and tumor tissue can be recognized with
their characteristic choline (channel 8), creatine (channel 14) and citrate (channel 31)
ratios. In the spirit of a box-and-whiskers plot [129], the median (red), the hinges (green)

and extreme points (circles) are shown for each channel.

torization (NMF) which are briefly described in the following (more details are found
in appendix B).

• PCA seeks K uncorrelated latent variables zk(x) = αT
k x (factors, score vari-

ables) that capture all relevant information of the original predictors x. The
loadings αk are obtained as the directions of maximum variance. PCA is
described, for example, in [85] and has successfully been used for MRS in
[61, 123, 184, 7].

• PLS also seeks uncorrelated factors but additionally considers the given clas-
sification task. The latent variables are determined by maximizing both the
variance and the correlation with the class label [85]. The determined subspace
can thus be expected to better capture the information relevant for classifica-
tion. PLS has originally been proposed in chemometrics [214] and is therefore
designed for spectral data. Its good performance in clinical MRSI has been
demonstrated in [7].

• ICA is a subspace method that has been used for MR spectra for example
in [184]. As opposed to PLS and PCA, ICA not only requires uncorrelated
but statistically independent components. After centering, prewhitening and
dimensionality reduction, ICA reduces to a search over rotations that minimize
the mutual information between the components or equivalently maximize the
negentropy [85, p.498]. In this study, the FastICA algorithm has been used
with the logcosh approximation to negentropy [92].

• NMF has also recently been proposed for the extraction of spectral compo-
nents [168]. It enforces nonnegative loadings and scores which is a reasonable
constraint for magnitude spectra. Here a robust version of the alternating
nonnegative least squares algorithm has been used.
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An important advantage of linear subspace methods is their amenability to interpre-
tation. The weighting of the spectral channels expressed in the constructed compo-
nents or loadings can be visualized and helps to understand the decision process of
the trained classifier.

2.2.3. Classification

Linear classifiers model the decision boundary as a hyperplane in the space of
the explanatory variables. Several studies on MRS classification have applied linear
discriminant analysis (LDA) [61, 123, 193] which models the feature distributions as
Gaussians with common covariance matrix. Instead, logistic regression (LR) which
can be derived from the same probabilistic model by using conditional likelihood [85,
pp.103ff] has been used. LR is designed for discriminating classes instead of modeling
feature distributions which is appropriate for classification tasks [85, p.105]. It easily
generalizes to the multi-class problem without requiring additional tools such as, for
example, error-correcting output codes [65].

Furthermore, two linear classifiers which have explicitly been designed for spectral
data were considered. Generalized PLS (GPLS) can be used to perform LR and PLS
in one step [127]. P-spline signal regression (PSR) exploits the prior knowledge that
neighboring spectral channels are correlated by modeling the coefficient profile as a
cubic spline function [128].

Nonlinear classifiers are more powerful than linear classifiers in that nonlinear
decision boundaries can be constructed. However, this also leads to “black-box”
methods which, in general, are hardly interpretable. Here, three nonlinear classifiers
are considered: random forests (RF) [39], an ensemble method, and support vector
machines (SVM) and Gaussian processes (GP), two kernel methods [179].

In short, the RF classifier learns a collection of a few hundred slightly different
decision trees [39]. The diversity of the trees is encouraged by using bootstraps of
the given sample and by randomly selecting a subset of feature variables considered
in each node when growing the decision trees. A new example is classified according
to the majority vote of the trees in the forest. Thus, the RF classifier employs ideas
common with bagging and boosting [85].

Kernel methods perform an implicit mapping to a high-dimensional feature space.
The constructed linear decision boundary (a hyperplane) in this high-dimensional
feature space corresponds to a nonlinear decision boundary in the original feature
space. By using a positive definite kernel instead of the usual dot-product, most
linear classifiers can be “kernelized” to yield nonlinear classifiers. In this study

32



2.3. Results

two kernel methods have been used, support vector machines (SVM) and Gaussian
processes (GP) [179]. The least-squares SVM used for MRS classification for example
in [61, 123] can be viewed as a kernelized ridge regression and, except for an additional
bias term, is identical to the GP method used in this study [74].

2.2.4. Error Measure

The area under curve (AUC) of the receiver operator characteristic was used to
measure classification performance. It is determined as the area under the graph
obtained by plotting sensitivity against 1− specificity. Since it does not depend
on the chosen threshold that determines the tradeoff between the true positive and
true negative rates, it is independent of class priors and misclassification costs. It
is therefore an appropriate performance measure for comparing binary classifiers.
The AUC attains its maximum value of 1 for perfect separation, whereas it is .5 for
random predictions.

Cross-validation (CV) has been used to obtain reliable estimates for the AUCs. In
using CV, it should be considered that spectra obtained from the same patient are
certainly correlated, violating the i.i.d. assumption in CV. Therefore a “leave-one-
patient-out” scheme which determines the performance measure (AUC) for every
patient with the classifier trained on all other patients was employed.

2.3. Results

All reasonable combinations of feature extraction methods and classifiers have been
evaluated. The tested combinations are listed in Fig. 2.4 where the methods have
been abbreviated as described in the previous section. The employed box-and-
whiskers plots [129] are robust summaries of the 24 AUC values obtained from leave-
one-patient-out cross-validation. The thick line within the box marks the median
value and the box itself is bounded by the two hinges which are versions of the first
and third quartiles. The whiskers extend to the most extreme data points which are
no more than 1.5 times the interquartile range from the box.

2.3.1. Linear PR methods vs. quantification.

Fig. 2.4a compares quantification approaches based on VARPRO (v), AMARES (a),
QUEST (q) and two PR approaches. In addition to various classifiers, results from
the conventional metabolite ratio rule (Cho+Cr)/Ci (and Ci/(Cho+Cr+Ci) in the
case of VARPRO) are provided. Since, given a particular quantification algorithm, all
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classifiers performed similarly, not all results are depicted for AMARES and QUEST.
It should be noted that only spectra for which at least one of the peaks was found
(ak > 0) have been used in the evaluation of AMARES and QUEST. For AMARES
this was about 74% and for QUEST 97% of the data set. The performance of the two
PR approaches PCA/LR and PLS/LR (PLS and PCA with logistic regression) based
on magnitude (m) spectra is comparable with that of QUEST-based quantification
approaches.

2.3.2. Linear vs. nonlinear PR methods.

Fig. 2.4b compares linear and nonlinear PR approaches based on magnitude spec-
tra. For comparison, the first compartment repeats the results for QUEST. The
second compartment summarizes linear and the third compartment nonlinear PR
approaches.

LR (m) shows results with (unregularized) logistic regression based on all 40 spectral
channels. Then, results for the five subspace methods PCA, ICA, NMF, PLS and
GPLS are given. In the conducted experiments the four most important loadings have
been used which, in the case of PCA and ICA, covered about 80% of the variance
and seemed sufficient according to a scree plot (not shown). For PSR, a generalized
linear model (GLM) with logistic link function and binomial posterior has been used,
the same GLM which yields LR. The SVM with linear kernel (SVM-lin) is listed as
a linear method since the decision boundary remains a hyperplane in the original
feature space.

Finally, results for the nonlinear PR methods are provided. The random forest (RF)
classifier has been trained with 500 trees, nodesize 1 and a subset of 13 considered
variables in each split. For the SVM as well as for the GP method, the width of the
employed radial basis function (RBF) kernel has been estimated from a fraction of
the respective training data set (procedure sigest, cf. [102]).

2.3.3. Real vs. magnitude spectra.

In Fig. 2.4c, PR methods using magnitude and real spectra are compared. First,
results for the subspace methods PCA, ICA and PLS are provided (NMF does not
make sense for real spectra), followed by PSR and the linear SVM. The corresponding
results for magnitude spectra are repeated for comparison.

The last two compartments show results obtained with nonlinear classifiers. Based
on real spectra, results for the SVM and GP classifiers with RBF kernel and the
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Figure 2.4.: Comparison of various approaches: (v)-VARPRO, (a)-AMARES, (q)-
QUEST quantification based approaches versus PR approaches based on (m)agnitude
and (r)eal spectra. The box-and-whiskers plots show the median, the hinges and the ex-
treme points of the area under curve (AUC) values of the receiver operator characteristic
obtained from leave-one-patient-out cross-validation. Linear PR approaches combining
a subspace method X with logistic regression (X/LR) easily achieve the same perfor-
mance as the best quantification approaches (i.e. QUEST). Even slightly better results
are obtained with nonlinear PR approaches (RF, SVM, GP) applied to raw magnitude
spectra (m). Details of the different methods are described in the text. Note that the

individual plot scales differ.
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Table 2.3.: Cross-validation results for a selection of the tested methods. The given
test error values are one minus the AUC of the receiver operator characteristic when
training is performed on all but the tested patient, i.e. better performance is indicated

by smaller values.
Pattern Recognition Quantification

patient SVM-rbf (m) GP-rbf (m) RF (m) PLS/LR (m) SVM-rbf (q) (Cho+Cr)/Ci (q)
1 5.00e-04 2.00e-04 2.00e-04 6.00e-04 2.70e-03 9.60e-03
2 0 0 0 0 0 0
3 0 0 0 2.49e-02 0 0
4 0 0 0 0 0 1.50e-03
5 0 0 0 0 1.00e-04 1.30e-03
6 0 0 0 0 0 0
7 1.90e-03 1.00e-03 2.00e-03 1.00e-02 6.00e-03 4.90e-03
8 1.70e-03 1.70e-03 0 1.70e-03 7.10e-03 1.78e-02
9 0 0 0 0 0 0
10 0 0 0 2.00e-04 0 2.60e-03
11 0 0 8.00e-04 2.30e-03 3.00e-04 1.40e-03
12 0 0 0 0 0 0
13 0 0 0 0 0 0
14 0 0 0 3.20e-03 0 0
15 0 1.90e-03 5.00e-04 2.00e-04 3.31e-02 3.56e-02
16 0 0 1.44e-02 8.85e-02 2.87e-02 4.07e-02
17 3.46e-02 5.63e-02 6.49e-02 6.49e-02 0 0
18 0 0 0 0 0 0
19 0 0 0 3.90e-03 3.90e-03 6.00e-03
20 0 0 0 0 0 0
21 0 0 0 0 0 0
22 0 3.00e-04 4.30e-03 4.27e-02 0 2.00e-03
23 0 0 0 0 2.70e-03 0
24 0 0 0 0 0 8.30e-03
mean 1.60e-03 2.60e-03 3.60e-03 1.01e-02 3.50e-03 5.50e-03

RF classifier are provided. Representative for the nonlinear classifiers applied to
magnitude spectra, RF (m) is repeated.

2.3.4. Detailed comparison.

Detailed cross-validation results for six of the tested methods are provided in Tab. 2.3.
For each of the 24 patients one minus the AUC of the respective classifier is given
when trained on all other patients. In the first four columns, results for three non-
linear classifiers (SVM, GP and RF) and LR with PLS-subspace based on magni-
tude (m) spectra are listed. Then, two quantification approaches based on QUEST (q)
follow. Since no training is required for the ratio rule, (Cho+Cr)/Ci (q) just reflects
the AUC results when broken down to individual patients. The last row provides
mean values for the respective methods.

Although the performance differences between the classifiers in Tab. 2.3 seem to be
small, statistical significance of some differences can be established using a Wilcoxon
signed rank test. Concerning the question whether nonlinear classifiers can im-
prove results over linear methods, it is observed that based on magnitude spec-
tra, SVM-rbf (m), GP-rbf (m) and RF (m) significantly outperform PLS/LR (m)
(p = .0002/.0012/.0006). Also, based on QUEST the SVM-rbf (q) performs sig-
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Figure 2.5.: First row: first four PLS loadings (the dashed lines sketch a prototypical
spectrum with the three relevant peaks of Cho, Cr and Ci). Last two rows: median
(red), hinges (green) and extreme points (circles) of the 5% of the training sample which

score highest/lowest for the respective PLS loading.

nificantly better than the ratio rule (Cho+Cr)/Ci (q) (p = .0034). Comparing
quantification based (SVM-rbf (q)) and PR methods (SVM-rbf (m)/GP-rbf (m)),
the performance gain could still be considered significant (p = .0269/.0261). The
performances of the linear PR approach PLS/LR (m) compared with SVM-rbf (q)
and (Cho+Cr)/Ci (q), however, are statistically indistinguishable (p = .1531/.5966).

2.3.5. Interpretation of PR approaches.

PLS loadings obtained from the whole prostate dataset are presented in Fig. 2.5. The
first row shows the L2-normalized loadings along with a typical spectrum (dashed
line). The last two rows show statistics (median, hinges and extreme points) of the
upper/lower 5% of the training sample, sorted according to their PLS scores. This
reveals spectral patterns which score high/low for the respective PLS loading and
facilitates their interpretation.

Fig. 2.6 contrasts coefficient profiles obtained from three linear classifiers trained on
the whole data set. Fig. 2.6a shows the coefficients obtained with unregularized LR
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Figure 2.6.: Comparison of coefficient profiles learned with logistic regression models.
The unregularized model (a) does not show a pattern whereas the PSR model (c) seems
to oversmooth slightly. In contrast, the PLS model (b) shows a clear pattern and also

preserves the details.
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Figure 2.7.: Density estimates of the cross-validated tumor probability estimates for
each of the classes in the training set (green=healthy, yellow=undecided, red=tumor).

on all 40 channels, Fig. 2.6b with LR on PLS scores and Fig. 2.6c shows the result
for PSR.

2.3.6. Probability Estimates

Fig. 2.7 shows density estimates of the cross-validated probability estimates obtained
with the binomial PLS method. The three classes are nicely separated and yield
excellent ROC curves which are depicted in Figs. 2.9(a) to 2.9(c).
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Figure 2.8.: Receiver Operator Characteristic curves for the binomial PLS classifier
on the prostate tumor data.

In Fig. 2.9 the sigmoidal tumor probability estimate of the binomial PLS model
is shown in its projection onto the first two PLS loadings (actually, four loadings
have been used in the binomial PLS model, however, they cannot all be depicted
simultaneously). Furthermore, some randomly drawn examples from the training set
are displayed together with their 2σ-confidence intervals and their true class which
is color-coded. It can be observed that the size of the confidence intervals depends
not only on the predicted probability, but also on the quantity of proximate training
examples which support the probability estimate.

2.3.7. CLARET

Only their simple availability and efficient accessibility will allow pattern recogni-
tion algorithms to be employed in clinical studies and routine use. Therefore, the
CLARET tool (CSI-based Localization And Robust E stimation of Tumor proba-
bility) has been developed for the diagnostic evaluation of MRSI data. CLARET
implements pattern recognition methods as described above and allows for an auto-
matic evaluation of MRSI volumes.

The evaluation of MRSI volumes with CLARET is designed for utmost user friend-
liness. After selecting an MRSI volume and a suitable MR image volume (usually
T2-weighted) from the DICOM data set, CLARET can be initiated to evaluate ei-
ther individual slices or the whole loaded volume at once. The results are displayed
in transparent probability maps superposed onto slices through the MRI volume
(Fig. 2.10).

One can easily switch between tumor probability estimates and their 2σ confidence
intervals. In addition, voxels which cannot be evaluated are masked out. In the
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Figure 2.9.: Projection of training examples onto the first two PLS loadings and their
tumor probability estimates with 2σ-confidence intervals. The true class labels are color-
coded. The more training examples are located in the vicinity and the more extreme a

probability estimate is, the smaller the confidence intervals get.

subsequent diagnosis the user can therefore concentrate only on regions marked sus-
picious in the probability map. In case of doubt, the original spectral signal is easily
accessible and conspicuities in the T2-image can also be scrutinized. Finally the ex-
tracted probability map can be stored in a file together with the analyzed MRI/MRSI
volumes for later reference or it can be exported for use in the radiation planning
software VIRTUOS [25]. If no user-interaction is needed at all, an automatic evalu-
ation of MRSI data with CLARET can be initiated from within VIRTUOS directly
(cf. Fig. 2.11).

CLARET has explicitly been designed for the application of pattern recognition
methods. Therefore, it can also be used for the construction of training data sets.
The automatic display of the respective spectral signals together with fitted model
spectra and quantification results upon selection of an MRSI voxel allow for a semi-

40



2.3. Results

Figure 2.10.: The CLARET GUI can be used to evaluate MRSI efficiently. In routine
use, the program automatically computes and displays tumor probability maps and
confidence intervals on top of morphologic MR images. The program also allows for a
point-and-click display of spectral raw data, it can perform quantification, and it may
be used for the manual labeling or the semi-manual refinement of training data sets.

manual evaluation of the spectral data. The results from such a voxel-wise evaluation
can easily be entered per mouse click in the probability map and stored as training
data set. Since manual labels can also be entered after an automatic evaluation
CLARET is also suitable for the correction of classification errors and is ready for
active learning.

Fig. 2.12 shows the color-coded probability map obtained with CLARET using
PLS/LR. Next to it, results from a histologic step-section examination are shown.
It should be noted that the slice planes obtained from histologic examinations and
MRSI are unlikely to coincide exactly. Also, since the histologic samples easily de-
form after radical prostatectomy, only qualitative comparisons are possible.
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Figure 2.11.: Integration of CLARET in the software platform VIRTUOS (dkfz, Hei-
delberg). Tumor probability maps are generated automatically from MRSI and can, in

addition to other imaging modalities, be used for radiation planning.

rectum

capsule
infiltration

tumorurethra

Figure 2.12.: Tumor probability map estimated with logistic regression based on
partial least squares scores (PLS/LR) and histologic step-section result for the same
slice. Up to minor deformations, the evaluated in vivo MRSI agrees very well with the

histopathology.
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2.4. Discussion

2.4.1. Spectral Preprocessing

For PR, two spectral representations have been employed in the present study, namely
real and magnitude spectra. As opposed to real spectra, magnitude spectra are in-
variant w.r.t. zero-order phase shifts. The additional variation in the spectral pat-
tern caused by phasing problems mainly degrades the performance of PCA/LR and
ICA/LR (Fig. 2.4c). Although the difference to magnitude-based methods is smaller
for other linear and nonlinear classifiers, magnitude spectra consistently yield bet-
ter results. Improvements with real spectra might be obtainable when using more
sophisticated automatic phasing algorithms, however, these might also be prone to
similar robustness problems as quantification algorithms. It seems that the advan-
tage obtained from omitting phase correction in magnitude spectra outweighs the
disadvantage of increased line widths and peak overlap for prostate MRSI. Other
studies present analogous results for brain MRS [61, 193, 123, 7].

It has also previously been found that some kind of normalization (L1, L2, L∞) of the
spectral patterns is important [7]. Experiments with L1- and L2-normalized prostate
spectra did not yield very different results (not shown here). In contrast to [61,
193, 123] L1-normalized spectra have been used because of the notable relationship
to metabolite ratios. The L1-norm can be regarded as an approximation to the
integrated spectrum and corresponds to Cho + Cr + Ci in the prostate. Hence,
linear combinations of the derived spectral features are similar to the ratio r2 =
Ci/(Cho + Cr + Ci) which is related to the usual ratio r1 = (Cho + Cr)/Ci by the
monotonous transformation r2 = (r1 + 1)−1. Therefore, r1 and r2 must have the
same discriminating power which is confirmed by the results in Fig. 2.4a. Hence,
L1-normalization addresses the problem that absolute line intensities in MR spectra
are unreliable and information is only contained in their ratio.

2.4.2. Quantification-based approaches

Despite only subtle mathematical differences in performing the quantification with
VARPRO, AMARES or QUEST (with simulated metabolite templates), the classi-
fication results differ considerably (Fig. 2.4a). All quantification methods have been
employed with the same number of Lorentzian shaped components but with slightly
different constraints. Hence, the employed prior knowledge has considerable influence
on the obtainable classification performance.

Implementation details of the employed algorithm also seem to matter. The supe-
rior performance of our VARPRO approach in comparison to AMARES might be
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surprising at first. However, deviating from the original VARPRO approach, which
uses a modified Levenberg-Marquardt algorithm [204], an interior trust region algo-
rithm [52] that appears to cope better with the variable projection functional has
been used. The excellent performance of QUEST, on the other hand, might be due
to its implicit baseline correction [160].

Most of the differences between quantification based approaches are due to choosing
different quantification methods and not due to using different classifiers (Fig. 2.4a).
However, none of the classifiers employed on quantified data could improve over the
results obtained with the conventional (Cho + Cr)/Ci ratio. This indicates that the
ratio rule is indeed a good approach for the discrimination of tissue classes in the
prostate, provided that the quantification results are reliable. However, the latter is
difficult to judge in the absence of ground truth.

2.4.3. Subspace Methods

The results listed in the second compartment of Fig. 2.4b show no significant dif-
ference between the tested subspace methods. In particular, identical performance
is obtained with PCA and ICA. Given that the scores obtained from FastICA are
necessarily a linear combination (scaling and rotation) of the PCA scores, this can
be explained by noting that LR is invariant w.r.t. such feature transformations. But
also NMF cannot improve the AUC. And although PLS and GPLS can increase the
lower hinge in the discrimination of healthy and tumor tissue, these effects are not
observed in the discrimination against voxels of the “undecided” class.

One reason for the use of subspace methods is that the basis of the constructed
subspace is amenable to interpretation. Optimal subspaces along with the most
important spectral patterns are automatically determined based on in vivo data.
Therefore, not only protocol and metabolite dependent features of the signal but also
the in vivo situation is considered. Furthermore, for PLS also the classification task
at hand has an influence on the choice of the subspace. This distinguishes subspace
from quantification approaches which either use theoretical models or metabolite
templates derived from in vitro measurements.

The PLS loadings derived for the prostate data allow for a consistent interpretation
(cf. Fig. 2.5). As published in various clinical studies on prostate spectroscopy (e.g .
[173, 175, 149]), the ratio between Cho + Cr and Ci is the most important feature in
discriminating cancerous from healthy tissue. Together with the L1-normalization,
the first loading clearly reflects this ratio. The second loading rewards high Cho-
to-Cr ratios in the presence of a clear Ci peak. Spectra with small line widths
and clear peaks for all metabolites get a high score on this component if Cho is
elevated in comparison to Cr. This criterion is in accordance with medical studies,
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for example [149], where the Cho/Cr ratio has also been considered. The third
loading reflects frequency shifts of the citrate peak and the fourth loading frequency
shifts of the choline peak. Both these and higher order loadings are not relevant for
tumor classification.

2.4.4. Linear and Nonlinear Classifiers

Fig. 2.6 demonstrates that subspace methods act as a regularizer which helps to
overcome the problem of collinearities in spectral data. The unregularized model
as applied to the highly correlated spectral channels yields a very rough coefficient
profile with high offset (Fig. 2.6a). As opposed to that, the coefficient profile of the
PLS model in Fig. 2.6b takes small values around zero and shows a clear pattern
resulting from a linear combination only of the first four loadings. A similar profile
is obtained for the logistic PSR model in Fig. 2.6c for which the coefficient profile
has explicitly been modeled as a smooth spline function. Anyhow, the regularizing
influence is not reflected in a clear performance gain (Fig. 2.4).

Increased performance is obtained when using nonlinear PR approaches. A SVM
with linear kernel is a linear classifier and performs no better than its cognates.
As evidenced by Fig. 2.4b, an improvement is obtained only when switching to the
nonlinear RBF kernel. A significant improvement from using nonlinear classifiers can
also be observed in Tab. 2.3. The performance of the RF and GP methods are very
similar, indicating that some nonlinearity is indeed present in the prostate tumor
classification task. However, an interpretation of the decision rules of a nonlinear
classifier remains difficult. Significant differences between the nonlinear classifiers
could not be observed.

Nonlinear classifiers can manifest their superiority only when applied to spectral
patterns. In view of Tab. 2.3 and Fig. 2.4, if enough data is available and a nonlinear
“black-box” method is acceptable, there remains little reason to use quantification
for feature extraction.

Finally, diagnostic maps such as shown in Fig. 2.12 allow for a time-efficient evalua-
tion of NMR spectroscopic images. In this example, the spectral patterns obtained
with MRSI and the histopathological ground truth agree very well. Further clinical
validation is certainly required and is attempted in [19].

2.4.5. CLARET

For the first time a software tool is available which generates pathophysiologic prob-
ability maps from MRSI data fully automatically. CLARET is currently employed
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in a prostate study at the German cancer research center Heidelberg (dkfz). The
graphical user interface and integrated workflow allow for an efficient evaluation of
MRSI. Direct import of DICOM data from the MR scanner and the subsequent fully
automatic evaluation by means of powerful pattern recognition algorithms make its
use simple. An application of CLARET for radiation therapy planning is enabled by
the integration into the software platform VIRTUOS [25].

CLARET prototypically demonstrates the possibilities of a pattern recognition based
MRSI evaluation. Here CLARET clearly contrasts with other MRSI evaluation tools
such as jMRUI, LCModel or PRISMA which concentrate on the quantification of
spectral data. Although these programs can also be used to compute and visualize
color maps, only relative metabolite concentrations or ratios thereof are displayed.
In contrast, CLARET is tailored towards the generation and visualization of patho-
physiologic maps that report an explicit estimate for tumor probability in every
voxel.

2.5. Summary

In this chapter, different single-voxel approaches to the automated estimation of tu-
mor probability in 1H NMR spectroscopic images of the prostate have been compared.
The emphasis has been put on developing a fully automatic and reliable approach
with optimal diagnostic results.

In particular, it was found that quantification based approaches heavily rely on an
optimal choice of prior knowledge and on the algorithm used for quantification. In
contrast, PR approaches do not require specific prior knowledge and can infer im-
portant spectral patterns from the in vivo training data automatically. The PR
approach attempts to address the diagnostic question – healthy vs. tumorous tissue
– directly and can therefore use the full statistical information contained in the raw
spectral data.

Among the quantification based approaches, best results have been obtained with
classifiers based on metabolite concentrations estimated with QUEST. However, the
performance was not superior to the conceptually simple linear PR approaches based
on magnitude spectra.

Several subspace methods proposed for spectral MR data before have been com-
pared. In particular, PCA, ICA, NMF and PLS were used. Hardly any difference in
performance could be observed between these. Still, methods especially designed for
spectral data such as PLS and GPSR seemed to have slight advantages.
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If a “black-box” approach is acceptable, superior performance can be obtained by
using a suitable nonlinear classifier in conjunction with magnitude spectra.

Pattern recognition algorithms are not supported by available MRSI processing soft-
ware. Using the CLARET tool introduced above, the proposed pattern recognition
approaches can easily be employed by a physician, e.g . in clinical studies. It proto-
typically demonstrates the applicability of pattern recognition methods for clinical
routine use.
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Chapter 3.

Quantification Using Spatial Context

3.1. Introduction

Quantification based approaches might not be the best choice if one is only
interested in the diagnostic classification of a voxel. In contrast, if one is interested
in the pathophysiological process and the underlying biochemistry, a quantification is
indispensable. The present chapter discusses an approach to perform quantification
that exploits spatial prior knowledge in the form of a generalized Gaussian Markov
random field (GGMRF) [35].

The general approach builds upon a nonlinear signal model Sθ(tn) and a sequence
of observed data points yn for a certain voxel at discrete time points {tn}N

n=1. The
parameters θ are usually estimated by minimizing the sum of squared residuals (SSR),
i.e. by solving the nonlinear least squares (NLS) problem

θ̂ = argmin
θ

N∑
n=1

(Sθ(tn)− yn)2 (3.1)

Since this is a very general model that applies to many imaging modalities the ap-
proach has not only been applied to the quantification of MRSI but also to the
quantification of Dynamic Contrast-Enhanced MR Images (DCE-MRI).

After the introduction of the GGMRF framework a specialized algorithm that effi-
ciently exploits the sparse structure of the given optimization problem is proposed.
Experiments and results on MRSI and DCE-MRI are presented and discussed in
two subsequent subchapters. A summary repeating the most important points and
proposing future enhancements will conclude the chapter.
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3.2. GGMRF: A Generalized Gaussian Markov Random
Field Prior

The generalized Gaussian Markov random field [35] is a Markov random field [27, 26,
213, 119] with particular compatibility functions (the logarithms of which are known
as potentials). Every voxel in the region of interest (ROI) is represented by a site
s ∈ S which is associated with the vector-valued random variable θs. Like in the
single-voxel case, the observation likelihood is Gaussian, i.e. ys

n | θs ∼ N(Sθs(tn), σ2).
Adding the spatial GGMRF prior on the parameter maps θ yields a joint distribution
over y and θ in form of the Gibbs distribution:

Pr(θ, y) =
1
Z

∏
s∼t

Ψ(θs, θt)
∏
s

Φ(θs, ys) (3.2)

where y and θ are vector variables obtained by stacking the site vector variables ys

and θs. Z is the global normalizer (partition function) and s ∼ t denotes pairs of
neighboring sites according to the employed neighborhood system. The compatibility
functions in Φ(θs, ys) and Ψ(θs, θt) are defined by the potentials

log Φ(θs, ys) = − 1
2σ2

N∑
n=1

(Sθs(tn)− ys
n)2 (3.3)

log Ψ(θs, θt) = −αst

2
‖W (θs − θt)‖p

p (3.4)

where 1 < p ≤ 2 and αst ≥ 0 are hyper-parameters determining smoothness proper-
ties of the sought parameter maps. W is a diagonal weighting matrix which accounts
for the different scales and variability of the parameters in θs and can be used to
adjust the smoothness of individual parameter maps.

The application of a GGMRF allows to vary continuously between a smoothing
Gaussian MRF prior (p = 2) and an edge-preserving MRF (p → 1) with properties
comparable to a weighted median filter [35]. Furthermore, the GGMRF potential
defined by (3.4) is convex and, as opposed to robust alternatives such as the Huber
potential [91], it does not have a threshold parameter at which its behavior suddenly
changes.

In the present work, only regular lattices will be of concern. In principle, a hierarchy
of neighborhood systems can be defined on these, starting with four nearest neighbors
(first order), to eight nearest neighbors (second order), and so on [23]. In this chapter,
however, only first and second order neighborhoods will be considered. The graphical
model of the described GGMRF with a first order neighborhood system is depicted
in Fig. 3.1.
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Figure 3.1.: Graphical representation of the GGMRF lattice model with first order
neighborhood system (4 neighbors) and nonlinear observation potentials Φ(θs, ys).

3.3. MAP Estimation with Block-ICM

Given an observed sequence of data points {ys
n}, the maximum a posteriori (MAP)

estimate θ̂ is found by minimizing the data term (SSR) and an additional spatial
coupling term:

θ̂ = argmin
θ

[∑
s∈V

N∑
n=1

(fθs(tn)− ys
n)2 + σ2

∑
s∼t

αst ‖W (θs − θt)‖p
p

]
(3.5)

For realistically sized images, the parameter vector θ gets extremely high-dimensional
which makes the optimization problem (3.5) very hard to solve with standard NLS
algorithms. However, the problem is sparse in the sense that most of the θs are not
directly coupled. The MRF framework provides special algorithms which can exploit
this sparsity such as the ICM (iterated conditional modes) algorithm [27].

Here, a generalized ICM algorithm is proposed which will be shown to converge
faster than the standard ICM approach. As the algorithm considers collections of
sites instead of single sites at each step, this approach is named block-ICM. Given an
arbitrary subset of sites Ṽ ⊆ S, it follows from the Hammersley-Clifford theorem [213]
that the posterior distribution Pr(θ | y) = Pr(θV | y) can be factored as

Pr(θV | y) = Pr(θṼ | θ∂Ṽ , y) Pr(θV \Ṽ | y) (3.6)

where ∂Ṽ = {s | t ∼ s ∧ t ∈ Ṽ ∧ s ∈ V \ Ṽ } is the border of Ṽ . Increasing the first
factor Pr(θṼ | θ∂Ṽ , y) with respect to θṼ certainly cannot decrease Pr(θV | y) since
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the second factor Pr(θV \Ṽ | y) does not depend on any of the variables in θṼ . Hence,
the MAP problem (3.5) can be solved iteratively by solving a series of smaller MAP
problems over subsets of sites

θ
(k+1)

Ṽ
= argmin

θṼ

[∑
s∈Ṽ

N∑
n=1

(fθs(tn)− ys
n)2 + σ2

∑
s∼t

s,t∈Ṽ

αst ‖W (θs − θt)‖p
p

+ σ2
∑
s∼t
s∈Ṽ
t∈∂Ṽ

αst

∥∥∥W (
θs − θ

(k)
t

)∥∥∥p

p

]
(3.7)

The block-ICM algorithm can also be viewed as an iterative coordinate descent ap-
proach where the potentially intersecting subsets Ṽ (k) redefine generalized coordi-
nates θ

(k)

Ṽ
in every descent step. Also, it suffices to find a realization θ

(k+1)

Ṽ
which

decreases the objective (3.7) instead of finding the exact minimum in every descent
step. The proposed procedure still converges to a local minimum.

Shape, size and update sequence of the subsets Ṽ are design parameters of the block-
ICM algorithm and should be chosen so as to trade off the problem size in each step
against the number of sweeps required for convergence. If, e.g ., each of the subsets
Ṽ (k) contains only one site s, the standard ICM algorithm is recovered [27] which
is known to often converge rather slowly. If, contrariwise, only one (sub)set Ṽ ≡ S
is chosen, the complete MAP problem (3.5) which contains all variables is obtained.
Hence, small subsets of sites should be chosen depending on the size of the local
neighborhood and the strength of the mutual influence. Because of the locality of
this influence, the size of the subsets does not have to be increased with growing
lattices, yielding an algorithm which scales linearly with the number of sites. In the
following experiments a fixed update schedule as sketched in Fig. 3.2 with different
block sizes has been employed.

3.4. Quantification of Magnetic Resonance Spectroscopic
Images

3.4.1. Introduction

Accurate quantification is a crucial prerequisite for the study of in vivo metabolisms
by means of magnetic resonance spectroscopy (MRS). It may help the noninvasive
diagnosis and characterization of pathophysiological changes and thus be an impor-
tant tool for clinical research. The reliable quantification of MR spectroscopic signals
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Figure 3.2.: Blocks and update schedule used for the block-ICM algorithm. In every
odd sweep, square blocks of 6 × 6 sites are visited following the pattern indicated by
the numbering. The even sweeps are performed in the same way but shifted by 3 sites

(dashed squares).

depends on stable approaches to spectral fitting which is a challenging problem due
to low signal-to-noise ratios (SNR), artifacts, overlapping peaks and baselines present
in MRS data.

A common approach to improve the quality of spectral fits is the use of prior knowl-
edge. For example, various forms of constraints on the model parameters can be
considered using the AMARES algorithm [204]. Theoretical arguments that assure
a decrease of the Cramér-Rao lower bound for hard (equality) constraints [45] as
well as empirical evidence (e.g . [132]) have proven the usefulness of employing prior
knowledge as much as possible.

Also algorithms such as LCModel [156], QUEST [160] and AQSES [185, 183] employ
prior knowledge by using metabolite templates which implicitly impose hard param-
eter constraints on the signal components from each metabolite. Furthemore, all
these algorithms provide some means for handling baselines stemming from macro-
molecules [185].

Although current endeavors in MR spectroscopy aim at recording high resolution
spectroscopic images all MRS quantification algorithms work on a per-voxel basis.
Spatial prior knowledge in form of smoothness assumptions for certain quantified
parameters of the nonlinear signal model can be valuable and should be exploited.

In the present work the application of spatial prior knowledge for spectral fitting in
MRS images is proposed. Using a Gaussian Markov random field prior, smoothness
of selected parameter maps can be encouraged. Spatial prior knowledge is applied
in addition to the commonly employed per-voxel prior knowledge. Although, the
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problem of baselines is not considered in the presented experiments, the proposed
framework allows to add a nonparametric baseline model as proposed in [183].

3.4.2. Spectral Fitting of Magnetic Resonance Spectra

Most quantification algorithms fit a nonlinear signal model Sθ(tn) to the observed
spectral data yn, either in time-domain [204, 160, 185] or in frequency-domain [156],
by minimizing the sum of squared residuals

l(θ) =
N∑

n=1

(Sθ(tn)− yn)2 with tn = n∆t (3.8)

which is the maximum likelihood solution under the assumption of additive white
Gaussian noise.

Similar to QUEST [160] and AQSES [185], the free induction decay (FID) signal is
modeled as a linear combination of M possibly damped, phase- and frequency-shifted
metabolite templates Tm(tn):

Sθ(tn) = ejφ0

M∑
m=1

Tm(tn) ame(j2π∆fm−∆dm)tn (3.9)

with the imaginary unit j =
√
−1. Thus, the parameter vector θ contains a common

phase correction φ0 and for each of the M metabolites an amplitude am, frequency
shift ∆fm and damping ∆dm. Both, the ∆fm and ∆dm are initialized to zero whereas
initial guesses for am and φ0 are obtained by linear least squares. Furthemore, each
metabolite template follows the K-component Lorentzian model

Tm(tn) =
K(m)∑
k=1

a
(m)
k ejφ

(m)
k e(j2πf

(m)
k −d

(m)
k )tn (3.10)

where f
(m)
k are the frequencies, d

(m)
k the dampings, φ

(m)
k the phases and a

(m)
k are

the amplitudes of the metabolite components. In light of the signal model Sθ(tn),
only relative values are important here and encode available prior knowledge. The
absolute values for f

(m)
k and d

(m)
k are chosen as to provide good initial guesses.

The restriction to metabolite templates of the form in Eq. (3.10) allows to use the
AMARES algorithm [204] which is available and can be parameterized through the
jMRUI software [139].
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Spatial prior knowledge is incorporated using the Bayesian approach of specifying a
prior distribution over the sought parameter maps [26, 49]. The maximum likelihood
point estimate is then replaced by the mode of the posterior distribution. Here,
a Gaussian random field is used to model a prior distribution that favors smooth
parameter maps [10]. The optimization objective thus becomes

l(Θ) =
∑

s

N∑
n=1

(Sθs(tn)− ys
n)2 + σ2

∑
s∼t

||θs − θt||2W (3.11)

where Θ now contains the nonlinear parameters θs from all MRSI voxels which are
indexed by s, σ is the standard deviation of the signal noise and ||a||2W = aT Wa is a
2-norm weighted with the diagonal matrix W .

The first term in Eq. (3.11) just builds a sum over the squared residuals from all
voxels s. Adding the second term which builds a sum over the squared distance
||·||W between all neighboring voxel pairs s ∼ t in the spectral image also encourages
smooth solutions. Both σ and W determine the trade-off between fitting the indi-
vidual signals against smoothing the parameter maps. Furthemore, W can be used
to adjust the smoothness force of certain parameter maps individually, and even to
turn off smoothing for some of the parameters by using a zero weight.

Without the second term in Eq. (3.11), the parameter vectors θs at individual voxels
would be independent, the optimization problem would decouple and would yield
exactly the same solution as with the single voxel approach in Eq. (3.8).

The optimization resulting from employing the proposed spatial prior is quite chal-
lenging and special algorithms that can exploit the sparse structure of the problem
have to be used. To this end, a version of an iterated conditional modes (ICM)
algorithm [36, 213] has been used, the block-ICM method as proposed in [10].

3.4.3. Experimental Setup

Brain MRSI Data

The proposed approach was applied to two different brain data sets the first of
which was randomly selected from a clinical study with brain tumor patients. 1H-
MRSI data was acquired at the German Cancer Research Center (dkfz, Heidelberg,
Germany) on a 1.5T Magnetom Symphony (Siemens Medical Solutions, Erlangen,
Germany) with commercially available PRESS pulse sequences and a standard head
coil. The MR spectra were obtained with a double spin-echo sequence with one
pulse water signal suppression and long echo time (TR 1000ms, TE 135ms, 512 data
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metabolite f
(m)
k (Hz) d

(m)
k (Hz) a

(m)
k (a.u.) φ

(m)
k (rad)

Choline −94.2 −12 1 0
Creatine −107.5 −12 1 0

N-acetylaspartate −171.2 −12 1 0

Table 3.1.: Metabolite templates for long echo brain spectra at 1.5T.

points, slice thickness 15mm, matrix size 16× 16, FOV 160mm). Only 8× 8 voxels
within the PRESS-selected volume have been fitted.

The second 1H-MRSI data was acquired from a healthy volunteer at the Institute
for Biomedical Engineering (IBT, ETH Zürich, Switzerland). MR experiments were
performed on a Philips Achieva 3T scanner (Philips Medical Systems, Best, The
Netherlands) using a transmit-receive head coil with birdcage design. High-resolution
PRESS-localized MRSI data using a in-plane resolution of 3.1mm (32×32 voxel, FOV
100mm) and a slice thickness of 10mm were acquired (TR 1300ms,TE 34ms, 1024
data points). To avoid foldover artifacts and therefore enable the reduced FOV, six
saturation bands based on RF pulses with polynomial phase response (PPR, [180])
were applied according to the principle discussed in Henning et al . [88] to reach
T1 and B1 insensitive outer volume suppression (OVS) prior to MRSI encoding.
To avoid rephasing, amplitude and direction of spoiling gradients were periodically
modulated following sinusoidal envelope functions in all three spatial dimensions that
are shifted against each other [50, 82]. For water suppression two CHESS [83] pulses
were applied prior to the OVS pulses.

Simulation Study

In comparing the single voxel and the GMRF approach it is important to analyze
the bias-variance behavior of the two approaches. Since this requires knowledge of
ground truth, a Monte Carlo study has been performed. To this end long echo
brain MRSI at 1.5T has been simulated using the three metabolite resonances of
choline (Cho), creatine (Cr) and N-acetylaspartate NAA with Lorentzian FID and
the template parameters as provided in Tab. 3.1. Based on three frequency, damping,
and amplitude maps and a phase shift map, noiseless MRSI data has been generated
according to the signal model in Eq. (3.9) (dwell time ∆t = 1ms, imaging frequency
64MHz). Then R = 100 versions have been simulated by adding isotropic white
Gaussian noise (σn) to the generated MRSI data.

Two data sets have been generated with different parameter maps for the purpose
of emphasizing different effects of a spatial prior:
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3.4. Quantification of Magnetic Resonance Spectroscopic Images

• Sharp edges. First smooth random maps for all parameters have been gener-
ated. In the amplitude maps, sharp edges are introduced by adding a constant
value to inverted parts of the amplitude images (cf. Fig. 3.3). This data set
has been simulated with N = 256 data points and noise standard deviation of
σn = .232.

• Overlapping peaks. Two spatially orthogonal, wedge-shaped amplitude
maps for Cho and Cr (cf. Fig. 3.8) along with a smooth random amplitude
map for NAA. All frequency and phase shifts have been set to zero, whereas
all dampings have been increased by 10Hz (toward the models in Tab. 3.1).
This data set has been simulated with N = 512 data points and noise standard
deviation of σn = .155.

Using the known ground truth parameter ϑ and the R fit results ϑ̂i (i = 1 . . . R) ob-
tained for the repeatedly simulated MRSI data, the root-mean-squared error (RMSE)
can be calculated in each voxel as

RMSE =

(
1
R

R∑
i=1

(ϑ̂i − ϑ)2
)1/2

. (3.12)

Note that this is an estimate for the root of the expected squared error of the esti-

mator ϑ̂ under the data distribution,
√

E[(ϑ̂− ϑ)2] .

More information can be gained from the decomposition of the RMSE into a bias
and a standard deviation term which is provided by a bias-variance decomposition
[85]:

RMSE2 = bias2 + stdev2 (3.13)

where

bias = ϑ̄− ϑ (3.14)

stdev =

(
1
R

N∑
i=1

(ϑ̄− ϑ̂i)2
)1/2

(3.15)

with ϑ̄ = 1
R

∑R
i=1 ϑ̂i.
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3.4.4. Results

For the simulated data the noise variance σ2 which is needed for the GMRF (cf.
Eq. (3.11)) approach was known and thus did not need to be estimated. For real
data, an estimate for the noise variance has been obtained from the residuals of
manually verified single voxel fits.

The diagonal weighting matrix W has been determined once from the single voxel
fits of a simulated MRS image (“sharp edges”) based on a robust variogram estimate
at pixel distance. Throughout the experiments Wd = .2 was used for the damping
parameters, Wf = 2 for the frequencies and Wφ0 = 20/π for the phase map. Since it
is not desirable to smooth the amplitude maps, Wa has been set to zero. The same
weighting matrix has been used on simulated and real data.

Sharp Edges

Figure 3.3 presents results on the first simulated data set (“sharp edges”). The first
row shows the ground truth amplitude images and the following rows show amplitude
estimates obtained with different fitting approaches for the same realization of the
simulated MRS image data. The second row shows results when using the spatial
prior (sp, GMRF) whereas the third row shows results when using a single voxel
method (sv, AMARES). The results in the last row have been obtained by smoothing
the amplitude images obtained from AMARES with a Gaussian filter. Normalized
convolution has been employed in order to avoid border effects and to make the linear
filtering more similar to the GMRF approach. Furthermore, the Gaussian kernel has
been chosen for each metabolite separately so as to minimize the squared error to
the ground truth image. Note that such an optimization is certainly not possible
given real data. Figure 3.4 shows results based on the same parameter estimates but
in difference to the ground truth.

Compared with the single voxel approach, the spatial approach visibly improves the
estimate of Cho and Cr. For NAA with its higher amplitudes, the improvements
are not so clear but the GMRF prior certainly does not deteriorate the results. The
smoothed single voxel solution is considerably better than the single voxel solution
and, as judged by Fig. 3.3, also seems to be better than the GMRF solution. However,
Fig. 3.4) reveals that posthoc smoothing introduces spatially correlated errors within
the homogeneous areas and in particular at the edges which certainly results in
estimation bias.

The Monte Carlo study using all R = 100 realizations of the “sharp edges” data
reveals that the root-mean-squared error of the NAA amplitude estimate actually
improves when using the spatial prior (cf. Fig. 3.5). Even more improvement is ob-
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Figure 3.3.: Simulated MRSI data with sharp amplitude edges. From top to bottom:
ground truth; GMRF estimate; AMARES estimate; optimally smoothed AMARES es-
timate. Since with the GMRF no smoothing is performed for the amplitudes, sharp
edges are not smeared out. With posthoc smoothing (last row) the estimates of Cho
and Cr can be improved at the cost of oversmoothing the edges (cf. Fig. 3.4). Within the
homogeneous areas posthoc smoothing seems to provide better results than the other
methods which suggests that some smoothing of the amplitudes with the GMRF could
be useful. For NAA which has higher amplitudes all methods yield similar results for

the example shown.
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Figure 3.4.: Difference to ground truth images (cf. Fig. 3.3). From top to bottom:
difference to GMRF estimate; difference to AMARES; difference to optimally smoothed
AMARES. Unlike the GMRF, posthoc smoothing creates spatially correlated error maps

and causes systematic errors at the edges.

tained for the remaining parameters. As apparent from the presented bias-variance
decomposition of the RMSE in Fig. 3.5, the gain is mainly due to a reduction in
standard deviation. Furthermore, the GMRF prior does not seem to introduce sig-
nificantly more bias than AMARES for most voxels in the “sharp edges” data.

With the available ground truth the exact Cramér-Rao lower bound (CRLB) on the
standard deviation of the parameter estimates can be calculated. A comparison of
the estimated standard deviations with the corresponding CRLB for all metabolites
in the “sharp edges” data is presented in Fig. 3.6. As expected, the unbiased single
voxel estimates do not beat the CRLB since all points fall above the diagonal in
the scatter plots of Fig. 3.7(a). Occasional points below the diagonal are due to
the fact that the standard deviations obtained from the Monte Carlo study are only
estimates based on R = 100 repetitions. Systematic improvements are obtained
with the spatial prior as apparent from Fig. 3.7(b). In line with the observed clear
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Figure 3.5.: Scatter plots of root-mean-squared error (RMSE), bias and standard
deviation (stdev) of NAA amplitudes as estimated from R = 100 noisy realizations of
the simulated “sharp edges” MRSI data. The GMRF approach yields lower RMSE than
AMARES in all parameters. Since the bias is comparable, the gain must be entirely

ascribed to a reduction in standard deviation.

improvement of the Cho and Cr difference images in Fig. 3.3, most gain in terms of
standard deviation is obtained for these two metabolites (red and blue dots).

Overlapping Peaks

Concentrating on the overlapping peaks of Cho and Cr, the bias-variance analysis on
the second simulated data set (“overlapping peaks”) confirms that the spatial prior
heavily affects the standard deviation of the amplitude estimates which make the
main contribution to the RMSE. Surprisingly, however, the single voxel approach
also shows more bias than the GMRF approach for small amplitudes at the left
and upper border of the images. This effect is even more pronounced if one of the
metabolites has a high and the other has a low amplitude at the same time. Then
also the standard deviation increases significantly. The GMRF approach does not
exhibit such behavior.

An analysis of these border voxels reveals that the observed effect is due to the fact
that the single voxel approach sometimes explains both, the Cho and Cr resonance
with only one component and sets the amplitude estimate for the smaller metabolite
peak to zero as for the example shown in Fig. 3.9. Instead, the GMRF approach uses
information from neighboring voxels to infer that an additional small peak is more
likely.
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Figure 3.6.: Scatter plots of Cramér-Rao lower bounds (CRLB) against standard de-
viations (stdev) of the parameter estimates obtained with AMARES and the proposed
GMRF approach. The results are based on 100 realizations of simulated MRSI im-
ages (32 × 32 voxels) containing the three metabolites Cho (red), Cr (blue) and NAA
(green). While the single voxel approach does not beat the the CRLB, using spatial

prior knowledge can reduce the estimation variance below the theoretical CRLB.
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Figure 3.7.: Scatter plot comparing the standard deviations obtained with AMARES
and the GMRF. The GMRF can clearly reduce the standard deviation for all model

parameters including the amplitudes which are not explicitly regularized.
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Figure 3.8.: Bias, standard deviation (stdev) and root-mean-squared error (RMSE)
for amplitude estimates using the single voxel (sv, AMARES) and spatial (sp, GMRF)

approaches when fitting two overlapping peaks: Choline (Cho) and Creatine (Cr).
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(a) Single voxel (AMARES)
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(b) Spatial prior (GMRF)

Figure 3.9.: Three adjacent voxels. For overlapping peaks one of the components could
be sufficient to explain the observed signal. In this example, the Cho-component is only

fitted with the GMRF approach which uses information from a local neighborhood.

Real data

The described effect can also be observed in real data. Figure 3.10 shows nine
adjacent voxels from the 1.5T brain data set which shows clear Cho, Cr and NAA
peaks. In four of the nine voxels the single voxel fit explains Cho and Cr with only one
resonance component. By requiring that the damping (line width) of the resonance
lines should not change rapidly in neighboring voxels the GMRF prior can resolve
the two peaks in all voxels.

Finally results for the high-resolution data are presented. Figure 3.12(b) shows a
comparison between parameter maps obtained for the 3T brain MRSI data with
the single voxel approach AMARES and using the GMRF prior. Clearly the phase,
damping and frequency maps in Fig. 3.12(b) are much smoother using the GMRF
prior than the results obtained with a single voxel fit. The amplitude maps do not
exhibit severe smoothing although many speckles from the single voxel approach do
not occur with the GMRF prior, in particular for NAA.
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Figure 3.10.: Nine adjacent voxels from a patient with brain tumor and the correspond-
ing AMARES and GMRF fits. The overlapping Cho and Cr peaks lead to erroneous
single voxel fits in four of the nine voxels which are well captured when using spatial

prior knowledge.
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Figure 3.11.: Metabolite maps from the brain of a healthy volunteer at 3T (32 × 32
voxels). Example spectra are shown in Fig. 3.12.

.
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(a) Single voxel (AMARES)
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(b) Spatial prior (GMRF)

Figure 3.12.: Spectra of three consecutive voxels from a MRSI brain scan at 3T with
spectral line fits for Cho (−188.4Hz), Cr (−215Hz) and NAA (−342.4Hz). The top
row shows results from AMARES whereas the bottom row shows the corresponding fits
obtained with using spatial prior knowledge. The single voxel approach fails to fit the
NAA peak in the middle voxel whereas the GMRF uses information from the neighboring

spectra to stabilize the fit.

Spectra from three adjacent voxels are shown in Fig. 3.12 together with the AMARES
and GMRF fits. The single voxel approach fails to properly fit the NAA peak in the
middle voxel whereas the GMRF prior again prevents the sudden jump in line width
(damping) and can provide a trustworthy fit. In contrast, the Cho and Cr peaks
in the single voxel solution seem to better fit the observed signal and indicate some
bias of the GMRF, especially for the left and right spectra in Fig. 3.12. However,
since the two peaks nearly vanish in the signal noise the detection of a Cho or Cr
resonance in the given data is questionable anyway. Also, as the amplitude maps for
Cho and Cr do not show clear structures for either of the fit approaches in Fig. 3.11
it must be assumed that these metabolites cannot be estimated from the available
3T MRSI data.
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3.4.5. Discussion

The simulation study has shown that by using spatial prior knowledge the estima-
tion variance can be decreased significantly, even below the Cramér-Rao lower bound
(CRLB) of the single voxel approach. However, since the single voxel CRLB assumes
statistical independence between the FID parameters of each voxel, a spatial model
such as the proposed GMRF prior is certainly contradictory and must lead to bias,
in general. Since the CRLB provides a lower bound for unbiased estimators only
it can be beaten using a biased estimate. Another biased estimator could be con-
structed with AMARES by using soft constraints. For example, if for the simulated
“sharp edges” data set all frequency shifts would have been constrained to only vary
±1Hz, the standard deviation of the frequency estimates could not have exceeded
2Hz which would be better than the CRLB for some of the voxels (cf. Fig. 3.7(a)).
However, if the true frequency lied outside this interval the estimate would certainly
be biased. Thus, prior knowledge reduces estimation variance but increases bias if
not appropriate.

Naturally the question arises whether spatial prior knowledge in form of the pro-
posed GMRF is appropriate or not, i.e. whether it evokes bias or not. This question
cannot be answered satisfactorily by a Monte Carlo study for which the data gen-
erating process is known. One can only try to put forward arguments that could
justify that parameter maps are truly smooth. First, the employed MR sequences
always cause a certain point spread which leads to FID signals that are spatially cor-
related. Second, parameters such as frequency shift and damping very much depend
on the homogeneity of the applied B-field which is optimized in preceding shimming
procedures. Ideally these parameters are therefore constant across the whole region
of interest. Also, it has been observed that the zero-phase parameter usually varies
only smoothly. Finally, the presented exemplary fits (cf. Fig. 3.10) seem much more
plausible when using the proposed spatial prior than without it which is justified by
comparison with spectra of neighboring voxels. For example, the spectral fit in the
lower right corner of Fig. 3.10 only seems appropriate if the spectra in neighboring
voxels are not known.

In the presented experimental study it was chosen not to impose a direct smoothness
prior on the amplitude maps since this is the main parameter of interest in quantifi-
cation for which spatial variation is expected and should not be smoothed. That even
steep amplitude edges can be reconstructed without blurring has been demonstrated
with the “sharp edges” data set (cf. Fig. 3.3). In contrast, posthoc smoothing of sin-
gle voxel estimates lead to blurring but also gave improvements within the smooth
parts of the test image. Hence, some spatial smoothing of the amplitude maps might
also be desired and would argue for choosing a small positive weight Wa as well.
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Further work is necessary to devise a procedure for fine-tuning the weighting matrix
W that is better than the proposed variogram-based approach.

A strong advantage of the proposed GMRF approach is its ability to better resolve
overlapping peaks than the single voxel approach. This suggests an application
to short echo 1H-MRSI in the brain. However, this requires appropriate baseline
handling which will also be subject of future research.

3.4.6. Conclusion

An application of spatial prior knowledge in addition to commonly employed param-
eter constraints has been proposed in spectral fitting of magnetic resonance spec-
troscopic images. Using a Gaussian Markov random field that favors smooth maps
for selected parameters such as phase, line width and frequency shift, the standard
deviation of parameter estimates can be reduced below the Cramér-Rao lower bound
that is obtained for the single voxel approach. An important advantage of using spa-
tial prior knowledge is that overlapping peaks can reliably be resolved, also in cases
where the single voxel approach fails to do so. The proposed method is particularly
useful for high-resolution MRSI and allows to derive detailed metabolic images.

3.5. Quantification of Dynamic Contrast-Enhanced MR
Images

3.5.1. Introduction

Kinetic parameter maps extracted from Dynamic Contrast-Enhanced MR Imaging
(DCE-MRI) exhibit information about tissue perfusion and vascular permeability. In
contrast to static imaging modalities such as T1- and T2-weighted MRI which mainly
carry morphological information, DCE-MRI allows to derive physiologic information.
It can therefore provide valuable evidence for clinical diagnostics, especially in cases
where common modalities fail to distinguish the pathophysiologic process of interest.
DCE-MRI has already proven to be useful in various clinical applications such as
the examination of breast cancer [40], bone marrow [86, 148], brain [41, 209] and
prostate tumors [223, 104, 178].

DCE-MRI can be acquired on common clinical MR scanners without any difficulty.
However, it also requires some kind of postprocessing in order to image the diagnostic
information, which can pose problems for low signal-to-noise ratios (SNR) and when
unanticipated signals or artifacts are encountered. Various postprocessing strategies
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have been proposed which, in general, can be grouped into model-based and model-
free approaches.

In model-based approaches, an appropriate pharmacokinetic model which describes
the expected signal enhancement dynamics is derived [41, 197]. Its parameters are
often associated with meaningful physiologic properties of the examined tissue and
are determined with a nonlinear least squares (NLS) approach. Because of signal
noise and local optima in the NLS objective these model fits can fail for individual
voxels, resulting in speckled parameter maps. In [41], such voxels are identified by
a SNR criterion and removed from the parameter maps, thus discarding possibly
valuable information.

A different approach to cope with noise and unanticipated signal shapes is the ap-
plication of model-free methods which do not make explicit prior assumptions about
the data. For example, [199] only requires a labeled data set to train an artificial neu-
ral network without any physiologic model. As opposed to that, [141] proposes the
application of an unsupervised clustering method: each signal-time curve is regarded
as a feature vector and is projected onto a two-dimensional manifold by means of
self-organizing maps. The resulting 2D coordinates can be color-coded and mapped
on a diagnostic image. However, model-free approaches often lack physiologic inter-
pretability and come with the flavor of “black-box” methods.

The approach taken here is model-based. In addition to a pharmacokinetic model it is
assumes that the characteristics of the tissue vary gradually from voxel to voxel and,
hence, that the parameter maps that best describe the physiologic properties of the
tissue should exhibit some spatial smoothness. The parameter maps are modeled as
a generalized Gaussian Markov random field (GGMRF) and the recorded DCE-MRI
data is regarded as the noisy observation of a nonlinear transformation of the hidden
parameter maps (the forward model). Hence, the parameter estimates at each voxel
are supported by the estimates at its neighboring voxels which helps avoid spurious
local optima of the NLS objective.

Markov random field (MRF) priors have been used for functional MRI (fMRI) data
before (e.g . [60, 59, 150]). Related work can also be found in the application to
fluorescene optical diffusion tomography [133] and to dynamic PET data [101]. Both
works employ a GGMRF prior to improve the reconstruction of parameter images
using an algorithm which the authors call parametric iterative coordinate descent
(PICD) and which is similar to the conventional ICM algorithm.
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3.5.2. Dynamic Contrast-Enhanced MR Imaging

DCE-MRI is used to track the diffusion of a paramagnetic contrast medium (CM)
such as Gd-DTPA and study tissue perfusion and vascular permeability in vivo [41].
Therefore, DCE-MRI allows to detect pathologic tissue changes and can be used in
clinical diagnostics [223, 104, 178, 40, 86].

During the intravenous injection of the CM, a sequence of several T1-weighted MR
image volumes is recorded at intervals of a few seconds. Hence, a T1 signal-time
curve is obtained for every voxel. An evaluation of this signal-time curve is usually
based on a pharmacokinetic model whose parameters characterize the uptake and
the washout of the CM from the underlying tissue [41].

Different pharmacokinetic models have been proposed in the literature (see [196, 197]
and references therein). Here, only the widely employed two-compartment model by
Brix et al . [41] is considered.

In [41], Brix et al . derive an explicit expression for the time-dependent contrast-
enhanced MR signal SCM (t) from a system of first order ordinary differential equa-
tions (ODE). The time-intensity curves are thus described by

SCM (t)
S0

=
{

1 t ≤ t0
1 + A CCM (t− t0) t0 < t

(3.16)

where S0 is the T1 signal intensity obtained without CM and t0 the lag time. The
enhancement amplitude A depends on several tissue properties, the employed MR
sequence and the infusion rate of the CM [41]. It is usually increased in tumors. The
concentration of the CM evolves as

CCM (t) = v
exp(kelt

′)− 1
exp(kelt)

− u
exp(kept

′)− 1
exp(kept)

(3.17)

with t′ ≡ t for t ≤ τ , t′ ≡ τ for t > τ and

u−1 = kep(kep − kel) (3.18)
v−1 = kel(kep − kel). (3.19)

Here, kep (k21 in the original work, cf. [196]) describes the exchange rate between
the two compartments (blood plasma and interstitium) which is often increased in
tumors, and kel is the first order elimination rate constant of the CM from the
first compartment (plasma). The duration of the CM injection is described by τ .
For convenience, all six model parameters are summarized in the parameter vector
θ = (S0, A, kel, kep, t0, τ) in the following. Some examples of signal-time curves fitted
by minimizing the single voxel SSR as in Eq. (3.1) are shown in Fig. 3.13.
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Figure 3.13.: Three examples for the employed pharmacokinetic model from [41] fitted
to measured T1 signal-time curves. One frame was acquired every 11.25s. The dashed
curve is obtained with the initialization parameter vector θ0 = (100, .3, .4, .003, 10, 6).

The NLS problem (3.1) is usually solved voxel by voxel [41, 196]. Since a pharma-
cokinetic model such as (3.16) leads to a nonconvex NLS objective, multiple local
optima may exist and an optimization routine may get trapped in one of these. The
resulting parameter maps then contain single voxels or even regions of voxels with
parameter estimates that are very different from their surroundings and that are
deemed very unlikely to image a real physiologic process. Instead of identifying and
masking these voxels in the parameter maps, a spatial smoothness prior in form of a
generalized Gaussian Markov random field (GGMRF) [35] is employed. In this way,
the NLS fit in each voxel is influenced by the data and the model fits in its local
neighborhood, and is pushed towards a better solution.

3.5.3. Experimental Setup

DCE-MRI data from an ongoing prostate study has been collected at the German
Cancer Research Center (dkfz, Heidelberg). The data was acquired on a clinical
1.5T scanner (Magnetom Symphony; Siemens Medical Solutions, Erlangen, Ger-
many) with a disposable endorectal coil (MRInnervu; Medrad Inc., Indianola, PA,
USA) using a T1-weighted FLASH sequence (TR/TE = 125ms/3.11ms) [223]. Series
of 25 image volumes have been acquired with a temporal resolution of 11.25s. Each
volume consisted of 16 slices with 256× 160 voxels (.78mm× .78mm, slice thickness
3mm, 1mm gap). From the 36 patients which were available for the present study,
ROIs of about 100 × 100 voxels have been selected in slices that contained tumor-
ous tissue as determined from T1-MRI, MR spectroscopic imaging and histologic
examinations (details in [4]).
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For comparison, the parameters of the pharmacokinetic model (3.16) were determined
using the voxel-wise approach first. The NLS fit was performed with an interior
trust region method [52] as implemented in Matlab R14 (optimization toolbox). The
same initialization θ0 = (100, .3, .4, .003, 10, 6) was used in all voxels (cf. Fig. 3.13).
A maximum number of 10000 iterations per voxel was allowed for in order to ensure
proper convergence.

The proposed GGMRF approach was applied using a 2-norm (p = 2) which reduces
the GGMRF to a Gaussian MRF (GMRF). A homogeneous parameterization was
chosen and the influence of the diagonal coupling terms was reduced by choosing αst

1.4 times smaller than for the horizontal/vertical coupling terms. For the block-ICM
algorithm, the whole lattice was subdivided into two sets of blocks with 6× 6 voxels,
such that the second set had a horizontal and vertical displacement of three voxels
(the dashed squares in Fig. 3.2). In every odd sweep, the blocks in the first set were
visited in a doubly-quincunx pattern as indicated by the numbering in Fig. 3.2. In
every even sweep, the same procedure was performed on the second, shifted set of
blocks. A total of 12 sweeps were performed. To prevent premature convergence to
a local minimum, the number of optimization steps in each block was restricted to
20 iterations in the first 10 sweeps. For the remaining sweeps, up to 2000 iterations
were permitted. Initialization was done as in the voxel-wise approach and the same
optimization algorithm was used.

3.5.4. Results

The parameter maps for the important physiologic parameter kep shown in Fig. 3.14
allow for a qualitative comparison between the voxel-wise (left) and the GGMRF
approach (right). Results from several patients are provided and all of them show
white speckles in the voxel-wise approach. Since it is very unlikely that the kep value
exhibits such erratic spatial changes, it can be assumed that all such speckles indicate
failed parameter fits. Using the GGMRF, most of the speckles within the indicated
boundary of the prostate can be removed.

Numerical Results for all 36 patients are provided in Tab. 3.2. In order to make
results from time-curves with a different number of sampling points N comparable
in terms of the residuals, the mean squared residuals (MSR) have been used instead
of the SSR for the evaluation:

MSR =
1
N

SSR (3.20)

For comparison, also the average difference in MSR (∆MSR), i.e. averaged of the vox-
els, between the spatial GGMRF approach and the conventional voxel-wise approach
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(a) conventional, patient P-4 (b) GGMRF, patient P-4

(c) conventional, patient P-18 (d) GGMRF, patient P-18

(e) conventional, patient P-28 (f) GGMRF, patient P-28

(g) conventional, patient P-19 (h) GGMRF, patient P-19

(i) conventional, patient P-2 (j) GGMRF, patient P-2

(k) conventional, patient P-3 (l) GGMRF, patient P-3

Figure 3.14.: Comparison of kep-maps for several patients (cf. Tab. 3.2). The GGMRF
approach yields improved MSR for all shown patients but P-3. Nevertheless, the con-
ventional kep-map of patient P-3 in (k) shows some speckles which are avoided with the

GGMRF approach (l).
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Figure 3.15.: Two examples for fits from patient P-7 which has the lowest signal-to-
noise ratio in Tab. 3.2. In both cases the expected signal shape is hardly recognizable

in the measured data (blue crosses).

was calculated. Furthermore, ∆MSR was splitted into its positive and negative con-
tributions

∆MSR− =
1
|V |

∑
s∈V

max(−∆MSR(s), 0) (3.21)

∆MSR+ =
1
|V |

∑
s∈V

max(∆MSR(s), 0) (3.22)

such that ∆MSR = ∆MSR+ −∆MSR−. ∆MSR− quantifies the MSR difference of
the voxels for which the GGMRF approach performs better, and ∆MSR+ summa-
rizes the voxels in which the voxel-wise approach produces a lower MSR. The ratio
∆MSR−/∆MSR+ thus allows for a comparison of the voxel-wise and the GGMRF
approach; for ratios greater than one, the latter performs better. In this study, the
GGMRF yields a better fit of the pharmacokinetic model, as measured by the MSR,
in 34 out of 36 patients. The kep-parameter maps in Fig. 3.14 are from the patients
printed in boldface and reflect the numerical results from Tab. 3.2 quite well.

Table 3.2 also provides a robust estimate of the signal-to-noise ratio (SNR). The
lowest SNR is obtained for patient P-7 for which two exemplary fits are shown in
Fig. 3.15. Both cases confirm that the measured image data is very noisy and show
that the expected signal shape (cf. Fig. 3.13) can hardly be recognized. For example,
in the left part of Fig. 3.15 it is difficult to judge which of the two very different fits
should be favored by just looking at the isolated voxel-data.

A more detailed analysis of the resulting model fits was performed based on patient P-
19. Figure 3.16(a) presents an image of the voxel-wise difference in MSR between the
GGMRF and the conventional approach. The GGMRF yields smaller MSR in voxels
that are dark in Fig. 3.16(a). Within the prostate, the GGMRF apparently never
performs worse but in many voxels better than the conventional approach. However,
if the same difference image is displayed on a smaller intensity range (Fig. 3.16(c)) the
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Patient SNR [dB] ∆MSR− ∆MSR+ ∆MSR ratio
P-4 39.0 1410.241 2.186 -1408.055 644.981
P-30 33.8 1064.353 4.018 -1060.335 264.895
P-29 27.3 223.972 0.857 -223.115 261.351
P-14 51.7 35.729 0.162 -35.567 219.999
P-16 49.6 194.004 1.033 -192.972 187.885
P-23 50.9 101.946 0.967 -100.979 105.386
P-27 31.2 13.349 0.157 -13.192 85.142
P-15 36.8 21.289 0.266 -21.023 80.113
P-5 46.9 47.562 0.868 -46.694 54.785
P-18 45.4 42.064 0.829 -41.235 50.750
P-24 33.1 687.113 15.007 -672.106 45.786
P-26 22.4 81.634 1.887 -79.747 43.258
P-7 16.4 191.418 4.714 -186.704 40.603
P-35 38.0 194.517 5.400 -189.117 36.020
P-13 23.6 41.499 1.427 -40.072 29.085
P-31 26.8 34.853 1.426 -33.427 24.434
P-20 41.5 59.006 2.538 -56.468 23.251
P-28 41.9 69.005 3.597 -65.408 19.184
P-11 50.7 23.560 1.333 -22.227 17.668
P-12 41.8 61.956 5.112 -56.844 12.120
P-6 52.0 0.433 0.043 -0.390 10.017
P-36 45.1 4.046 0.472 -3.575 8.574
P-19 33.3 15.860 2.040 -13.820 7.776
P-33 33.9 6.387 0.913 -5.474 6.994
P-25 42.4 11.269 1.619 -9.650 6.959
P-9 29.9 0.632 0.095 -0.537 6.662
P-34 31.0 9.341 1.422 -7.919 6.569
P-2 30.3 4.117 0.802 -3.315 5.134
P-1 34.7 0.124 0.032 -0.092 3.889
P-10 28.9 6.589 1.869 -4.720 3.525
P-22 33.6 6.715 2.061 -4.654 3.258
P-21 40.8 1.763 0.655 -1.108 2.692
P-8 17.6 10.740 4.367 -6.373 2.459
P-32 32.7 21.184 12.499 -8.685 1.695
P-17 24.0 3.940 5.318 1.378 0.741
P-3 50.0 0.035 0.148 0.113 0.236

Table 3.2.: Results for all 36 patients ordered by the ratio ∆MSR−/∆MSR+ (see
text). Using the GGMRF prior improves the mean MSR in all but the last two cases.

Parameter maps for bold patient identifiers are shown in Fig. 3.14.
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Figure 3.16: Difference in mean squared residuals (MSR) for patient P-19. Darker
pixels indicate sites for which the GGMRF model could find a better fit. (a) As for the
kep-map in Fig. 3.15(h) the greatest benefit is obtained in the lower half of the image. (b)
Histogram of the difference values within the prostate. (c) Contrast-enhanced version of
(a). (d) Correspondingly zoomed histogram. Positive differences prevail in the displayed

range, reflecting the bias introduced by the spatial prior.

contrast increases and a few white voxels emerge. In these voxels, the conventional
approach yields lower MSR.

The two difference images in Fig. 3.16 indicate that the MSR difference is very big
for voxels in which the GGMRF performs better and small in voxels for which the
conventional approach is better. This observation is confirmed by the corresponding
histograms. The histogram in Fig. 3.16(b) exhibits a lot of mass for the negative
difference values which can be explained by the voxels with failed parameter fits.
Then again, its zoomed version in Fig. 3.16(d) is clearly skewed towards positive
values, an indication for bias.

Figure 3.16 thus allows to identify both such kinds of voxels and examine the respec-
tive model fits. For some of the black voxels in Fig. 3.16(a) in which the GGMRF
yields significantly smaller MSR, these are compared in Fig. 3.17. Although the
voxel-wise approach can find reasonable fits, especially for the first two examples,
the solutions found using the GGMRF look much more convincing in all four cases.
By contrast, Fig. 3.18 presents two examples from the encircled white voxels in
Fig. 3.16(c). And, although the GGMRF fits in the right column of Fig. 3.18 pro-
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Figure 3.17.: Comparison of selected model fits (patient P-19). In these examples
the GGMRF approach produced a lower MSR. The left column shows results from
the voxel-wise approach whereas the right column shows the corresponding fit with the

GGMRF prior.

duce slightly higher MSR than the voxel-wise fits in the left column, both solutions
look reasonable. In fact, one might even prefer the solutions found with the GGMRF
approach.

Finally, convergence results are provided in Fig. 3.19 that show the influence of
using different block sizes in the proposed block-ICM algorithm. The special case
of 1x1 blocks results in the conventional single-site ICM algorithm which clearly
converges much slower than block-ICM using bigger blocks. When plotted over time
(Fig. 3.20(a)) no difference in convergence speed is observed between the block sizes
of 4x4, 6x6 and 9x9. A slight advantage of the biggest block size (9x9) becomes
visible in Fig. 3.20(b) where the MAP objective is plotted against the number of
evaluations of the model function fθs(t).
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Figure 3.18.: Fits at the two voxels which are encircled in Fig. 3.16(c). The left column
shows the voxel-wise and the right column the corresponding GGMRF fits.
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Figure 3.19.: Convergence behavior of ICM (1x1) and block-ICM for different choices
of block sizes. The MAP objective is plotted over time (left) and over the number of
model function evaluations (right). Block-ICM clearly outperforms the common ICM
algorithm (1x1). Very similar performance is obtained for the block sizes 4x4, 6x6 and

9x9.
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3.5.5. Discussion

At first sight, the decreased SSR observed in Tab. 3.2 and Fig. 3.16(a) might be
surprising since the use of a smoothness prior should result in estimation bias and
always yield greater SSR than an unbiased estimate. However, this relation must
only hold true if the global optimum of the NLS objective (3.1) (voxel-wise) is com-
pared with the global MAP optimum (3.5) (GGMRF). Hence, in all voxels for which
the voxel-wise approach yields increased SSR, a local suboptimal solution has been
found. Considering the white voxels in the contrast-enhanced SSR difference image
in Fig. 3.16(c) and the histogram 3.16(d), estimation bias must indeed be assumed
in voxels for which the conventional and the GGMRF approach converge to similar
solutions.

Other approaches that support the convergence to better solutions of the NLS ob-
jective are conceivable. One could, for example, specify local constraints or priors
on the model parameters. Compared to the GGMRF, this kind of prior knowledge
is more explicit in that a very specific range of parameter values needs to be pre-
sumed. In contrast, no particular parameter value is preferred with the GGMRF
since only differences between neighboring parameters are penalized. Still, this kind
of local prior knowledge may be useful and is easily combined with the proposed
GGMRF approach. Another approach to avoid local optima of the NLS objective
is the use of initialization strategies that attempt to provide starting values close to
the global optimum. However, such strategies need to be failsafe and consider the
case of unexpected signal shapes since more harm than benefit could result from a
poor choice of starting values. Certainly, sophisticated initialization strategies could
also help the GGMRF approach to converge faster. In the present study, adaptive
initialization strategies or local prior knowledge have not been employed in order to
avoid confusion with the effects of the GGMRF prior.

In the presented experiments, the GGMRF prior was parameterized so that only
weak smoothing effects have been obtained. The observed bias was very low and
oversmoothing, which is often seen for Gaussian MRFs, did not pose a problem.
Comparing the parameter maps in Fig. 3.14, faint structures are found in areas where
both approaches yield good results. These are well preserved with the GGMRF prior
which seems to be very adequate. One reason for that certainly is that due to the
time constraints in the recording of DCE-MRI quite blurry image data is obtained.
Another reason may be that the diffusion process in the prostate only yields rather
smooth spatial concentration changes, anyway.

Overall, as shown in the examples in Figs. 3.17 and 3.18, the GGMRF prior usually
yields curve fits that are more in line with the expected pharmacokinetic behavior
even if the SSR is higher (Fig. 3.18). Thus, the effect of the GGMRF prior is two-
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fold. Not only does it help avoid getting trapped in local optima, but it also reduces
estimation variance.

Despite its favorable properties, using the GGMRF prior certainly makes parameter
estimation computationally very demanding. Without a specialized optimization
strategy such as ICM which can exploit the inherent sparseness of the MAP problem,
the GGMRF prior would not be applicable for clinical purposes. Block-ICM can
speed up convergence significantly and does not seem to be very sensitive to the
choice of block size (as long as it does not reduce to conventional ICM). For the
proposed GGMRF and on a second order neighborhood system, a block size of 6x6
appears to be a good choice in any case.

3.5.6. Conclusion

The application of spatial prior knowledge in form of a generalized Gaussian Markov
random field prior has been proposed to improve the estimation of kinetic param-
eter maps from DCE-MRI. Since the nonlinear least squares problem used to fit a
pharmacokinetic model in each voxel is nonconvex, the conventional approach is sus-
ceptible to getting trapped in local optima. It has been demonstrated that using the
GGMRF prior can help avoid false optima and can yield parameter estimates with a
lower mean square error. The noticeable speckles in the kinetic parameter maps re-
sulting from failed parameter fits could largely be removed using the GGMRF prior.
And, although a 2-norm has been used in the conducted experiments with prostate
DCE-MRI, the GGMRF prior did not lead to substantial oversmoothing. The pro-
posed block-ICM procedure demonstrated how the resulting, very high-dimensional
optimization problem can be tackled efficiently, paving the way for a clinical appli-
cation.

3.6. Summary

Usually quantification of vector-valued MR image data is performed by fitting a
nonlinear signal model to the observed data in every voxel independently. This
chapter has introduced an approach for including spatial prior knowledge about the
model parameter maps.

Using a generalized Gaussian Markov random field (GGMRF) prior for the estima-
tion of the parameter maps has several effects. First, the sum of squared residuals
(SSR) can be decreased in many voxels as compared to a single voxel approach.
This can only be explained by the failure of the single voxel approach to find the
global optimum of the SSR objective whereas the spatial prior helps to avoid spurious
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local optima. Secondly, a smoothness prior on the parameters maps reduces estima-
tion variance but potentially introduces bias. However, Monte Carlo studies have
shown that the reduction in variance is much larger than the negligible amount of
bias introduced, which results in a considerable decrease of root mean squared error.
Finally, the resulting parameter maps for both dynamic contrast enhanced MR imag-
ing (DCE-MRI) and magnetic resonance spectroscopic imaging (MRSI) simply look
nicer and are more in line with the expected behavior of the mapped physiological
process.

The optimization problem resulting from the GGMRF prior is over all parameters
in the fitted image simultaneously, i.e. very big. A blocked version of the iterated
conditional modes (ICM) algorithm has been proposed that can exploit the sparse
structure of the problem in solving the optimization problem by dividing it into a
number of smaller problems. An initial convergence analysis has shown significant
speed-up as compared to conventional ICM.
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Chapter 4.

Pattern Recognition Using Spatial
Context

4.1. Introduction

Pattern recognition approaches are advisable if a labeled data set is available
and one is mainly interested in obtaining a classification. In contrast to the previous
chapter which proposed to incorporate spatial prior knowledge into quantification,
the present chapter introduces and compares approaches that include spatial context
into pattern recognition. In particular, a family of generative and discriminative
random field models for simultaneous segmentation and classification are proposed
and compared.

In MRSI, a trade-off between scan time, spatial resolution, spectral linewidth and
signal-to-noise ratio (SNR) is made. Usually one tries to achieve “good” SNR at
reasonable resolutions and scan times. At higher magnetic fields (3T), which are
currently being introduced in standard clinical MR scanners, and using improved
pulse sequences, these factors can be improved [46, 69, 81, 118]. In [118], Li et
al . observed that, surprisingly, the SNR is not proportional to the voxel volume d3

but only increases as d2 due to a reduction of field inhomogeneities within small
voxels. Gruber et al . exploit this effect by acquiring spectral images at very high
resolutions, resulting in extremely noisy individual voxels, which are then averaged
within manually segmented anatomical structures [81]. Thus, additional information
can be gained from increasing imaging resolution when combined with sophisticated
smoothing strategies in a postprocessing step.

Up to now virtually all proposed approaches concentrated on the processing of single
spectra, neglecting the spatial nature of the acquired data (e.g . [7, 4, 32, 61, 193,
68, 70]). Given the classification (healthy/tumor+type) of every voxel the results
have merely been display in so-called nosologic images [54]. Here, a classifier is
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to be learned using a labeled MRSI data set for an automated segmentation and
classification of tumor regions using spatial probabilistic models [48].

In [113], Laudadio et al . describe an approach that classifies each voxel based on
features extracted from a local neighborhood, thus by applying a sliding window
method [64, 63]∗ which is the first attempt to make use of spatial information in
MRSI. However, the sliding window approach has two major disadvantages. First,
spectra in the local neighborhood can have an adverse effect on classification per-
formance, for example if a healthy voxel borders tumorous tissue. Secondly, the
neighborhood is fixed and easily chosen too small so that long-range interactions
that might support the local decision are neglected – a disadvantage in particular for
very noisy spectral data.

These limitations can be overcome using global models such as Markov random fields
(MRF) [28, 73, 64]. MRF-based models of various flavors have been proposed and
used for the segmentation of scalar-valued as well as multi-spectral images (e.g .
[31, 56, 215, 71, 47, 120, 181]). They can be used in both the unsupervised and
the supervised setting. Usually, a generative approach is taken by modelling the
data generating process of the observed image. Hence, a generative probabilistic
model is derived by specifying a prior distribution Pr(y) on the class label map and
the likelihood of the observed data given a label map Pr(x |y). The prior combines
information globally by favoring label maps that are smooth whereas the observation
term models the local data attachment. For computational tractability the latter is
often assumed to factorize over the sites, reflecting the assumption that the observed
voxel data is independent given the label map.

Two major problems arise from this approach [64]. First, any correlation between
labels has to be mitigated in the label map. If long-range interactions are to be mod-
eled with a generative MRF the neighborhood system has to be enlarged resulting
in increasingly difficult inference. Moreover, lacking further knowledge about unseen
data, the label map prior is usually homogeneous and isotropic. Second, in order to
accurately capture complex distributions, a powerful model for the observation term
such as a mixture model should be chosen. This, however, results in a non-convex
optimization problem for parameter estimation requiring good initialization schemes
and/or optimization approaches that can escape local optima.

Both problems are addressed with conditional random fields (CRF) [111] which reflect
the discriminative approach to probabilistic modelling [64]. Instead of expending
modelling effort on the distribution of the observed data, the discriminative approach
concentrates on the class label distribution which, in general, can be expected to be
considerably less complex. In this sense, CRFs and MRFs relate to each other like

∗although [64] is about sequential supervised learning, the described methods and their properties
can be carried over to the spatial case.
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logistic regression (LR) to linear discriminant analysis (LDA) which are the classical
examples for comparing discriminative and generative modelling [166, 145].

With CRFs long-range interactions between observed data as well as class labels
can be incorporated and data-dependent, spatially inhomogeneous and anisotropic
class label distributions can be modeled in a sound way. The parameter estimation
problem is convex and does not exhibit non-global optima. Nevertheless, parameter
estimation remains computationally demanding due to the repeated evaluation of a
log partition function.

Originally, CRFs have been introduced in the context of sequential supervised learn-
ing by Lafferty, McCallum and Pereira [111]. Since then, they have also been applied
to computer vision tasks as different as character recognition [211], man-made struc-
ture detection and binary image denoising [110, 109, 108], image segmentation [87]
and the demosaicking of color images [103].

In this work the application of conditional random fields to the automatic evalua-
tion of MRSI data is examined. Generative and discriminative probabilistic models
particularly suited for the processing of spectral images are proposed and described.
A systematic comparison of analogous generative and discriminative models is con-
ducted and the benefit of using spatial information is studied with regard to the
trade-off between SNR and resolution in MRSI.

4.2. Generative and Discriminative Models

In the following the generative and discriminative approaches explored in this work
are briefly described. Both have in common that the sought label map y is modeled
as a Markov random field. The crucial difference lies in the way in which the observed
image data x is incorporated.

4.2.1. Generative Approach

In the generative approach, models are derived by imitating the data generating
process. A generative probabilistic model is constructed by specifying a prior distri-
bution over class labels y and a class-conditional distribution q(x |y), the observation
model (cf. Fig. 4.1). In the generative approach these distributions should be carefully
chosen since inappropriate model assumptions easily lead to severe bias. Therefore,
powerful observation models with latent variables, such as mixture models, often
perform best. In the following, generative models that are particularly suited for the
simultaneous segmentation and classification of MRS images are proposed. Similar
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Figure 4.1.: A generative Markov random field (MRF) model. Given the spatially
coupled label map y, the class-conditional observation distributions q(xs | ys) are inde-

pendent.

approaches to MRF-based segmentation of image data have been analyzed before
(e.g . [71]).

Prior model

Let G = (S, E) be an undirected graph where each site s ∈ S represents a pixel
in the label map and indexes an associated random variable Ys that takes values
in the discrete set Y = {1 . . . L}, the set of class labels. The vector-valued random
variable Y = (Ys) takes values in the Cartesian product set Y|S| = Y × Y · · · ×
Y. In the conducted experiments, only regular lattice graphs with a first order
neighborhood system (four neighbors) have been considered. The generalization
to different neighborhood systems is straightforward. Each realization (label map)
y ∈ Y|S| is assigned the probability

q(y | θ) = exp [〈θ, Φ(y)〉 −A(θ)] (4.1)

with

〈θ, Φ(y)〉 :=
∑

j

θn
j φn

j (y) +
∑
j,k

θe
jkφ

e
jk(y) (4.2)

φn
j (y) =

∑
s

δj(ys) (4.3)

φe
jk(y) =

∑
s∼t

δj(ys)δk(yt) (4.4)

A(θ) = log
∑

y∈Y|S|

exp 〈θ, Φ(y)〉 (4.5)
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where the Kronecker delta δj(y) = δ(y − j) is 1 if y = j and 0 otherwise, and
s ∼ t denotes a neighboring pair of sites, i.e. (s, t) ∈ E. θ = (θn

j , θe
jk) summarizes

the node parameters θn = (θn
j ) and the edge parameters θe = (θe

jk), and Φ(y) =
(φn

j (y), φe
jk(y)) the corresponding feature functions (sufficient statistics). A(θ) is a

normalizing constant known as the log partition function.

That the described model is indeed a random field (cf. Fig. 4.1) can be seen by
summarizing the terms in the energy function in Eq. (4.2) differently:

E(y) = 〈θ, Φ(y)〉 (4.6)

=
∑

s

L∑
j=1

θn
j δj(ys) +

∑
s∼t

L∑
j=1

L∑
k=1

θe
jkδj(ys)δk(yt) (4.7)

=
∑

s

Vs(ys) +
∑
s∼t

Vst(ys, yt) (4.8)

where the potentials Vs(ys) and Vst(ys, yt) are defined as

Vs(ys) =
∑

j

θn
j δj(ys) (4.9)

Vst(ys, yt) =
∑
j,k

θe
jkδj(ys)δk(yt). (4.10)

For given parameters θ, the functions Vs(ys) can be defined by L-vectors and the
Vst(ys, yt) by L × L matrices. Roughly, these can be interpreted as unnormalized
logarithmic probability tables.

The defined prior is homogeneous since θn and θe are both constant over the random
field, and it is isotropic since θe is equal for horizontal and vertical edges. Further-
more, adding the linear symmetry constraint

θe
jk − θe

kj = 0 (4.11)

ensures that a spatial transition from class k to j is as likely as the reverse transition
which is a reasonable assumption to make for the present purpose. The proposed
prior model is different from the common Potts model [213, 119] in that potentials
between different classes are not forced to be equal; the Potts model is obtained as
a special case for θjk = −β δj(k).
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Observation models

The observation model is assumed to factorize over the sites. This conditional in-
dependence assumption ensures that the posterior q(y |x, θ, ϑ) ∼ q(y | θ) q(x |y, ϑ),
which is needed for classification, remains a sparse random field with the same struc-
ture as the prior model. Thus,

q(x |y, ϑ) =
∏
s∈S

q(xs | ys, ϑ). (4.12)

Any generative single voxel based model q(xs | ys, ϑ) with parameters ϑ can be used
within this framework. For MRSI, linear discrimant analysis (LDA) and principal
components analysis (PCA) have been shown to yield very good results in previous
work [7, 4]. Corresponding generative models are the class-conditional Gaussian and
the probabilistic principal component analyzer (PPCA) [194, 195, 76], respectively.
Both can also be used for building mixtures, yielding more flexible models that can
explain multimodal data distributions. Thus, the following observation models have
been employed:

• LDA: d-dimensional Gaussians with class-specific mean and common full co-
variance matrix:

q(xs | ys, ϑ) = Nd(xs |µys ,Σ) (4.13)

• LDAi: Gaussians with class-specific mean and isotropic covariance:

q(xs | ys, ϑ) = Nd(xs |µys , σ
2I). (4.14)

• PPCA-p: each class is modeled as a principal component analyzer of latent
dimension p, i.e. Gaussians with constrained covariance matrices:

q(xs | ys, ϑ) = Nd(xs |µys ,WysW
T
ys

+ σ2
ys

I), (4.15)

where Wys is d × p. Note that originally the PPCA-p model is explained as a
model with p latent variables [194, 29, 30]. It is shown in that for the maximum
likelihood estimate, the columns of Wys span the p-dimensional subspace that
is also found with common PCA.

• K-MoG: the data distribution for each class is modeled as a mixture of K
isotropic Gaussians:

q(xs | ys, ϑ) =
K∑

k=1

πk Nd(xs |µkys , σ
2
kys

I). (4.16)

MoGs can be explained using a model with K latent variables [30].
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• K-MoPPCA-p: the data distribution for each class is modeled as a mixture of
K principal component analyzers:

q(xs | ys, ϑ) =
K∑

k=1

πk Nd(xs |µkys ,WysW
T
ys

+ σ2
kys

I). (4.17)

The prior model parameters θ of as well as the observation model parameters ϑ are
estimated from observed data. Since there is considerable overlap with the estimation
techniques for the discriminative approach a description of parameter estimation is
deferred to section 4.3. We now proceed with the introduction of the discriminative
model.

4.2.2. Discriminative Approach

The discriminative counterpart to the generative MRF model described previously
is the conditional random field (CRF). Instead of modelling the data generating
process, CRFs model the class distribution given observed data p(y |x, θ) directly.

The definition of CRFs is quite generic and inconspicuous in that the only require-
ment is that p(y |x, θ) constitutes a random field, i.e. that it factorizes according to
an undirected graph [111]. The full power of CRFs arises from the possibility to use
arbitrary feature functions φ(x) which can capture non-local correlations in the spec-
ification of p(y |x, θ). Hence, the strong conditional independence assumption of the
generative approach is avoided. This means that arbitrary features extracted from
the observed image data, such as edge or texture information, can be incorporated
in a sound probabilistic model.

Here, a CRF model suitable for simultaneous multi-class classification and segmen-
tation is described. The formulation is different from [110] in that the site-potentials
are not locally normalized. Considering only pairwise interactions, the conditional
random field is defined by

p(y |x, θ) = exp [〈θ, Φx(y)〉 −A(θ,x)] (4.18)
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with

〈θ, Φx(y)〉 :=
L∑

j=1

Fn∑
i=1

θn
ijφ

n
ij(y,x) +

L∑
j=1

L∑
k=1

Fe∑
i=1

θe
ijkφ

e
ijk(y,x) (4.19)

φn
ij(y,x) =

∑
s

ϕs
i (x)δj(ys) (4.20)

φe
ijk(y,x) =

∑
s∼t

ϕst
i (x)δj(ys)δk(yt) (4.21)

A(θ, x) = log
∑

y∈Y|S|

exp 〈θ, Φx(y)〉 (4.22)

where θ = (θn
ij , θ

e
ijk) again summarizes the model parameters and the corresponding

vector of sufficient statistics is Φx(y) = (φn
ij(y,x), φe

ijk(y,x)). An explanation of the
role of the Fn (Fe) node (edge) feature functions is provided later. Note that the
summation index i in the above formulas is used for explicating dot products whereas
j and k are used for class labels.

Again, the random field (cf. Fig. 4.2) can be expressed like in Eq. (4.8), leading to
the potential functions

Vs(ys,x) =
∑
i,j

θn
ijϕ

s
i (x)δj(ys) (4.23)

Vst(ys, yt,x) =
∑
i,j,k

θe
ijkϕ

st
i (x)δj(ys)δk(yt), (4.24)

which, for given parameters θ and observation x, again evaluate to a collection of
vectors Vs(ys,x) and matrices Vst(ys, yt,x) where each entry is obtained as the dot
product between a localized feature function (ϕs(x) or ϕst(x)) and a global parameter
(θn

j or θe
jk).

In principle, the Fn real-valued node feature functions ϕs(x) = (ϕs
i (x)) and the Fe

edge feature functions ϕst(x) = (ϕst
i (x)) could depend on the whole spectral image

x. In the present work, however, features are only calculated from a local patch
around the site s and the edge s ∼ t. Note that it is understood that one feature
function, i.e. ϕs

0(x) and ϕst
0 (x), is always the constant value 1. This so-called bias

feature results in corresponding bias parameters that are always added in the dot
product even if all feature values are zero.
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Figure 4.2.: The conditional random field (CRF) is a discriminative model. Given
the observations x the random field over y has the same graphical structure as the
prior model used in the generative approach, however the pair-potentials Vst(ys, yt,x)
evaluate to different values for each edge leading to an inhomogeneous random field.
Using squares instead of circles for the observed variables x indicates that those do not

have to be random variables, i.e. a distribution over x is not required.

For example, in a binary classification problem (Y = {1 . . . 2}) the potential functions
could be written as:

Vs(ys,x) =
{
〈θn

1 , ϕs(x)〉 if ys = 1
〈θn

2 , ϕs(x)〉 if ys = 2
(4.25)

Vst(ys, yt,x) =


〈
θe
11, ϕ

st(x)
〉

if ys = 1 and yt = 1〈
θe
12, ϕ

st(x)
〉

if ys = 1 and yt = 2〈
θe
21, ϕ

st(x)
〉

if ys = 2 and yt = 1〈
θe
22, ϕ

st(x)
〉

if ys = 2 and yt = 2

(4.26)

where the vector θe
11, for example, summarizes the parameter values θe

i11 for all i
of which there are as many as corresponding edge feature functions ϕst(x). The
parameter vectors θe

12, θe
21, θe

22, θn
1 and θn

2 are defined in a similar way.

In some sense, the single-site feature function ϕs
i (x) takes over the role of the obser-

vation model q(xs | ys) in the generative approach. In fact, if the pairwise interaction
terms in the MRF and CRF were removed and using the LDA observation model as
well as the identity feature function ϕs(x) = xs, one would just end up with usual
LDA versus logistic regression (cf. [85, pp103ff]). If instead, quadratic discriminant
analysis (QDA) was used, a corresponding discriminative model would be logistic
regression with a more complex feature function which calculates all pairwise prod-
ucts, i.e. ϕs(x) = vec

[
(1xT

s )(1xT
s )T

]
. A linear threshold in the augmented feature
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space generated by this feature function thus allows for quadratic boundaries in the
original domain of the data xs like with QDA. The proposed CRF allows for even
more complexity in that single-site feature functions ϕs(x) are admissible which com-
pute features not only from the local xs but from a local neighborhood or even the
complete image x. Correctly capturing such dependencies in a generative approach
would lead to intractable models even without a direct interaction between class
labels.

Similarly, the edge feature functions can be chosen so as to increase modelling power.
Since high interaction potentials penalize the corresponding configurations of the
random field, such realizations a less likely. Using a trainable model also for the
edge potentials allows for data-adaptive penalties. Given a suitably chosen set of
feature functions such as the channel-wise directional derivatives for spectral images
and a set of training examples, this data-dependence as well as the overall coupling
strength are automatically inferred and optimized for the given classification task.

In general, the idea of feature functions in combination with dot products is very
popular in machine learning. It is also the basic principle behind kernel meth-
ods [179] such as support vector machines and Gaussian processes. Here, only
finite-dimensional feature functions are considered and, unlike for kernel methods,
parameter estimation is performed in the primal parameter space as opposed to the
Lagrangian dual space. This has the advantage that the learned parameter vectors
admit interpretation.

Note that the CRF (Eq. (4.18)) takes a form very similar to the MRF prior in
Eq. (4.1). In fact, the MRF prior is obtained as a special case of the CRF by
choosing ϕs

i (x) = ϕst
i (x) ≡ 1, i.e. by only using the bias feature. Provided that

the edge feature functions ϕst
i (x) are equal for horizontal and vertical edges, the

conditional random field can again be called homogeneous and isotropic since the
parameters θij and θijk are independent of location and direction. However, since
the feature functions usually evaluate to different values at each location, the random
field Y |X has anisotropic and inhomogeneous potentials.

Like for the MRF prior, one might want to enforce the symmetry constraint

Vst(ys, yt,x)− Vts(yt, ys,x) = 0. (4.27)

Depending on the features ϕst
i (x), however, this does not directly translate into a

symmetry constraint on θijk as for the MRF. However, given a certain symmetry of
ϕst

i (x), Eq. (4.27) can be enforced by constraints on θijk. In particular,

ϕst
i (x)− ϕts

i (x) = 0 ⇒ θijk − θikj = 0 (symmetric)
ϕst

i (x) + ϕts
i (x) = 0 ⇒ θijk + θikj = 0 (antisymmetric)

(4.28)
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Hence, the symmetric constraint is appropriate for the bias whereas the antisymmet-
ric constraint should be used for spatial derivative features.

Note that the distribution described by Eq. (4.18) is an exponential family and there-
fore exhibits many favorable properties [208, 24]. For example, maximum likelihood
(ML) parameter estimation yields a convex optimization problem and, therefore,
problems due to local optima are avoided (cf. section 4.3.2).

4.3. Parameter Estimation

Given independent identically distributed (iid) training data, i.e. a set of hand-
segmented spectral images, parameter estimates with optimal generalization perfor-
mance are sought. Usually, a training data set with observed realizations is available.
Here, the standard approach is extended by also allowing for soft evidence such that
beliefs over class labels [151] can be specified. For example, an expert’s statement
“tumor with 20% probability and healthy with 80%” can directly be translated into
the belief ys = (.2, .8). Hard labels are included in this framework as the extreme
beliefs ys = (1, 0) and ys = (0, 1). Maximum likelihood (ML) estimation with soft
evidence is most conveniently stated using expectations with respect to empirical
distributions Ep̃[·] which are defined by the observed data set D (cf. appendix D).

4.3.1. Generative Approach

An important difference between generative and discriminative models is that the
former are trained by joint likelihood whereas the latter are trained by conditional
likelihood. Thus, ML parameters for generative models are found by maximizing

lj(θ, ϑ) = Ep̃(x,y)[log q(x,y | θ, ϑ)] (4.29)
= Ep̃(x,y)[log q(x |y, ϑ)] + Ep̃(y)[log q(y | θ)]. (4.30)

Hence, joint likelihood for generative models decomposes into two terms which allow
to perform training of the observation model q(x |y, ϑ) and the prior model q(y | θ)
independently. For hard labels (cf. appendix D), this amounts to maximizing

lj(θ, ϑ) =
1
N

N∑
i=1

(log q(xi |yi, ϑ) + log q(yi | θ)) . (4.31)
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Since the prior model in the generative approach is just a special case of the CRF
model (compare Eq. (4.1) to Eq. (4.18)), training of the prior model can be performed
with the same algorithms which are described in the following section.

Training the observation model in the generative approach is no harder than training
a single-voxel model due to the decomposition of the joint likelihood objective. For
the LDA and LDAi models this is done by calculating the (weighted) mean for each
class followed by the estimation of a full, respectively isotropic covariance matrix from
the pooled data. For the remaining models, PPCA, MoG and MoPPCA, maximum
(soft-) likelihood parameters have been obtained with the expectation maximization
(EM) algorithm [194].

4.3.2. Discriminative Approach

Unlike generative models, discriminative models are trained by conditional likelihood,
i.e. by maximizing

lc(θ) = Ep̃(x,y)[log p(y |x, θ)] (4.32)
= Ep̃(x)[Ep̃(y |x) [log p(y |x, θ)]] , (4.33)

which for hard labels becomes

lc(θ) =
1
N

N∑
i=1

log p(yi |xi, θ). (4.34)

Due to the high correlation and collinearities intrinsic to spectral data, plain max-
imum likelihood usually fails to provide good parameter estimates in the discrimi-
native case. Therefore, a Bayesian approach is adopted by introducing a zero-mean
Gaussian prior over the parameter vector and using the maximum a posteriori (MAP)
estimate instead. Thus, the objective function to maximize becomes

lMAP
c (θ) = lc(θ)−

θT
n Lnθn

2σ2
n

− θT
e Leθe

2σ2
e

(4.35)

where the Ln and Le are precision matrices which can be chosen so as to favor small
and smooth parameter coefficient profiles in the style of a generalized Tikhonov reg-
ularizer. For example, in the case of spectral data, a good regularizer is obtained
from the positive semidefinite matrix L = DT

k Dk where Dk is the k-th order dif-
ference operator. The overall strength of the edge and node priors can be adjusted
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individually using the parameters σ2
n and σ2

e which reduce to Gaussian variances for
Ln = Le = I.

Since the described random field models describe exponential families, their log par-
tition functions are convex in θ [24]. Furthermore, the gradient of the log parti-
tion function equals the expected value of the sufficient statistics (cf. appendix C,
Lemma 1), leading to

∇lc(θ) =
∂

∂θ
lc(θ) (4.36)

= Ep̃(y,x)

[
∂

∂θ
〈θ, Φx(y)〉

]
− Ep̃(y,x)

[
∂

∂θ
A(θ)

]
(4.37)

= Ep̃(y,x)[Φx(y)]− Ep̃(x) [Eθ[Φx(y)]] (4.38)
= Ep̃(x)

[
Ep̃(y |x)[Φx(y)]− Eθ[Φx(y)]

]
. (4.39)

Hence, the gradient is proportional to the expected difference between the expecta-
tion of the sufficient statistics under the empirical distribution and its expectation
under the model parameterized by θ. The first term is just a summation over the
sample, which is easily calculated and has to be done only once since it does not de-
pend on θ. Problems arise from the calculation of the second term, the expectation
Eθ[Φx(y)], and the log partition function A(θ,x) (Eq. (4.34)) which both involve
summations over a number of states that grows exponentially with the number of
sites |S|. Various algorithms have been proposed to approach this problem, among
which are Monte Carlo methods [213, 162], variational and mean field methods [75]
and message passing methods [217, 107, 207, 151].

For efficiency and simplicity, asynchronous belief propagation (BP) has been used,
i.e. BP with a random message passing schedule [218]. In its sum-product version,
BP can be used to obtain approximate marginals for a given random field (or more
general a factor graph) with unknown partition function [107], i.e. it attempts to
calculate

Z · p(ys |x, θ) =
∑
y1

∑
y2

. . .
∑
ys−1

∑
ys+1

. . .
∑
y|S|

exp [〈θ, Φx(y)〉] (4.40)

where Z is now easily calculated as normalizer for p(ys |x, θ). A similar formula
holds for the marginals over pairs of sites (ys, yt). With a single run of BP all site
and pairwise marginals are obtained. This works by repeatedly passing messages
from a node to its neighbors until local consistency is obtained. For tree-structured
graphs, local consistency implies global consistency and BP is known to be exact then.
Details and more references can be found, for example, in Yedidia et al . [218, 217]
who also showed that the stationary points of BP are also stationary points of the
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Bethe free energy. Thus, different algorithms could be used to find local optima of
the Bethe free energy which might give better performance. However, the choice and
influence of using different algorithms for obtaining approximate marginals has not
been examined in the present work.

Upon convergence of BP, the beliefs bst(ys, yt) and bs(ys) can be used to replace the
exact marginals of p(y |x, θ). Using the Bethe approximation of the loglikelihood,
the calculation of the log partition function for Eq. (4.34) is avoided since

log p(y |x, θ) ≈
∑

s

(1− ds) log bs(ys) +
∑
s∼t

log bst(ys, yt) (4.41)

where ds denotes the number of sites connected to site s [218, 217]. Furthermore,
the same set of beliefs can be used for an approximation of the expected sufficient
statistics. In particular,

Eθ[φn
ij(y,x)] ≈

∑
s

∑
ys

bs(ys)ϕs
i (x)δj(ys) (4.42)

Eθ[φe
ijk(y,x)] ≈

∑
s∼t

∑
ys,yt

bst(ys, yt)ϕst
i (x)δj(ys)δk(yt). (4.43)

Stacked like Φx(y) = (φn
ij(y,x), φe

ijk(y,x)), these expectations allow the calculation
of the gradient in Eq. (4.39).

Using these approximations, lMAP
c (θ) and its gradient are ready for use in any

gradient-based optimization method and summarized in Fig. 4.3. Here, the lim-
ited memory BFGS [44] method has been used, a quasi-Newton method which has
been designed to cope with large numbers of variables. This is particularly useful
for CRFs since the discriminative approach draws its power and flexibility from the
definition of a large number of feature functions resulting in a correspondingly large
number of parameters.

4.4. Segmentation and Classification

Given a set of trained parameters the posterior class label distributions p(y |x)
(CRF) and q(y |x) ∝ q(x |y) q(y) (MRF) could in principle be calculated for any
previously unseen image x. Algorithmic problems arise again from the partition
function. From a decision-theoretic point of view this posterior contains the max-
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Data: current parameters θ(k) = (θ(k)
n , θ

(k)
e )

Result: objective f , gradient g
f = 0;
g = 0;
for all training images do

calculate beliefs bs(ys) and bst(ys, yt) using current θ(k);
f = f +

∑
s(ds − 1)

∑
ys

ws(ys) log bs(ys)
−
∑

s∼t

∑
ys

∑
yt

ws(ys)ws(yt) log bst(ys, yt)
gn
ij =

∑
s

∑
ys

(bs(ys)− ws(ys))ϕs
i (x)δj(ys)

ge
ijk =

∑
s∼t

∑
ys,yt

(bst(ys, yt)− ws(ys)wt(yt))ϕst
i (x)δj(ys)δk(yt)

g = g +
(
gn
ij , g

e
ijk

)
end

f = f + θT
n Lnθn

2σ2
n

+ θT
e Leθe

2σ2
e

gn = σ−2
n Lnθ

(k)
n

ge = σ−2
e Leθ

(k)
e

g = g + (gn, ge)

Figure 4.3.: Pseudo-code for calculating the objective/gradient to be minimized
for CRF training with soft evidence (D = {wj(x)}N

j=1, cf. appendix D), i.e. the
conditional likelihood. Note that the same code can be used for training the prior

model of the MRF by using the bias feature only (cf. section 4.2.2).

imum amount of information and allows for a Bayes-optimal decision w.r.t. to any
associated cost function C(ŷ,y), i.e. an estimate ŷ that minimizes the Bayes-risk

R(ŷ) =
∫

C(ŷ,y) p(y |x) dy. (4.44)

Using the zero-one loss function

C(ŷ,y) = 1− δ(ŷ − y), (4.45)

it can be shown that the Bayes estimate is the Maximum A Posteriori (MAP) esti-
mate, which is the mode of the posterior distribution [213, p.27], [119], i.e.

ŷMAP = argmax
y

p(y |x) = argmax
y

log p(y |x). (4.46)
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The maximization of such an energy of a large number of discrete variables is a well-
studied standard problem in discrete optimization. Various algorithms can be used
under appropriate conditions [121, 79, 38, 93, 105, 37].

The zero-one loss function, however, might be too restrictive for images since it is
only 0 for an estimated label map that exactly agrees with the ground truth. An
alternative is the error rate loss function

C(ŷ,y) =
1
|S|
∑
s∈S

(1− δ(ŷs − ys)) (4.47)

which quantifies the number of erroneously classified voxels. In addition, this loss
function is better suited for a comparison with single voxel approaches. The Bayes
estimate for the error rate is the Marginal Posterior Mode Estimate (MPME) [213,
p.28], i.e.

ŷMPME
s = argmax

ys

p(ys |x). (4.48)

The marginals p(ys |x) (cf. Eq. (4.40)) can be determined with the same algorithms
as in section 4.3.2 and again asynchronous belief propagation was used.

A further advantage of using marginals is that instead of displaying the MPME,
the marginal probabilities can be displayed in probability maps which convey more
information than the MPME point estimates.

Finally, since for given data x both CRF and MRF are represented by the same factor
graph [107], MAP as well as MPME estimation does not differ at all between the
discriminative and the generative approach. Thus, although MRFs are less difficult to
train than CRFs (due to the decomposition of the likelihood function), the prediction
of class labels given unseen data poses exactly the same computational burden. The
cost for powerful modelling and more flexibility with CRFs is entirely paid during
the training phase.

98



4.5. Experimental

4.5. Experimental

4.5.1. Simulated Data

Artificial MRSI data was generated for the purpose of a Monte Carlo study using the
common FID model, a superposition of K exponentially decaying complex sinusoidals
(see also appendix A):

s(t) = exp (jφ0)
K∑

k=1

ak exp (jφk + j 2πfkt− dkt) (4.49)

with the imaginary unit j and where ak denotes the amplitude of the kth component,
fk the frequency, φk the phase shift, and dk the damping which determines the
(Lorentzian) line width.

In order to obtain realistic tumor sizes and shapes, ground truth was generated based
on available recordings from three patients. Ground truth is required to train the
different classifiers and allows to calculate various error measures for their evaluation.
Plausible high-resolution concentration maps of N-acetylaspartate (NAA), choline
(Cho) and creatine (Cr) were created manually. The concentration of NAA was
decreased in the tumor whereas the Cho concentration was increased. Altough Cr
varied spatially it was not altered specifically within the tumor (cf. Fig. 4.4).

Downsampled concentration maps at various resolutions (8× 8 up to 64× 64) were
calculated from the manually created high-resolution maps by averaging the concen-
tration values within each low-resolution voxel. Spatially resolved FIDs were then
generated using the FID model in Eq. (4.49) where the amplitudes were chosen pro-
portional to the concentration of the respective metabolites. NAA was modeled with
a frequency shift of 171.2Hz, Cr with 107.5Hz and Cho with 94.2Hz. A damping
of dk = 12Hz and no phase shift (φ0 = φk = 0) was applied to all the resonances.
Finally, complex-valued white isotropic Gaussian noise with mean zero was added to
yield MRSI data with specific and known SNR. In Fig. 4.4 a real data example is
contrasted with a simulated noisy spectrum (cf. section 4.5.1).

4.5.2. Feature Extraction

From the complex-valued FID signals, suitable feature vectors were extracted with
the following steps (for details see [4, 7] or [222]). Fist, residual water and nuisance
peaks were removed with time-domain selective filtering by means of a Hankel Singu-
lar Value Decomposition (HSVD) (cf. appendix A). Apodization with an exponential
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Figure 4.4.: Example for MRSI magnitude spectra from a patient with brain tumor
and from simulation.

function and removal of the first few sampling points of the FID suppressed noise
and baselines. Then, the filtered FID signal was Fourier transformed and magni-
tude spectra were calculated. Using magnitude spectra instead of real spectra avoids
problems due to the unknown null-phase which is difficult to reliably estimate from
noisy MRSI data [4]. Then, the spectra were truncated to the frequency band that
contains the interesting metabolite resonances. Finally, the spectral pattern was
L1-normalized. The latter is necessary since MRSI signal amplitudes may vary not
only due to metabolite concentration changes but also due to the spatially varying
sensitivity of the receiving coils.

For the CRF, also edge features φe are used. Since a linear combination of the edge
features determines the pairwise coupling strength of the labels, these are designed to
contain edge information. The response of a derivative filter appears to be suitable.
Here, Sobel-like filters are used [95, 96], i.e. each channel of the spectral image first
is smoothed with the Binomial filter [1 2 1] in one direction and then convolved with
the first order difference filter [1 -1] in the orthogonal direction.

4.6. Results

Training was performed based on six simulated spectral images with 32× 32 voxels
and 16% noise level (SNR = 1/.16). For the CRF, a parameter prior was derived
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Figure 4.5.: Generative versus discriminative methods in a single voxel approach:
mean area under the receiver operator characteristic.

from the second order difference operator and the hyperparameters σn and σe were
determined so as to maximize the loglikelihood on an independent validation set. For
the MRF, the global coupling strength of the homogeneous prior model was deter-
mined in the same way. Training was repeated 16 times with fixed hyperparameters
on independent data sets yielding 16 different parameter estimates for each model.

For testing, 18 spectral images with varying resolutions and SNR were used. From the
estimated marginal posteriors the marginal posterior mode estimate (MPME) and
the threshold-independent area under the receiver operator characteristics (AUC)
were determined for each image.

In Fig. 4.5, the AUCs for the generative and discriminative approaches without spa-
tial coupling are compared. Training the CRF without spatial coupling is equivalent
to using logistic regression (LR) which represents the discriminative approach. For
the generative approach five different observation models were evaluated (cf. sec-
tion 4.2.1). Three latent variables have been used for the respective observation
models since this corresponds to the number of metabolite resonances present in the
spectral patterns. According to Fig. 4.5 all models exhibit a similar performance loss
with increasing noise level and only the mixture models show a slight disadvantage.

Comparing the ground truth of the simulated MRSI slices and the marginal posterior
maps obtained with LR and the CRF in Fig. 4.6 suggests that using spatial context
improves the estimate at all resolutions. Although posthoc median filtering can
improve the results from logistic regression considerably, the CRF clearly recovers
the ground truth more accurately. A further analysis of posthoc smoothing has
therefore not been pursued.
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Figure 4.6.: Ground truth and estimated tumor probabilities (marginals of the pos-
terior distribution) from logistic regression, median filtered logistic regression (3 × 3
mask) and CRF for three simulated MRSI slices at resolutions 16, 32, 48 and 64 with

48% noise.

102



4.6. Results

The advantage of the CRF over LR is confirmed by the numerical results presented
in Fig. 4.8(a). In addition to the median AUC also the .45, .35 and .25 quantiles
are reported which provide an indication for the spread of the 16× 18 AUC values.
Fig. 4.8(a) also shows that, as expected, the performance of LR remains unchanged
for different resolutions. Unlike that, the CRF clearly profits if a resolution of about
20× 20 voxels is exceeded.

According to Fig. 4.8(b), which shows the same statistics for increasingly noisy test
images, the CRF maintains an excellent AUC even at higher noise levels. However,
beyond a level of about 60% noise the lower quartile of the AUC distribution starts to
degrade rapidly which indicates that the CRF severely breaks down for some images.
A similar behavior is observed for the accuracy in Fig. 4.8(c), though it seems to be
more sensitive in that the lower quantile starts to break down earlier and faster.
Still a clearly significant gain of up to about 15% accuracy could be reached on the
simulated data.

With the generative approach the same principal behavior is observed and equivalent
results are provided in Fig. 4.8. Using the MRF improves the performance for all
observation models up to a certain noise level. Beyond that level the AUC degrades
rapidly and the MRF prior even harms.

Figure 4.9 compares the performance of the CRF and the different MRFs. On the
average, the CRF can achieve a slightly higher AUC for all noise levels. With respect
to the mean error, however, the CRF hardly shows advantages. Its error rate is
significantly lower than that of all other approaches only between the resolutions of
44 and 64.

A more realistic trade-off between resolution and noise was simulated by adjusting
both simultaneously under the assumption of constant scan times. Figure 4.10 shows
the performance of single voxel LR versus spatial CRF when the noise level is in-
creased with the resolution such that the ratio noise/resolution2 remains constant
(cf. [118]). For resolutions between 32×32 voxels (36% noise) to 40×40 voxels (56%
noise) the CRF shows a clear advantage over LR.

Figure 4.11 presents the edge weights θe (without the bias parameter) that have
been learned from the training data. Note that an antisymmetric constraint on
the parameters corresponding to the directional derivative features and a symmetric
constraint on the bias parameters has been used. The edge parameter vectors can
be interpreted and used to identify those spectral channels that determine spectral
edges as defined by the label map.
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(b) AUC over noise, 64× 64 voxels
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Figure 4.7.: Discriminative approach: Accuracy and area under curve (AUC) for
single voxel logistic regression (LR) and conditional random field (CRF). In addition
to the median, the .45, .35 and .25 quantiles are shown to indicate the spread of the

distribution.
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Figure 4.8.: Generative approach: mean area under ROC comparing models with and
without spatial MRF prior.

4.7. Discussion

At first sight, using simulated data for the comparison of generative and discrimina-
tive models seems to be a bad idea. Since the data generating process is known, the
generative model should always perform better. Despite the nonlinear feature extrac-
tion steps that clearly result in non-Gaussian noise in the feature vector, the LDA
model with isotropic covariance (LDAi) resembles the true distribution very well.
This is also reflected in the similar performance of LR, LDAi, LDA and PPCA-3 in
Fig. 4.5 where the generative models tend to show better performance. The potential
of representing multi-modal distributions does not help the mixture models (3-MoG,
3-MoPPCA-1) to superior performance. On the contrary, the MoG shows a quite
unstable and atypical behavior as compared to the other methods. A reason could
be that the MoG is a generative model that does not resemble at all the true data
generating process.

As soon as spatial context is considered (Figs. 4.8 and 4.10(a)), the relative perfor-
mance changes. Most notably, the performance of the PPCA-3/MRF model breaks
down first and, different from the single voxel case, is not superior to the mixture
models. Furthermore, the LDA/MRF model with full covariance matrix now per-
forms best. This reflects the fact that the true distribution, considering spatial
correlations, is not very well captured by the isotropic and homogeneous MRF prior
which can partially be compensated by more complex observation models. Unlike
that, the CRF better models the spatial label distribution and thus its performance
gains most from including spatial context.
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Figure 4.9.: Comparison of AUC and error obtained with LR and CRF for increasingly
noisy signals.
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Figure 4.10.: Performance of LR and CRF when the noise level increases as the square
of the resolution (noise/resolution2 = 56%/402).
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Although locally adaptive priors have been proposed (e.g . [56]), such modifications
lead to solutions not modeled by the original MRF since the local weights either have
to depend on the observed data or have to be included in the original prior. Unlike
that, the proposed CRF constitutes a sound probabilistic model for incorporating
data-dependent edge weights.

Figures 4.7 and 4.10 show that CRFs can indeed be used to increase the acceptable
signal noise and thus record MRSI at higher resolutions. However, beyond a certain
noise level the results obtained with a random field prior have to be regarded with
care since the variance of the predictions gets very big. For example, for the second
slice at resolution 16 in Fig. 4.6, the CRF erroneously adds a small additional region
to the top left of the tumor region. However, in order to examine the break-down
behavior of the different methods, the simulated noise levels have been extremely
high. In real applications, an optimal noise level has to be found that still allows for
reliable evaluation using the proposed approach.

In general, it is not clear how an “edge” should be defined for spectral images, in
particular, it is not clear how to combine the derivative information from different
spectral channels. Using the CRF, such information can be learned from labeled
images which implicitly define what the notion of an edge actually means. For the
simulated MRSI data, an edge is identified in places where the magnitudes of the
Cho and NAA resonances change a lot between neighboring pixels as apparent from
Fig. 4.11. Within the homogeneous regions the spatial derivatives can be expected
to be close to zero, resulting in a potential matrix that is only determined by the
bias parameters. At transitions from tumor (class 1) to healthy tissue (class 2) the
Cho resonance decreases whereas the NAA resonance increases. A dot product of
the resulting directional derivatives with θe

i12 results in a negative value which is
subtracted from the bias and results in a potential matrix that favors a transition
from the first to the second class and makes the opposite transition, i.e. class two to
one (θe

i21), less probable. Hence, the smoothing strength at spectral edges is reduced
as desired. In light of the flat curves obtained for the within class transitions (θe

i11 and
θe
i22) it might be reasonable to explicitly constrain these parameters to zero during

CRF training.

4.8. Summary

In the present chapter, pattern recognition approaches that include spatial context
for the classification of individual voxels have been introduced and compared. Using
probabilistic graphical models, a family of generative and analogous discriminative
approaches for the combined segmentation and classification of spectral images have
been proposed.
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In particular, a family of generative models has been constructed by defining a
discrete-valued homogeneous Markov random field prior of the lattice-structured la-
bel map together with five different observation models of different complexity and
particularly suited for spectral data. Three observation models have been condition-
ally Gaussian with differently constrained covariance matrices (full, isotropic and
probabilistic principal components analyzer (PPCA)) and two observation models
have been conditional mixture models (isotropic Gaussian and PPCA).

For the analogous discriminative approach, a conditional random field (CRF) has
been defined. Unlike the generative models, the CRF allows for an adaptive cou-
pling strength between individual voxels in the label map. This allows to learn
which spectral channels define an edge from labeled training data and prevent label
smoothing across such edges. Unlike with the generative models, feature information
can be extracted from the whole image and used with the CRF in a sound way. Since
the CRF model has been designed as an exponential family in natural parameters,
the parameter estimation problem is convex. Furthermore, with a single run of belief
propagation, marginals are obtained that can be used to approximate the likelihood
function (Bethe) as well as to calculate its gradient. Finally, the resulting parameter
vectors allow for interpretation and can be used to define a weighing of the spectral
channels of a directional derivative that indicate a spectral edge.

Since CRFs incorporate information from a local neighborhood and thus perform
a kind of local averaging, data with more noise can be processed. Using a CRF
could improve classification accuracy by up to 15% as compared to the single voxel
approach (LR) and even more improvement is obtained for the threshold-independent
area under the receiver operator characteristic (AUC). This in turn allows to use
MRSI at higher resolutions.
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Chapter 5.

Conclusion

Imaging modalities that allow conclusions to be drawn about physiological pro-
cesses increasingly gain importance for clinical purposes. Two such modalities from
the family of nuclear magnetic resonance imaging (MRI) techniques have been exam-
ined in the present work, namely dynamic contrast-enhanced MRI (DCE-MRI) which
reveals permeability and perfusion properties of the depicted tissue, and magnetic
resonance spectroscopic imaging (MRSI) which is a metabolic imaging technology
and can thus be used to map the concentration of certain biomolecules.

In order efficiently access their diagnostic information, both modalities require the
processing of vector-valued image data. In the present work two approaches to
such a processing have been identified. Given a set of evaluated example images,
the pattern recognition approach tries to imitate the decision rules applied by an
expert (physician), thus it is data-oriented. In contrast, the quantification approach
is model-oriented in that the data is evaluated based on a physical model which
usually requires the fitting of a nonlinear function to the observed data. Clearly,
the quantification approach incorporates more specific prior knowledge and does not
require a training data set whereas the pattern recognition approach is more powerful
when it comes to effects in the data that cannot be well modeled but are empirically
considered by an expert.

Both approaches are usually applied in a voxelwise fashion. A comparison of voxel-
wise quantification and pattern recognition approaches on a clinical problem, namely
the estimation of tumor probability in prostate MRSI, has been presented in chap-
ter 2. An extensive collection of linear and nonlinear classifiers as well as common
quantification algorithms have been systematically evaluated.

The present thesis has proposed methods to enhance the voxelwise evaluation with
considering spatial context. In chapter 3, a Generalized Gaussian Markov Random
Field (GGMRF) prior over parameter maps has been proposed for quantification. Its
application to DCE-MRI as well as MRSI has been examined and found to provide
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better solutions. A bias-variance decomposition using simulated MRSI data has
shown that the GGMRF prior significantly reduces variance and hardly introduces
bias. This results in reduced mean squared error (MSE) for the parameter estimates.
Using the GGMRF resulted in a lower sum of squared residuals (SSR) for the DCE-
MRI data, indicating that the prior also helps the optimization routine to avoid
local optima of the model fit function. An efficient optimization strategy has been
proposed that is a blocked version of the iterated conditional modes algorithm (Block-
ICM) which converges significantly faster than conventional ICM.

Incorporating spatial context using random fields for the purpose of pattern recog-
nition has been examined in chapter 4. There, an analogous family of generative
and discriminative models for joint segmentation and classification of spectral im-
ages have been proposed. It has been shown that including spatial context can
significantly improve classification accuracy and the area under the receiver operator
characteristic (AUC) up to a certain noise level. Using the discriminative approach,
random fields that perform anisotropic and inhomogeneous label smoothing can be
learned using a sound probabilistic model. Furthermore, the resulting weight vectors
allow for interpretation and can be used to identify spectral channels that identify a
spectral edge.
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Appendix A.

Quantification of Magnetic Resonance
Spectra

In its most general form, the free induction decay (FID) is modeled as the sum over
exponentially decaying sinusoidal complex-valued time-signal components:

Sθ(tn) =
K∑

k=1

akejφke(j2πfk−dk−gktn)tn with tn = n∆t + t0 (A.1)

where j =
√
−1, ak denotes the kth amplitude, φk the phase, dk determines the

Lorentzian line width and gk the width of the Gaussian part. ∆t is the sampling
rate and t0 an offset. This so-called Voigt model [126, 186] comprises the Lorentz
(for gk = 0) as well as the Gauss (dk = 0) models. While the Lorentz model follows
from basic NMR physics, field inhomogeneities and partial volume effects can lead
to signals with more Gaussian shape (as a superposition of many slightly shifted
Lorentz lines).

Quantification denotes the process of determining the most likely FID signal param-
eters θ = (t0, ak, fk, dk, gk, φk) given an observed sampled FID signal yn. In the case
of additive isotropic zero mean white Gaussian noise the sum of squared residuals is
to be minimized:

SSR(θ) =
N∑

n=1

(Sθ(tn)− yn)2, (A.2)

= ||s− y||2 (A.3)

where the components of the vector s = (sn) are sn = Sθ(tn).

Often prior knowledge about some of the parameters is available, e.g . certain metabo-
lites such as citrate (Ci) consist of several components with known relative phase
and amplitudes. Such prior knowledge can be used to reduce the number of sought
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parameters. Depending on the kind of prior knowledge to be employed, different
algorithms with different properties can be used for quantification.

An abundance of methods have been proposed for the quantification of MR spectra.
Here, only the most important time-domain methods are briefly reviewed (more
details can be found, e.g ., in [206, 131, 203]). All algorithms described in the following
are available in the jMRUI tool (Java M agnetic Resonance U ser Interface, http:
//www.mrui.uab.es/) [139, 140].

A.1. Hankel Singular Value Decomposition

If the Lorentz model is assumed (gk = 0) an approach based on Singular Value
Decomposition (SVD) can be used that allows for computationally efficient quantifi-
cation [154, 33, 112].

For the Hankel Singular Value Decomposition (HSVD), the noiseless signal sn =
Sθ(tn) (n = 0, . . . , N − 1; t0 = 0) is first arranged in a L×M Hankel matrix as

H =


s0 s1 · · · sM−1

s1 s2 · · · sM
...

...
...

...
sL−1 sL · · · sN−1

 (A.4)

where L = N −M + 1, M > K and L > K. From Eq. (A.1) it is easily verified that
the following Vandermonde decomposition holds

H =


1 · · · 1
z1
1 · · · z1

K
...

...
...

zL−1
1 · · · zL−1

K


 c1 0

. . .
0 cK




1 · · · 1
z1
1 · · · z1

K
...

...
...

zM−1
1 · · · zM−1

K


T

(A.5)

= ζLK C ζT
MK (A.6)

with the poles zk = exp [(j2πfk − dk)∆t] and the (complex) amplitudes ck = ak exp[jφk].
Hence, all sought parameters are easily computed if the Vandermonde decomposition
of the Hankel matrix H is known. However, this cannot be computed directly. In-
stead, an indirect way can be derived to determine the poles zk first and from these
the amplitudes ck. Figure A.1 shows an example for an FID with four Lorentzian
shaped components.

114

http://www.mrui.uab.es/
http://www.mrui.uab.es/


A.1. Hankel Singular Value Decomposition

500 1000 1500 2000

−2

0

2

−2

−1

0

1

2

time [ms]
real part

im
ag

in
ar

y 
pa

rt

0 50 100 150 200
0

100

200

300

400

500

600

Frequency [Hz]
M

ag
ni

tu
de

0 50 100 150 200
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Frequency [Hz]

P
ha

se

Figure A.1.: Simulated free induction decay (FID) at 1.5T with four components at
the frequencies of Choline (95Hz), Creatine (105Hz) and Citrate (129.1Hz & 133.7Hz).
Left: complex-valued time-domain signal. Right: corresponding magnitude spectrum.

With Z = diag(zk), a diagonal matrix with the signal poles, it is easily seen that ζLK

(and also ζMK) are shift-invariant in the sense that

ζ↑LK = ζ↓LKZ (A.7)

where the up (down) arrow denotes the removal of the top (bottom) row of ζLK .

The above Hankel matrix H can certainly also be decomposed by SVD, which allows
a factorization as

H = UΣV∗ (A.8)

=
[

UK U0

] [ ΣK 0
0 0

] [
VK V0

]∗ (A.9)

where ·∗ denotes Hermitian conjugation. The decomposition in the second line is
possible since it is known that H, for a noise-less signal, has at most rank K.

Comparing the Vandermonde decomposition in Eq. (A.6) with the SVD decomposi-
tion in Eq. (A.9) reveals that UK and ζLK must span the same column space and,
hence, are equal up to a multiplication by an invertible matrix T ∈ CK×K :

UK = ζLKT. (A.10)
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Thus, from the shift-invariance property in Eq. (A.7) one obtains that

U↑
K = U↓

KT−1ZT (A.11)

which allows to compute (T−1ZT) from the left singular vectors UK . In the case
of noisy signals, this solution is found in a least squares sense, yielding the HSVD
method if the usual Moore-Penrose pseudoinverse [154] and the HTLS method if a
total least squares approach [202] is used. The poles zk are obtained as the eigenvalues
of (T−1ZT) which again allow the computation of ck by least squares. The described
HSVD algorithm is implemented in only a few lines of Matlab code (cf. Fig. A.2).

With some exceptions (e.g . [187, 114]), SVD-based quantification does not allow the
application of prior knowledge. Therefore, it is usually referred to as “black-box”
approach. It is often used to provide starting values for iterative algorithms or to
remove unwanted signal components with poles outside interesting spectral regions,
in particular residual water components.

A.2. VARPRO, AMARES and QUEST

VARPRO (var iable projection), AMARES (advanced method for accurate, robust,
and efficient spectral fitting) and QUEST (quantitation based on quantum est imation)
are quantification methods which are based on iterative nonlinear optimization algo-
rithms that can incorporate various types of constraints. All methods minimize the
SSR from Eq. (A.2) but with slightly different forms of the model function Sθ(tn).

VARPRO uses a modified Levenberg-Marquart algorithm to minimize the SSR
w.r.t. to its nonlinear variables while the variables that have a linear influence are
solved by linear least squares. VARPRO uses the signal model

Sθ(tn) =
K∑

k=1

ckγθnl
k

(tn) with tn = n∆t + t0 (A.12)

where ck is the complex amplitude of the kth component function γθk
(tn) which

contains all the nonlinear parameters, i.e. θnl
k = (t0, fk, dk, gk). With s = (Sθ(tn))

Eq. (A.12) can be written as the linear system of equations

s = Γ(θnl)c = Γc. (A.13)
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function [zk, ck] = hsvd(signal , K)
% signal: complex FID signal
% K: number of components in signal
% zk: complex signal poles
% ck: complex amplitudes

% number of sampling points
N = length(signal );

% number of columns/rows in Hankel matrix
M = round (3*N/4+1)
L = N-M+1;

% create the Hankel matrix H from the data
H = hankel(signal (1:L),signal(L:end));

% compute singular values (normal equations approach)
[U,S] = eig(H*H’); % NOTE: ensure that the EVs are sorted!

% use left singular vectors (U) to calculate the
% signal poles , only K singular vectors are used
U = U(:,L-K+1:L);
Ut = U(2:L,:);
Ub = U(1:L-1,:);

% compute signal poles
zk = eig((Ub ’*Ub)\Ub ’*Ut);

% create Vandermonde matrix from signal poles
n = 0:(N-1);
A = exp(log(zk)*n).’;

% compute amplitudes by least squares
ck = A\signal (:);

Figure A.2.: Matlab source code of the HSVD algorithm which can be used for the
quantification of MRS data.
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For given Γ(θnl) and observed signal y = (yn) the SSR is minimized w.r.t. c by

ĉ = (Γ∗Γ)−1Γ∗y. (A.14)

The remaining nonlinear variables are found by minimizing the variable projection
functional

SSR(θnl) = ||y − Γĉ||2 =
∣∣∣∣∣∣P(θnl) y

∣∣∣∣∣∣2 (A.15)

with the projection matrix P(θnl) = I− Γ(Γ∗Γ)−1Γ∗.

AMARES minimizes the SSR w.r.t. to all variables simultaneously using the NL2SOL
algorithm [99, 204]. The implementation of AMARES allows for various equality and
inequality constraints between the parameters which allows more flexibility than with
the available implementation of VARPRO [140, 139].

QUEST uses a Levenberg-Marquart algorithm to minimize the SSR using a signal
model that allows to specify prior knowledge and starting values on the components
more implicitly or even using measured in vitro metabolite templates [160, 159]. As
opposed to Eq. (A.1) the FID is now modeled as sum over M distorted metabolite
templates Tm(tn) rather than components:

Sθ(tn) = ejφ0

M∑
m=1

Tm(tn) amej∆φme(j2π∆fm+∆dm)tn with tn = n∆t + t0 (A.16)

The parameters in this model comprise the null-phase, the time-lag, the metabolite
amplitudes and distortion parameters, i.e. θ = (φ0, t0, am,∆φm,∆fm,∆dm). All
parameters but am are naturally initialized to 0. An initial guess for the amplitudes
am is then obtained by least squares. If in vitro measurements for the metabolite
templates Tm(tn) are not available or desired, the templates can be generated by
simulation.

One way to obtain metabolite templates certainly is to use the signal model from
Eq. (A.1) which, when used with QUEST, leads to the same results as AMARES with
corresponding constraints. Thus, much of the available prior knowledge is hidden in
the metabolite templates and does not have to be specified in the form of constraints
which may become tedious for spectra with many metabolites. From a mathematical
point of view there is not much of a difference.
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Another advantage of QUEST over AMARES is that the method can also handle
baselines in the spectra stemming from macromolecules. Recent enhancements of
AMARES use a semiparametric signal model by adding a spline term which allows
for simultaneous quantification and baseline removal [183, 185]. In using metabolite
templates, QUEST follows ideas first introduced with LCModel [156, 155].
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Appendix B.

Statistical Subspace Methods

The term statistical subspace methods summarizes a family of methods that perform
dimensionality reduction by constructing a subspace in a given feature space that
captures all or most of the relevant information. Although linear in nature, these
methods can also be enhanced for nonlinear dimensionality reduction by using the
kernel trick [179] which corresponds to an application of the linear method to an
implicitly inflated feature space. For conciseness only the linear theory is reviewed
which is also sufficient and appropriate for the spectral data encountered in the
present thesis.

The idea behind subspace methods is to construct a compressed representation of
the given mean-centered data set which is optimal with respect to some optimality
criterion [72, 188, 34, 53]. More formally, K uncorrelated latent variables zk(x) =
αT

k x (the score variables, k = 1 . . .K) are sought such that

αk = argmax
corr(αT x,αT

j x)=0, j<k

||α||=1

T (α) (B.1)

where corr(αT x, αT
j x) is the correlation w.r.t. the empirical distribution, i.e.

corr(αT x, αT
j x) = αTSxαj (B.2)

with the sample covariance Sx = N−1XTX. If K = P components are constructed,
all subspace methods yield a set of basis vectors which are orthogonal in Sx and span
RP . The crucial difference between various subspace methods comes from the fact
that only the first K << P loadings are used. The low-dimensional projection of x
thus neglects different aspects of its variations depending on how T (α) is chosen.
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Prominent representatives of the class of subspace methods are principal compo-
nent analysis (PCA), partial least squares (PLS) and ordinary least squares (OLS)
regression, which are obtained for specific choices of T (α):

TOLS(α) = corr2(αT x, y) ∝ (αTSxα)−1(αTXTy)2

TPCA(α) = var(αT x) ∝ αTSxα
TPLS(α) = corr2(αT x, y) var(αT x) ∝ (αTXTy)2

(B.3)

where ∝ means equal up to a constant factor. Hence, PLS can be viewed as an
intermediate approach between OLS and PCA. As opposed to PCA, PLS also con-
siders the target labels y when determining the optimal directions αk. Therefore,
the derived latent variables in PLS are tuned towards discriminating the labels and
downweight variations in the pattern which do not convey label information. The
advantage over OLS is that PLS is less vulnerable to overfitting when given many
correlated features such as a spectral pattern. Due to these advantages, PLS has
been used extensively in chemometric applications [72]. From a theoretical point of
view it therefore seems advantageous to prefer PLS over PCA if labels are available
and a classification is the aim.

Subspace methods deliver (projection) directions αk and loadings (coordinate vec-
tors in the original feature space) together with an importance ordering. Thus PCA
reveals the dominant spectral patterns of maximum variance (Sxαk ∝ αk, the prin-
cipal components) whereas PLS reveals the most important patterns regarding the
given classification task. Visualizing these patterns allows to understand the decision
process of the trained classifier much better than just looking at the coefficient profile
obtained from a linear model.

The relationship between loadings and directions is derived as follows. Using the
P ×K matrix R = (αk) with directions, the P ×K matrix L with loadings, and the
N ×K score matrix Z = (zk), the examples collected in the N ×P design matrix X
are to be approximated in a K-dimensional subspace (K << P ) as

X ≈ X̃ = Z︸︷︷︸
scores

LT︸︷︷︸
loadings

. (B.4)

In general, the loadings are not orthogonal (only for PCA they are) and the scores
are obtained in the least squares sense, i.e.

Z = XL(LTL)−1︸ ︷︷ ︸
directions R

. (B.5)
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From this we have that

X̃R = ZLTR (B.6)
= XL(LTL)−1LTL(LTL)−1 (B.7)
= XR. (B.8)

Since the latent variables are supposed to be uncorrelated (corr(αT
k x, αT

j x) = 0 for
j 6= k) and because of the normalization constraint ||α|| = 1 we have that

ZTZ = RTSxR = D (B.9)

where D is an (invertible) diagonal matrix determined by

(RTR)ii = 1. (B.10)

We then have

X̃ = ZLT

⇒ ZT X̃ = ZTZLT

⇒ L = X̃TZ(ZTZ)−1 (B.11)

and with Eq. (B.5) obtain

L = X̃TXR(RTXTXR)−1 (B.12)
= X̃T X̃RD−1 (B.13)
= S̃xRD−1. (B.14)

RTL = I (B.15)

Hence, the scaled loadings are obtained by multiplying the directions ith the approx-
imate empirical covariance matrix S̃x. Since the loadings define coordinate vectors
in the original high-dimensional space and since the observed data points in this
space are explained as linear combinations of the loadings, these can be regarded
as “components” that make up the observed patterns and are thus displayed for
interpretation.

An exception within the subspace framework is OLS for which only the first loading
gets non-zero weight in the subsequent linear regression [188]. Therefore, the loading
and the coefficient profile are identical for OLS. The subspace view does not yield
additional interpretability in this case.
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Appendix C.

Graphical Models, Exponential Families
and Convex Analysis

A particularly useful subclass of the distributions that can be defined as graphical
models are exponential families. Many well-known distributions are known to be
exponential families such as the Binomial, Multinomial, Poisson, Geometric, Laplace,
Beta, Gamma, Exponential and the Gaussian distribution (cf. C.1). The definition
and some useful properties of exponential families are summarized in the following,
mostly based on [208] and [24].

C.1. Definitions

Given a graph G = (V,E), for each site s ∈ V let xs be a random variable taking
values in some νs-measurable sample space Xs which may be discrete or continuous
(e.g . Xs = R with the Lebesgue measure). The random vector x = (xs) then takes
values in the Cartesian product space X = X1 × X2 × · · · × XN endowed with the
corresponding product measure ν where N = |V |.

Furthermore, let C = {c : c ⊆ V } be a collection of cliques on the graph G. Let t(x) =
(tc(xc)) define a corresponding collection of Borel measureable functions tc(xc) : Xc →
Rnc (the sufficient statistics) and let θ = (θc) ∈ Rn be a vector of parameters (the
canonical or exponential parameters). An induced dot product 〈θ, t(x)〉 can thus
be obtained as

∑
c∈C 〈θc, tc(xc)〉 where for the purpose of this review only the usual

Euclidean dot product is used∗.

∗Replacing the dot product with a positive definite kernel can lead to very interesting non-
parametric models [117].
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Table C.1.: Some univariate exponential family distributions.
Family X ν1 t(x) A(θ) Θ

Bernoulli {0, 1} C x ln[1 + exp(θ)] R
Gaussian R L (x, x2) 1

2 ln π
−θ2

− θ2
1

4θ2
{θ ∈ R2|θ2 < 0}

Exponential (0,+∞) L −x − ln θ (0,+∞)
Poisson {0, 1, 2, . . .} C2 x exp θ R

Also: Geometric, Laplace, Beta, Gamma, Wishart, Dirichlet, von Mises-Fisher, . . .
1 dominating measure: C=Counting, L=Lebesgue
2 with ν = δX(x)/x!

An exponential family distribution that is dominated by the measure ν and factors
according to the graph G = (V,E) is then defined as

pθ(x) :=
dPθ

dν
(x) = exp[〈θ, t(x)〉 −A(θ)] (C.1)

= exp[−A(θ)]
∏
c∈C

exp[〈θc, tc(xc)〉] (C.2)

with the log partition function

A(θ) = ln
∫
X

exp 〈θ, t(x)〉 dν (C.3)

Eq. (C.2) also shows that the functions tc(xc) are sufficient statistics for the exponen-
tial family by the Fisher-Neyman factorization theorem [152, Thm 1.2.10]. Finally,
the natural parameter space Θ is defined as the set of parameters for which the
integral in (C.3) exists, i.e.

Θ =

θ ∈ Rn :
∫
X

exp 〈θ, t(x)〉 dν < ∞

 (C.4)

Some univariate examples for exponential families are listed in Table C.1.

C.2. The Log Partition Function

Several important inference problems in graphical models exist, such as
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• parameter estimation by maximizing the joint, conditional or marginal likeli-
hood of observed data

• most probable explanation (MPE), maximum a posteriori (MAP) or mode
estimation

• calculation of marginal and conditional distributions.

Although seemingly very different, all these operations lead to similar problems. In
the following sections some of them will be considered in the context of exponential
families which will highlight the crucial role of the log partion function.

Unfortunately, the log partition function often causes computational problems. A
straightforward evaluation of the integral (respectively sum) in Eq. (C.3) is a daunt-
ing task if the number of sites N and therefore the collection of random variables
grows big. For example, the number of summands in Eq. (C.3) for a random field
with N binary nodes (Ising model) would be 2N . In the case of a Gaussian random
field the challenge lies in the calculation of the determinant of a huge matrix which,
in general, comes at computational costs of O(N3).

A particularly useful property of the log partition function in exponential families is
that it is also a cumulant generating function, i.e.

Lemma 1. If θ ∈ intΘ then the statistic t = t(x) has moments of all orders w.r.t.
pθ(x) and the ithderivative of the log partition function A(θ) equals the ithorder cu-
mulant of t. In particular, the first two derivatives coincide with the mean and the
covariance of the sufficient statistic t:

∂A

∂θ
(θ) = Eθ[t] (C.5)

∂2A

∂θ∂θT
(θ) = Eθ[ttT ]− Eθ[t] Eθ[tT ] (C.6)

Furthermore,

lim
n→∞

∣∣∣∣∣∣∣∣∂A

∂θ
(θn)

∣∣∣∣∣∣∣∣ = +∞ (C.7)

for any sequence {θn} ⊂ intΘ converging to a point on the boundary of Θ.

Proof. A proof can be found in [24, Thm 8.1].
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Note that since the Hessian of A(θ) is equal to the covariance of t it must be positive
(semi-)definite (Eq. (C.6)). This is sufficient to establish the convexity of A(θ) and
also implies the convexity of the natural parameter space (e.g . [208, Cor 1], [163] or
[152, Thm 1.6.5]). Together with Eq. (C.7) lemma 1 states that A(θ) is essentially
smooth or steep [163, 24, 42, 153].

C.3. Maximum Likelihood Estimation

In parametric maximum likelihood (ML) estimation a set of parameters θ̂ is sought
that maximizes the (joint) likelihood of an observation o = {xi}N

i=1. Assuming
independent and identically distributed (iid) examples xi, the distribution from which
the observed instance o has been drawn is

pθ(O = o) =
N∏

i=1

pθ(xi) (C.8)

= exp[−NA(θ)]
∏
c∈C

exp [N〈θc, η̃c〉] (C.9)

with the empirical mean η̃c = 1
N

∑N
i=1 tc(xi

c) = Ep̃(x)[tc(xi
c)]. Note that the assump-

tion of iid examples is not very limiting here. In fact, certain graphical models
allow parameter estimation from only “one” observation (N = 1) in that clique
parameters are tied, e.g . θc ≡ θ0 ∀c ∈ C. Examples of such models are graphical
chain models corresponding to Kalman smoothers/filters or hidden Markov models
with time-invariant Markov kernel and observation distribution. In image processing
(multidimensional) lattices with pairwise interactions form a natural generalization
of such chain models.

The maximum of the joint likelihood (C.9) can be found by minimizing the negative
loglikelihood which yields

θ̂ = argmin
θ∈Θ

[
A(θ)−

∑
c

〈θc, η̃c〉

]
(C.10)

= argmin
θ∈Θ

[A(θ)− 〈θ, η̃〉] (C.11)

where η̃ = (η̃c) in analogy to the vectorization of t(x) and θ. In light of Lemma 1
this is certainly a convex optimization problem which requires that

∂

∂θ
A(θ̂) = Eθ̂[t(x)] = η̃ (C.12)
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The interpretation of this result is very intuitive as it requires that the empirical
mean equals the mean of the maximum likelihood model. Note that despite this
simplicity it still remains difficult to actually calculate θ̂ since the evaluation of the
objective function (C.11) requires the calculation of A(θ). Furthermore, its gradient
and Hessian require the calculation of marginals of pθ(x) (e.g . for Eθ̂[t(x)]) which is
similarly difficult as the calculation of A(θ).

C.4. Exponential and Moment Parameters

Having identified t(x) as sufficient statistic allows to parameterize any distribution
of the exponential family in two ways. It is certainly determined by the exponential
parameters θ but it can equally well be specified by fixing the moment parameters
η = E[t(x)]. The dual parameterization of exponential families is also the crucial
ingredient that distinguishes information geometry from common differential geome-
try [21]. But before examining the relationship between these two parameterizations
some further definitions are required.

Definition 1. Given the sufficient statistic t(x) and the measure ν, M is defined as
the set of expectations of the sufficient statistic t(x) under any probability measure P
that is dominated by ν:

M = {η ∈ Rn : ∃P ≺ ν s.t. EP[t(x)] = η} . (C.13)

M is a convex set. Furthermore, it can be shown that any η ∈ riM can be obtained
under the exponential family Pθ generated by ν and t(x) for some θ ∈ Θ (see [208,
Thm 1]).

The relationship between moment and exponential parameterizations can then be
characterized as conjugate duality known from convex analysis [163, 24, 208]. The
conjugate dual of the log partition function is defined as

A∗(η) := sup
θ∈Θ

[〈η, θ〉 −A(θ)]. (C.14)

For η ∈ riM it is straightforward to verify that the conjugate dual evaluates to
the negative differential entropy H(θ(η)) := −Eθ[ln pθ(η)(x)]. In general, it can be
determined as

A∗(η) =


−H(θ(η)) η ∈ riM
− limn→∞ H(θ(ηn)) η ∈ bd M, (ηn) → η
+∞ η /∈ cl M

(C.15)
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where {ηn} ⊂ M is a sequence converging to η and θ(η) ∈ Θ is an exponential param-
eter that fulfills Eθ[t(x)] = η, i.e. the pair (θ, η) is dually coupled [208, Thm 2]. In
fact, this duality describes the well-known equivalence between the “Maximum En-
tropy Constraint Distribution” and the “Maximum Likelihood Gibbs Distribution”
for exponential families (e.g . [57]).

Similarly to lemma 1, the derivatives of the conjugate dual A∗(η) take a particularly
nice form.

Lemma 2. For η ∈ riM and η = Eθ[t] the derivatives of A∗(η) are

∂A∗

∂η
(η) = θ (C.16)

∂2A∗

∂η∂ηT
(η) = (Eθ[ttT ]− Eθ[t] Eθ[tT ])−1 (C.17)

Proof. A proof can be found in [24].

Conversely, the conjugate dual of A∗(η) is again the log partition function [208, 213]
which leads to

A(θ) = sup
η∈M

[〈θ, η〉 −A∗(η)]. (C.18)

Furthermore, Fenchel’s inequality [163] for the dual pair (A∗, A) yields

A∗(η) + A(θ)− 〈η, θ〉 ≥ 0 for any (θ, η) ∈ Rn × Rn (C.19)

which is also known as Gibbs variational principle [213, p.60]. It holds with equality
if and only if (θ, η) is dually coupled and is basis for variational representations of
the log partition function such as mean field approximations [100, 94].

C.5. Kullback-Leibler Divergence

In general, the Kullback-Leibler (KL) divergence or relative entropy of two distribu-
tions is defined as

D(q || p) =
∫
X

q(x) ln
q(x)
p(x)

dν = Eq[ln q]− Eq[ln p] (C.20)
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For two distributions pθ1(x) and pθ2(x) from the same exponential family it takes
the convenient form:

D(θ1 || θ2) := D(pθ1(x) || pθ2(x)) (C.21)
= Eθ1 [ln pθ1(x)]− Eθ1 [ln pθ2(x)] (C.22)
= A(θ2)−A(θ1) + 〈θ1 − θ2, η1〉 (C.23)

with η1 = Eθ1 [t(x)] = ∂A
∂θ (θ1). In terms of convex analysis the KL divergence can

thus be identified as a Bregman distance [153, 163].

Using Eq. (C.19) with the dually coupled parameter pairs (θ1, η1) and (θ2, η2), a
mixed and a dual form of the KL divergence are obtained as

D(θ1 || θ2) = D(η1 || θ2) = A(θ2) + A∗(η1)− 〈η1, θ2〉 (C.24)
= D(η1 || η2) = A∗(η1)−A∗(η2) + 〈η2 − η1, θ2〉 (C.25)
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Appendix D.

Empirical Distributions and Soft
Evidence

A generalized concept of empirical distributions is used to find the most likely point
estimate for the parameters of a given model in a computationally efficient manner.
After a short review of an alternative representation of likelihood as an expectation
w.r.t. to the empirical distribution [80, 57] the soft empirical distribution function
is introduced which allows an analogous formulation using the notion of soft evi-
dence [151, 182, 58].

Definition 2 (Empirical distribution function, [80]). Let (Ω,F,Pθ) be a probability
space and let Xj : Ω → R be N independent and identically distributed (iid) random
variables with realizations xj. The empirical distribution function FN is a cumulative
probability distribution function defined by

FN (x) =
1
N

N∑
j=1

Ij(x), (D.1)

where Ij(x) is an indicator function for {xj ≤ x}.

Using this definition, one can write

p̃(x̄) :=
dFN

dx
(x̄)

=
1
N

N∑
j=1

δ(x̄− xj)
(D.2)

where p̃(x̄) is called empirical probability (empirical density) for discrete (continu-
ous) random variables and δ is the Kronecker delta (Dirac distribution). Thus, the
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loglikelihood of the realizations xj based on the training set D = {δ(x− xj)}N
j=1 can

be written as

l(θ;D) = N · Ep̃(x)[log p(x | θ)] (D.3)

= N

∫
R

p̃(x) log p(x | θ) dx (D.4)

=
N∑

j=1

log p(xj | θ) (D.5)

Note that the maximum likelihood estimate of θ also minimizes the Kullback-Leibler
divergence D(p̃ ||pθ) = Ep̃(x)[log p̃(x)]−Ep̃(x)[log p(x | θ)] since the first term (empir-
ical entropy) does not depend on the model parameters.

We now proceed with the notion of soft evidence and introduce the soft empirical
distribution function in analogy to definition 2. Given a random variable X : Ω 7→ R,
soft evidence on X can be incorporated by introducing a virtual random variable
E and specifying the likelihood function w̄(x) = Pr(E = 1 |X = x). Introducing
evidence in this way does not correspond to the usual concept of observing the real-
ization of a random variable but instead consists in defining and adding a conditional
probability distribution to the previously defined model. Hence, soft evidence should
reflect degrees of belief that stem from external knowledge about the random variable
X, i.e. from sources not captured by the probability model [151, 182].

Definition 3 (Soft empirical distribution function). Let Xj : Ω 7→ R be iid ran-
dom variables and D = {wj(x)}N

j=1 a training set with soft evidence on Xj. With-
out loss of generality, it is required that the wj(x) integrate to one, i.e. wj(x) :=
w̄j(x)(

∫
R w̄j(x) dx)−1. Then, the soft empirical distribution function F̃D based on

the training set D is defined as

FD(x) =
1
N

N∑
j=1

Wj(x). (D.6)

where Wj(x̄) =
∫ x̄
−∞ wj(x) dx.
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Given a parametric model p(x | θ), a uniform prior on θ and soft evidence D, the
mode of the posterior parameter distribution p(θ |D) is found by maximizing the
soft loglikelihood

ls(θ;D) =
N∑

j=1

log
∫
R

w̄j(x) p(x | θ) dx (D.7)

=
N∑

j=1

log
∫
R

wj(x) p(x | θ) dx + c. (D.8)

The maximizer θ̂ can be regarded as the maximum likelihood estimate of θ given
the soft evidence specified by w̄j(x). In fact, for the special case of hard labels
(w̄j(x) = δ(x − xj)), the soft loglikelihood ls(θ;D) directly turns into loglikelihood
(cf. Eqn. (D.5)). However, in the case of X being a high-dimensional random field,
the marginalization required for the evaluation of ls(θ;D) makes its computation
considerably more difficult. Alternatively, the empirical expectation Ep̃(x)[log p(x | θ)]
can be maximized which is much simpler to compute but only provides a lower bound
on ls(θ;D) in general.

Proposition 1. Let p(x | θ) be a parametric model and D = {wj(x)}N
j=1 a training

set with soft evidence. Then, the expectation Ep̃(x)[log p(x | θ)] w.r.t. the empirical
distribution (density) p̃(x̄) := dFD

dx (x̄) provides a lower bound on the soft loglikelihood
ls(θ;D). The bound is tight for hard evidence (wj(x) = δ(x− xj)).

Proof. The claim is a direct consequence of Jensen’s inequality. Since

log
∫
R

wj(x) p(x | θ) dx ≥
∫
R

wj(x) log p(x | θ) dx,

we have

ls(θ;D) ≥
N∑

j=1

∫
R

wj(x) log p(x | θ) dx

= N Ep̃(x)[log p(x | θ)].

For wj(x) = δ(x− xj) (hard evidence) equality holds.
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List of Symbols and Expressions

Acronyms
1H Proton

AMARES Advanced Method for Accurate, Robust, and Efficient Spectral fitting

AUC Area Under Curve

CCA Canonical Correlation Analysis

Ci Citrate

CLARET CSI-based Localization And Robust Estimation of Tumor probability

Cr Creatine

CRF Conditional Random Field

CRLB Cramér-Rao lower bound

CV Cross-validation

DCE-MRI Dynamic Contrast-Enhanced Magnetic Resonance Imaging

FID Free Induction Decay

FOV Field Of View

GGMRF Generalized Gaussian Markov Random Field

GP Gaussian Process

GPLS Generalized Partial Least Squares

HSVD Hankel Singular Value Decomposition

ICA Independent Components Analysis

ICM Iterated Conditional Modes

KL Kullback-Leibler

LDA Linear Discriminant Analysis

LR Logistic Regression

MAP Maximum A Posteriori

ML Maximum Likelihood
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NMF Nonnegative Matrix Factorization

MoG Mixture of Gaussians

MPME Marginal Posterior Mode Estimate

MRF Markov Random Field

MRI Magnetic Resonance Imaging

MRSI Magnetic Resonance Spectroscopic Imaging

MRS Magnetic Resonance Spectroscopy

MSR Mean Squared Residuals

NAA N-acetylaspartate

NLS Nonlinear Least Squares

NMR Nuclear Magnetic Resonance

OLS Ordinary Least Squares

PCA Principal Components Analysis

PLS Partial Least Squares

PPCA Probabilistic Principal Components Analysis

PRESS Point Resolved Spectroscopy

PSR P-spline Signal Regression

QUEST QUantitation based on QUantum ESTimation

RBF Radial Basis Function

RF Random Forest

RMSE Root Mean Squared Error

ROC Receiver Operator Characteristics

Cho Choline

SNR Signal-to-noise Ratio

SSR Sum of Squared Residuals

SVD Singular Value Decomposition

SVM Support Vector Machine

VARPRO VARiable PROjection

General notation
〈a,b〉 Standard dot product between vectors a and b

〈〈A,B〉〉 Dot product between matrices A and B
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List of Symbols and Expressions

bd Border

cl Closure

diag a A diagonal matrix with vector a on its diagonal.

Nd(x |µ,Σ) d-variate normal distribution with mean µ and covariance matrix Σ

ri Relative Interior

(ai) denotes the vector a with components ai.

trA The trace of matrix A.

X The N × P design matrix (N observations, P features).

y An N -vector of responses (N observations).

Greek Symbols

η Moment parameters of an exponential family

φ, ϕ, Φ Feature functions

σ Standard Deviation of a Normal Distribution

θ Parameters of a probability distribution, exponential parameters for
exponential families

Latin Symbols

C Complex Numbers

N Natural Numbers

R Real Numbers

Rn n-dimensional Vector Space over R
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[132] Mierisová S, van den Boogaart A, Tkác I, Hecke PV, Vanhamme L, Liptaj T.
New approach for quantitation of short echo time in vivo 1H MR spectra of
brain using AMARES. NMR Biomed 1998. 11(1): 32–39

[133] Milstein AB, Webb KJ, Bouman CA. Estimation of kinetic model parameters
in fluorescence optical diffusion tomography. J Opt Soc Am A 2005. 22(7):
1357–1368

[134] Minka T. Discriminative models, not discriminative training. Tech. rep., Mi-
crosoft Research Cambridge, 2005

[135] Mitchell DG, Cohen MS. MRI Principles. Elsevier, 2nd ed., 2004

[136] Moon TK, Stirling WC. Mathematical methods and algorithms. Prentice Hall,
Upper Saddle River, NJ, 2000
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