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Abstract. Variational relaxations can be used to compute approximate
minimizers of optimal partitioning and multiclass labeling problems on
continuous domains. While the resulting relaxed convex problem can be
solved globally optimal, in order to obtain a discrete solution a rounding
step is required, which may increase the objective and lead to subop-
timal solutions. We analyze a probabilistic rounding method and prove
that it allows to obtain discrete solutions with an a priori upper bound
on the objective, ensuring the quality of the result from the viewpoint
of optimization. We show that the approach can be interpreted as an
approximate, multiclass variant of the coarea formula.

1 Introduction

In a series of papers [1–3], several authors have recently proposed convex relax-
ations of multiclass labeling problems in a variational framework. We consider
the problem formulation

inf
u∈CE

f(u), f(u) :=

∫

Ω

〈u(x), s(x)〉dx+

∫

Ω

Ψ(Du) , (1)

CE := {u ∈ BV(Ω)l, u(x) ∈ E := {e1, . . . , el} a.e.}, Ω = (0, 1)d,

for finding an optimal labeling function u that is of bounded variation [4]. Here
ei denotes the i-th unit vector representing the i-th label, s ∈ L1(Ω), s > 0 are
the local costs representing the data term, and Ψ : Rd×l → R>0 is positively
homogeneous, convex and continuous, and defines the regularizer. This formu-
lation covers problems such as color segmentation, denoising, inpainting, depth
from stereo and many more; see [5] for the definition of a class of regularizers Ψ
relevant to various applications.

Problem (1) can also be seen as the problem of finding an optimal partition

of Ω into l (not necessarily connected) sets Pi := u−1(ei). It constitutes a hard
problem due to the discrete decision at each point. However, formulation (1)
permits a convenient relaxation to a convex problem:

inf
u∈C

f(u), C := {u ∈ BV(Ω)l, u(x) ∈ ∆l a.e.}, (2)

where ∆l := {x ∈ R
l|x > 0,

∑

i xi = 1} is the convex hull of E := {e1, . . . , el},
i.e. the l-dimensional unit simplex. Problem (2) is convex and can thus be solved
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globally optimal. However, the minimizer u∗ of the relaxed problem may not lie
in CE , i.e. it is not necessarily discrete. In order to obtain a true partition of Ω,
some rounding process is thus required to generate a discrete labeling ū∗. This
may may increase the objective, and lead to a suboptimal solution of the original
problem (1). While plausible deterministic methods exist [5], we are not aware
of a method that allows to bound the objective of the obtained discrete solution
ū∗ with respect to the objective of the (unknown) optimal discrete solution u∗

E

in the spatially continuous setting for general regularizers.

Contribution. In this work, we consider a probabilistic rounding approach and
derive a probabilistic bound of the form (see Thm. 2 below)

Ef(ū∗) 6 (1 + ε)f(u∗
E), (3)

where ū∗ is the solution obtained by applying a custom probabilistic rounding
method to the solution u∗ of the convex relaxed problem (2), and u∗

E is the
solution of the original partitioning problem (1). The approach is based on the
work of Kleinberg and Tardos [6], who derive similar bounds in an LP relax-
ation framework. However their results are restricted in that they assume a grid
discretization of the image domain and extensively make use of the fact that
the number of grid points is finite. The bounds derived in Thm. 2 are com-
patible with their bounds, as well as the ones derived for the graph cut-based
α-expansion in [7]. However, our results hold in the spatially continuous setting
without assuming a particular problem discretization.

In the continuous setting, in [8] a similar bound was announced for the special
case of the uniform metric. The approach is based on a continuous extension
of the α-expansion method, which requires to solve a sequence of problems.
In contrast, our approach only requires to solve a single convex problem, and
provides valid bounds for a broad class of regularizers [5].

For an overview of generic approaches for solving integer problems using re-
laxation techniques we also refer to [9]. As these known approaches only apply
in finite-dimensional spaces, deriving similar results for functions on continuous
domains requires considerable additional mathematical work. Due to space re-
strictions we will only provide an outline of the proofs, and refer to an upcoming
report for the technical details.

Notation. Superscripts vi usually denote a collection of vectors or elements
of a sequence, while subscripts vk denote vector components. We denote N =
{1, 2, . . .}, e = (1, . . . , 1). ‖ · ‖2 is the usual Euclidean resp. the Frobenius norm,
and Br(x) denotes the ball of radius r in x. For a set S, we define 1S(x) = 1 iff
x ∈ S and 1S(x) = 0 otherwise.

Regarding measure-theoretic notations and functions of bounded variation we
refer to [4]. In particular, we will use the d-dimensional Lebesgue measure Ld,
the k-dimensional Hausdorff measure Hk, the distributional gradient Du and the
total variation TV(u) = |Du|(Ω). For some Ld-measurable set E ⊆ Ω, we denote
its volume |E| = Ld(E), the measure-theoretic interior (E)1 and exterior (E)0,
the reduced boundary FE with generalized inner normal νE , and the perimeter
Per(E) = TV(1E). DuxE is the restriction of Du to E, and Ψ(Du) denotes the
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measure Ψ(Du/|Du|)|Du|, i.e. Ψ transforms the density of the measure Du with
respect to its total variation measure |Du|. For u ∈ BV(Ω)l we denote by ũ its
approximate limit, and by u+

FE and u−
FE its one-sided limits [4, Thm. 3.77] on

the reduced boundary of a set of finite perimeter E, i.e. Per(E) <∞.

2 Probabilistic Rounding and the Coarea Formula

As a motivation for the following sections, we first provide a probabilistic inter-
pretation of a tool often used in geometric measure theory, the coarea formula

(cf. [4]). Assume that u′ ∈ BV(Ω) and u′(x) ∈ [0, 1] for a.e. x ∈ Ω, then the
coarea formula states that its total variation can be represented by summing the
boundary lengths of its superlevelsets:

TV(u′) =

∫ 1

0

TV(1{u′>α})dα. (4)

The coarea formula provides a connection between problem (1) and the re-
laxation (2) in the two-class case, where E = {e1, e2}, u ∈ CE and therefore
u1 = 1− u2: As noted in [5], TV(u) = ‖e1− e2‖TV(u1) =

√
2TV(u1), therefore

the coarea formula (4) can be rewritten as

TV(u) =
√
2

∫ 1

0

TV(1{u1>α})dα =

∫ 1

0

TV(e11{u1>α} + e21{u16α})dα (5)

=

∫ 1

0

TV(ūα)dα , ūα := e11{u1>α} + e21{u16α} (6)

Consequently, the total variation of u can be computed by taking the mean over
the total variations of a set of discrete labelings {ūα ∈ CE |α ∈ [0, 1]}, obtained
by rounding u at different thresholds α. We now adopt a probabilistic view of (6):
We regard the mapping

(u, α) ∈ C × [0, 1] 7→ ūα ∈ CE (for a.e. α ∈ [0, 1]) (7)

as a parameterized, deterministic rounding algorithm, that depends on u and
on an additional parameter α. From this, we obtain a probabilistic (random-
ized) rounding algorithm by assuming α to be a uniformly distributed random
variable. Under these assumptions, the coarea formula (6) can be written as

TV(u) = Eα TV(ūα). (8)

This has the probabilistic interpretation that applying the probabilistic rounding
to (arbitrary, but fixed) u does – in a probabilistic sense, i.e. in the mean – not
change the objective. It can be shown that this property extends to the full
functional f in (2). A well-known implication is that if u = u∗, i.e. u minimizes
(2), then almost every ūα = ū∗

α is a minimizer of (1) [10].
Unfortunately, property (8) is intrinsically restricted to the two-class case

with TV regularizer. In the general case, one would hope to obtain a relation

f(u) =

∫

Γ

f(ūγ)dµ(γ) = Eγf(ūγ) (9)
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Algorithm 1 Continuous Probabilistic Rounding

Require: u ∈ C
1: u0 ← u, U0 ← Ω, c0 ← (1, . . . , 1) ∈ R

l.
2: for k = 1, 2, . . . do
3: Randomly choose γk := (ik, αk) uniformly from {1, . . . , l} × [0, 1]
4: Mk ← Uk−1 ∩ {x ∈ Ω|uk−1

ik
(x) > αk}

5: uk ← ei
k

1Mk + uk−11Ω\Mk

6: Uk ← Uk−1 \Mk

7: ckj ←

{

min{ck−1

j , αk}, if j = ik,

ck−1

j , otherwise.

8: end for

for some probability space (Γ, µ). For l = 2 and Ψ(x) = ‖ · ‖2, (8) shows that (9)
holds with γ = α, Γ = [0, 1], µ the Lebesgue measure, and ūγ : C × Γ → CE as
defined in (7).

In the multiclass case, the difficulty lies in providing a suitable probability
space (Γ, µ) and parameterized rounding step (u, γ) 7→ ūγ . Unfortunately, ob-
taining a relation such as (8) for the full functional (1) is unlikely, as it would
mean that solutions to the (after discretization) NP-hard problem (1) could be
obtained by solving the convex relaxation (2) and subsequent rounding.

In this work we will derive a bound of the form

(1 + ε)f(u) >

∫

Γ

f(ūγ)dµ(γ) = Eγf(uγ). (10)

This can be seen as an approximate variant of the coarea formula. While (10)
is not sufficient to provide a bound on f(ūγ) for particular γ, it permits a
probabilistic bound in the sense of (3): For any minimizer u∗ of the relaxed
problem (2),

Eγf(ū
∗
γ) 6 (1 + ε)f(u∗) 6 (1 + ε)f(u∗

E), (11)

holds, i.e. the ratio between the objective of the rounded relaxed solution and
the optimal discrete solution is bounded – in a probabilistic sense – by (1 + ε).

In the following sections, we will construct a suitable parameterized rounding
method and probability space in order to obtain an approximate coarea formula
of the form (10).

3 Probabilistic Rounding for Multiclass Image Partitions

We consider the probabilistic rounding approach based on [6] as defined in Alg. 1.
The algorithm proceeds in a number of phases. At each iteration, a label and a
threshold (ik, αk) ∈ Γ ′ := {1, . . . , l} × [0, 1] are randomly chosen (step 3), and
label ik is assigned to all yet unassigned points where uk−1

ik
> αk holds (step 5).

In contrast to the two-class case considered above, the randomness is provided
by a sequence (γk) of uniformly distributed random variables, i.e. Γ = (Γ ′)N.
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After iteration k, all points in the set Uk ⊆ Ω have not yet been assigned a
label, while all points in Ω \ Uk have been assigned a discrete label in iteration
k or in a previous iteration. Iteration k + 1 potentially modifies points only in
the set Uk. The variable ckj stores the lowest threshold α chosen for label j up
to and including iteration k.

For fixed input u, the algorithm can be seen as mapping a sequence of pa-
rameters (or instances of random variables) γ = (γk) ∈ Γ into a sequence of
states (uk

γ)
∞
k=1, (U

k
γ )

∞
k=1 and (ckγ)

∞
k=1. We drop the subscript γ if it does not

create ambiguities.
In order to define the parameterized rounding step (u, γ) 7→ ūγ , we observe

that, once Uk′

γ = ∅ occurs for some k′, the sequence (uk
γ) becomes stationary at

uk′

γ . In this case the algorithm may be terminated, with output ūγ := uk′

γ :

Definition 1. Let u ∈ BV(Ω)l, and denote Γ := (Γ ′)
N
. For some γ ∈ Γ , if

Uk′

γ = ∅ for some k′ ∈ N, we denote ūγ := uk′

γ . For a functional f : BV(Ω)l → R,

define

f(ū(·)) : Γ → R ∪ {+∞}

γ ∈ Γ 7→ f(ūγ) :=

{

f(uk′

γ ), Uk′

γ = ∅ and uk′

γ ∈ BV(Ω)l,
+∞, otherwise.

(12)

Denote by f(ū) the corresponding random variable induced by assuming γ to be

uniformly distributed on Γ .

Note that f(ūγ) is well-defined: if Uk′

γ = ∅ for some (γ, k′) then uk′

γ = uk′′

γ

for all k′′ > k′. In the remainder of this work, we will show that the expectation
of f(ūγ) over all sequences γ can be bounded according to

Ef(ū) = Eγf(ūγ) 6 (1 + ε)f(ū) (13)

for some ε > 0, cf. (10). Consequently, the rounding process may only increase
the average objective in a controlled way.

We first show that almost surely Alg. 1 generates (in a finite number of
iterations) a discrete labeling function ūγ ∈ CE .
Theorem 1. Let u ∈ BV(Ω)l and f (ū) as in Def. 1. Then

P(f(ū) <∞) = 1. (14)

Proof. Due to space restrictions we can only provide a sketch of the proof. The
first part is to show that (uk) becomes stationary almost surely, i.e.

P(∃k ∈ N : Uk = ∅) = 1. (15)

Define nk
j ∈ N0 the number of k′ ∈ {1, . . . , k} s.t. ik′

= j. Then the vector nk is

multinomially distributed, nk ∼ Multinomial (k; 1/l, . . . , 1/l). Accordingly, the
probability that all ckj , j = 1, . . . , l are smaller than 1/l is

P(ck < l−1e) =
∑

nk
1+...+nk

l
=k

k!

nk
1 ! · . . . · nk

l !

(

1

l

)k l
∏

j=1

(

1−
(

1− 1

l

)nk
j

)

, (16)
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which can be shown to converge to 1 for k →∞. Since u(x) ∈ ∆l, the condition
ck < l−1e implies Uk = ∅. Therefore (15) follows from

1 > P(∃k ∈ N : e⊤ck < 1) > P(ck < l−1e)
k→∞→ 1. (17)

The second part of the proof consists in showing that almost surely all iterates
uk are contained in BV(Ω)l, for which it suffices to show that

P
(

uk ∈ BV(Ω)l ∀k ∈ N
)

= 1. (18)

This can be seen using induction to show that uk ∈ BV(Ω)l and Per(Uk) < ∞
almost surely for all k ∈ N0. For u

k−1 ∈ BV(Ω)l, by [4, Thm. 3.40] it holds that
Per({x ∈ Ω|uk−1

ik
(x) 6 αk}) <∞ for L1-a.e. αk ∈ [0, 1] (and all ik), therefore

P(Per(Uk) <∞|Per(Uk−1) <∞) = 1. (19)

The statement for uk follows, since for the same reason Per(Mk) < ∞ almost
surely (cf. Alg. 1 for the definition of Mk), and [4, Thm. 3.84] ensures

Per(Mk) <∞, uk−1 ∈ BV(Ω)l ⇒ uk = ei
k

1Mk + uk−11Ω\Mk ∈ BV(Ω)l.(20)

⊓⊔

4 A Probabilistic A Priori Optimality Bound

In the previous sections we have shown that the rounding process induced by
Alg. 1 is well-defined in the sense that it returns a discrete solution ūγ ∈ BV(Ω)l

almost surely. We now return to proving an upper bound for the expectation of
f(ū) as in the approximate coarea formula (3).

We first show that the expectation of the linear part (data term) of f is
invariant under the rounding process.

Proposition 1. The sequence (uk) generated by Alg. 1 satisfies

E(〈uk, s〉) = 〈u, s〉 ∀k ∈ N. (21)

Proof. In Alg. 1, instead of step 5 we consider the update

uk ← ei
k

1{uk−1

ik
>αk} + uk−11{uk−1

ik
6αk}, (22)

which yields exactly the same iterates. Denote γ′ := (γ1, . . . , γk−1) and uγ′

:=
uk−1
γ . We use an induction argument on k: For k > 1,

Eγ〈uk
γ , s〉 = Eγ′

1

l

l
∑

i=1

∫ 1

0

l
∑

j=1

sj ·
(

ei1
{uγ′

i >α}
+ uγ′

1
{uγ′

i 6α}

)

j
dα (23)

= Eγ′

1

l

l
∑

i=1

∫ 1

0

(

si · 1{uγ′

i >α}
+
(

1− 1
{uγ′

i >α}

)

〈uγ′

, s〉
)

dα.
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Now we take into account the relation [4, Prop. 1.78],

∫ 1

0

∫

Ω

si(x) · 1ui>α(x)dxdα =

∫

Ω

si(x)ui(x)dx = 〈ui, si〉. (24)

This leads to

Eγ〈uk
γ , s〉 = Eγ′

1

l

l
∑

i=1

(

siu
γ′

i + 〈uγ′

, s〉 − uγ′

i 〈uγ′

, s〉
)

dα

uγ′

(x)∈∆l
= Eγ′〈uγ′

, s〉 = Eγ〈uk−1
γ , s〉. (25)

Since 〈u0, s〉 = 〈u, s〉, the assertion follows by induction. ⊓⊔

Bounding the regularizer is more involved. For γk = (ik, αk), define

Uγk := {x ∈ Ω|uik(x) 6 αk}, Vγk :=
(

Uγk

)1
, V k := (Uk)1. (26)

As the measure-theoretic interior is invariant under Ld-negligible modifications,
given some fixed sequence γ the sequence (V k) is invariant under Ld-negligible
modifications of u = u0, i.e. it is uniquely defined when viewing u as an element
of L1(Ω)l.

We use (without proof) the fact that the measure-theoretic interior satisfies
(E∩F )1 = (E)1∩(F )1 for any Ld-measurable sets E,F . Some calculations yield

Uk = Uγ1 ∩ . . . ∩ Uγk , V k = Vγ1 ∩ . . . ∩ Vγk (k > 1), (27)

Uk−1 \ Uk = Uγ1 ∩
((

Uγ2 ∩ . . . ∩ Uγk−1

)

\
(

Uγ2 ∩ . . . ∩ Uγk

))

(k > 2),

V k−1 \ V k = Vγ1 ∩
((

Vγ2 ∩ . . . ∩ Vγk−1

)

\
(

Vγ2 ∩ . . . ∩ Vγk

))

(k > 2), (28)

Ω \ V k =

k
⋃

k′=1

(

V k′−1 \ V k′
)

(k > 1). (29)

Moreover (again without proof), since V k is the measure-theoretic interior of Uk,
both sets are equal up to an Ld-negligible set.

We now prepare for an induction argument on the expectation of the regular-
izing term when restricted to the sets V k−1 \ V k. We first state an intermediate
result required for the proofs.

Proposition 2. Let u, v ∈ C, Ψ 6 ρu‖ · ‖2, and E ⊆ Ω s.t. Per(E) <∞. Then

w := u1E + v1Ω\E ∈ BV(Ω)l,

Dw = Dux(E)1 +Dvx(E)0 + νE
(

u+
FE − v−FE

)⊤Hd−1
x(FE ∩Ω) , (30)

and, for some Borel set A ⊆ Ω,

∫

A

Ψ(Dw) 6
√
2ρu Per(E) +

∫

A∩(E)1
Ψ(Du) +

∫

A∩(E)0
Ψ(Dv). (31)
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Proof. We omit the details of the proof due to space restrictions. It relies on [4,
Thm. 3.84], [4, Prop. 2.37] and the fact that

∫

A∩FE∩Ω

Ψ(Dw) =

∫

A∩FE∩Ω

Ψ(νE(w
+
FE(x)− w−

FE(x))
⊤)dHd−1

6

∫

A∩FE∩Ω

ρu‖νE(w+
FE(x)− w−

FE(x))
⊤‖2dHd−1 (32)

6
√
2ρu Per(E).

⊓⊔
The following proposition provides the initial step for k = 1.

Proposition 3. Let ρl‖ · ‖2 6 Ψ 6 ρu‖ · ‖2. Then

E

∫

V 0\V 1

Ψ(Dū) 6
2

l

ρu
ρl

∫

Ω

Ψ(Du). (33)

Proof. Denote (i, α) = γ1. Since 1U(i,α)
= 1V(i,α)

Ld-a.e., we have

ūγ = 1V(i,α)
ei + 1Ω\V(i,α)

ūγ Ld − a.e. (34)

Therefore, since V 0 = (U0)1 = (Ω)1 = Ω,
∫

V 0\V 1

Ψ(Dūγ) =

∫

Ω\V
(i,α)

Ψ(Dūγ) =

∫

Ω\V
(i,α)

Ψ
(

D
(

1V(i,α)
ei + 1Ω\V(i,α)

ūγ

))

.

Since u ∈ BV(Ω)l, we know that Per(V(i,α)) <∞ holds for L1-a.e. α and any i
[4, Thm. 3.40]. Therefore we conclude from Prop. 2 that (for L1-a.e. α),

∫

Ω\V
(i,α)

Ψ(Dūγ) 6 ρl
√
2Per

(

V(i,α)

)

+

∫

(

Ω\V
(i,α)

)

∩
(

Ω\V
(i,α)

)1
Ψ
(

Dei
)

+

∫

(

Ω\V
(i,α)

)

∩
(

Ω\V
(i,α)

)0
Ψ (Dūγ) . (35)

Both of the integrals are zero, since Dei = 0 and (Ω\V(i,α))
0 = (V(i,α))

1 = V(i,α),

therefore
∫

Ω\V
(i,α)

Ψ(Dūγ) 6 ρl
√
2Per(V(i,α)). This implies

Eγ

∫

Ω\V
(i,α)

Ψ(Dūγ) 6
1

l

l
∑

i=1

∫ 1

0

ρu
√
2Per(V(i,α))dα. (36)

Also, Per(V(i,α)) = Per(U(i,α)) since the perimeter is invariant under Ld-negligible
modifications. The assertion then follows using the coarea formula [4, Thm. 3.40]:

Eγ

∫

V 0\V 1

Ψ(Dūγ) 6
1

l

l
∑

i=1

∫ 1

0

ρu
√
2Per(U(i,α))dα (37)

coarea
=

√
2

l
ρu

l
∑

i=1

TV(ui) 6
2

l
ρu

∫

Ω

‖Du‖2 6
2

l

ρu
ρl

∫

Ω

Ψ(Du).

⊓⊔
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We now take care of the induction step for the regularizer.

Proposition 4. Let Ψ 6 ρu‖ · ‖2. Then, for any k > 2,

F := E

∫

V k−1\V k

Ψ(Dū) 6
(l − 1)

l
E

∫

V k−2\V k−1

Ψ(Dū). (38)

Proof. Define the shifted sequence γ′ = (γ′k)∞k=1 by γ′k := γk+1, and let

Wγ′ := V k−2
γ′ \ V k−1

γ′ =
(

Vγ2 ∩ . . . ∩ Vγk−1

)

\
(

Vγ2 ∩ . . . ∩ Vγk

)

. (39)

By Prop. 1 we may assume that, under the expectation, ūγ exists and is an
element of BV(Ω)l. We denote γ1 = (i, α), then V k−1 \ V k = V(i,α) ∩Wγ′ due
to (28), and

F =
1

l

l
∑

i=1

∫ 1

0

(

Eγ′

∫

V(i,α)∩Wγ′

Ψ(Dū((i,α),γ′))

)

dα. (40)

We now use (without proof) the fact that if two functions v, w in BV(Ω) coincide
(in L1, i.e. Ld-a.e.) on a set E with Per(E) <∞, then the measures Ψ(Dv)x(E)1

and Ψ(Dw)x(E)1 coincide. In particular, since in the first iteration of the algo-
rithm no points in U(i,α) are assigned a label, ū((i,α),γ′) = ūγ′ holds on U(i,α),

and therefore Ld − a.e. on V(i,α). Therefore we may substitute Dū((i,α),γ′) by
Dūγ′ in (40):

F =
1

l

l
∑

i=1

∫ 1

0

(

Eγ′

∫

Wγ′

1V(i,α)
Ψ(Dūγ′)

)

dα. (41)

By definition of the measure-theoretic interior, 1V(i,α)
is bounded from above by

the density function of U(i,α), ΘU(i,α)
(x) := limδց0 |Bδ(x) ∩ U(i,α)|/|Bδ(x)| [4,

Def. 2.55], which exists Hd−1-a.e. on Ω by [4, Thm. 3.61]. Therefore, denoting
by Bδ(·) the mapping x ∈ Ω 7→ Bδ(x),

F 6
1

l

l
∑

i=1

∫ 1

0

(

Eγ′

∫

Wγ′

(

lim
δց0

|Bδ(·) ∩ U(i,α)|
|Bδ(·)|

)

Ψ(Dūγ′)

)

dα. (42)

Rearranging the integrals and the limit, which can be justified by dominated
convergence using Ψ 6 ρu‖ · ‖2 and TV(ūγ′) <∞ almost surely, we get

F 6
1

l
Eγ′ lim

δց0

∫

Wγ′

(

l
∑

i=1

∫ 1

0

( |Bδ(·) ∩ U(i,α)|
|Bδ(·)|

)

dα

)

Ψ(Dūγ′) (43)

=
1

l
Eγ′ lim

δց0

∫

Wγ′

1

|Bδ(·)|

(

l
∑

i=1

∫ 1

0

∫

Bδ(·)

1{ui(y)6α}dydα

)

Ψ(Dūγ′).

We again apply [4, Prop. 1.78] to the two innermost integrals, which leads to

F 6
1

l
Eγ′ lim

δց0

∫

Wγ′

1

|Bδ(·)|

(

l
∑

i=1

∫

Bδ(·)

(1− ui(y))dy

)

Ψ(Dūγ′) . (44)
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Using the fact that u(y) ∈ ∆l, this collapses to

F 6
l − 1

l
Eγ′

∫

Wγ′

Ψ(Dūγ′) =
l − 1

l
Eγ′

∫

V k−2

γ′ \V k−1

γ′

Ψ(Dūγ′) . (45)

Reversing the index shift and using the fact that ūγ′ = ūγ concludes the proof:

F 6
l − 1

l
Eγ

∫

V
k−1
γ \V k

γ

Ψ(Dūγ) . (46)

The following theorem is the main result of this work, and provides an ap-
proximate coarea formula as in (10).

Theorem 2. Let s : Ω → [0,∞) s.t. s ∈ L1(Ω)l, Ψ : Rd×l → R>0 positively

homogeneous, convex and continuous with ρl‖z‖2 6 Ψ(z) 6 ρu‖z‖2 ∀z ∈ R
d×l,

and u ∈ C. Then Alg. 1. generates a discrete labeling ū ∈ CE almost surely, and

Ef(ū) 6 2
ρu
ρl

f(u). (47)

Proof. The first part follows from Thm. 1. Therefore there almost surely exists
k′ := k′(γ) > 1 s.t. Uk′

= ∅ and ūγ = uk′

γ . The stationarity implies

〈ūγ , s〉 = 〈uk′

γ , s〉 = lim
k→∞

〈uk
γ , s〉 and Ω =

∞
⋃

k=1

(

V k−1 \ V k
)

(48)

almost surely (cf. (29)). Thus

Eγf(ūγ) = Eγ

(

lim
k→∞

〈uk
γ , s〉

)

+ Eγ

(

∞
∑

k=1

∫

V k−1\V k

Ψ(Dūγ)

)

(49)

= lim
k→∞

(

Eγ〈uk
γ , s〉

)

+

∞
∑

k=1

Eγ

∫

V k−1\V k

Ψ(Dūγ) (50)

The first term is equal to 〈u, s〉 due to Prop. 1. An induction argument using
Prop. 3 and Prop. 4 shows

∫

V k−1\V k

Ψ(Dūγ) 6

∞
∑

k=1

(

l − 1

l

)k−1
2

l

ρu
ρl

∫

Ω

Ψ(Du) = 2
ρu
ρl

∫

Ω

Ψ(Du) , (51)

therefore

Eγf(ūγ) 6 〈u, s〉+ 2
ρu
ρl

∫

Ω

Ψ(Du) . (52)

Since s > 0, ρu > ρl and therefore 〈u, s〉 6 2(ρu/ρl)〈u, s〉, this proves the as-
sertion (47). Swapping the integral and limits in (50) can be justified retro-
spectively by the dominated convergence theorem, using 0 6 〈u, s〉 6 ∞ and
∫

Ω
Ψ(Du) 6 ρu TV(u) <∞. ⊓⊔
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Fig. 1. Left: Label count l vs. mean number of iterations k of the probabilistic rounding
algorithm. The improved sampling of αk greatly accelerates the method. Empirically,
k ≈ 2l ln(l) for the accelerated method. As a result, runtime is comparable to the
deterministic rounding methods. Right: Histogram (probability density scale) of the
number of iterations k over 5000 runs for 2− 12 labels.

Corollary 1. Under the conditions of Thm. 2, if u∗ minimizes f over C, u∗
E

minimizes f over CE , and ū∗ denotes the output of Alg. 1 applied to u∗, then

Ef (ū∗) 6 2
ρu
ρl

f(u∗
E). (53)

Proof. This follows immediately from Thm. 2 using f(u∗) 6 f(u∗
E), cf. (11). ⊓⊔

We have demonstrated that the proposed approach allows to recover, from the
solution u∗ of the convex relaxed problem (2), an approximate discrete solution
ū∗ of the nonconvex original problem (1), with an upper bound on the objective.

The bound in (53) is of the same order as the known bounds for finite-
dimensional metric labeling [6] and α-expansion [7], however it extends these
results to problems on continuous domains for a broad class of regularizers [5].

5 Experiments

Although the main purpose of Alg. 1 is to provide a basis for deriving the bound
in Thm. 2, we will briefly point out some of its empirical characteristics.

Expected number of iterations. In practice, choosing αk ∈ [0, 1] leads to
an unnecessary large number of iterations, as no point is assigned a label in
iteration k unless αk < ck−1

ik
. The method can be accelerated without affecting

the derived bounds by choosing αk ∈ [0, ck−1
ik

] instead, thereby skipping the
redundant iterations.

Fig. 1 shows the mean number of iterations k until e⊤ck < 1, over 5000 runs
per label count. From the proof of Thm. 1 it can be seen that this provides a
worst-case upper bound for the expected number of iterations until ūγ is ob-
tained. For the accelerated method, k is almost perfectly proportional to l ln(l);
we conjecture that asymptotically k = 2l ln(l).
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Fig. 2. Relative gap (a posteriori bound) ε′ of the rounded solution for the test
problems using deterministic “first-max” and “modified” rounding [5], and best and
mean gap obtained using the proposed probabilistic method. While the energy increase
through probabilistic rounding is usually slightly larger than for the deterministic meth-
ods, it is well below the a priori bound of ε = 2ρu/ρl − 1 derived in Cor. 1 (Table 1).

Optimality. In order to evaluate the tightness of the bound (53) in Thm. 2
in practice, we selected 12 prototypical multiclass labeling problems with 3− 64
labels each. For each we computed the relaxed solution u∗ and the mean as well
as the best objective of the rounded solution ū∗ during 10000 iterations of Alg. 1.

The employed primal-dual optimization approach provides a lower bound
fD(v∗) 6 f(u∗) via the dual objective fD and a dual feasible point v∗. This
allows to compute the relative gap ε′ := (f(ū∗)−fD(v∗))/fD(v∗), which provides
an a posteriori upper bound for the optimality w.r.t. the discrete solution u∗

E ,

f(ū∗)− f(u∗
E)

f(u∗
E)

6 ε′, (54)

in contrast to the theoretical, a priori upper bound ε = 2ρu/ρl− 1 derived from
Cor. 1. In practice, the a posteriori bound stayed well below the theoretical
bound (Table 1), which is consistent with the good practical performance of the
α-expansion method that has a similar a priori bound.

Relative Performance. We compared the probabilistic approach to two de-
terministic rounding methods: While the “first-max” method assigns to each
point the first label i s.t. ui(x) = maxj uj(x), the “modified” method [5] chooses
the unit vector ei that is closest to u(x) with respect to a norm defined by Ψ .
Compared to these methods, Alg. 1 usually leads to a slightly larger energy in-
crease (Fig. 2). For problems 11 and 12, where ρu/ρl is large, the solution is
clearly inferior to the one obtained using the “modified” rounding. This can be
attributed to the fact that the latter takes into account the detailed structure of
Ψ , which is neither required nor used in order to obtain the bounds in Thm. 2.

However, for problems that are inherently difficult for convex relaxation ap-
proaches, we found that the probabilistic approach often generated better so-
lutions. An example is the “inverse triple junction” inpainting problem (second
row in Fig. 3), which has at least 3 distinct discrete solutions. A variant of this
problem, formulated on graphs, was used as a worst-case example to show the
tightness of the LP relaxation bound in [6].
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Fig. 3. Top to bottom: Problems 2,3,5,8,11 of the test set. Left to right: Input,
relaxed solution, discrete solutions obtained by deterministic “first-max” and “modi-
fied” rounding [5], result of the probabilistic rounding. In specially crafted situations,
the probabilistic method may perform slightly worse (first row) or better (second row).
On real-world data, results are very similar (rows 3–5). In contrast to the deterministic
approaches, the proposed method provides true a priori optimality bounds.

We would like to emphasize that the purpose of these experiments is not to
demonstrate a practical superiority of the proposed method compared to other
techniques, but rather to provide an illustration on what bounds can be expected
in practice compared to the a priori bounds in Thm. 2.

6 Conclusion

We presented a probabilistic rounding method for recovering approximate so-
lutions of multiclass labeling or image partitioning problems from solutions of
convex relaxations. To our knowledge, this is the first fully convex approach that
is both formulated in the spatially continuous setting and provides an a priori

bound on the optimality of the generated discrete solution. We showed that
the approach can also be interpreted as an approximate variant of the coarea
formula. Numerical experiments confirm the theoretical bounds.
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problem 1 2 3 4 5 6 7 8 9 10 11 12
N 76800 14400 14400 129240 76800 86400 86400 76800 86400 76800 110592 21838
l 3 3 3 4 8 12 12 12 12 12 16 64
k 7.1 6.9 5.0 11.0 27.2 47.5 47.0 43.6 46.5 46.0 70.7 335.0
bound 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 253.275 375.836
rel. gap 0.0014 0.0186 0.0102 0.0106 0.0510 0.0591 0.0722 0.2140 0.1382 0.1172 1.4072 0.2772

Table 1. Number of pixels N , number of labels l, mean number of iterations k, pre-
dicted a priori bound ε = 2ρu/ρl − 1, and mean relative gap (a posteriori bound) ε′.
The a posteriori bound is well below the bound predicted by Thm. 2. Problems 1− 10
are color segmentation/inpainting problems with Ψ = ‖ · ‖2. The depth-from-stereo
resp. inpainting problems 11 and 12 use an approximated cut-linear metric as in [5].

Future work may include extending the results to non-homogeneous regular-
izers, and improving the tightness of the bound. Also, the connection to recent
convex relaxation techniques [11, 12] for solving nonconvex variational problems
should be further explored.
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5. Lellmann, J., Becker, F., Schnörr, C.: Convex optimization for multi-class im-
age labeling with a novel family of total variation based regularizers. In:
Int. Conf. Comp. Vis. (2009)

6. Kleinberg, J.M., Tardos, E.: Approximation algorithms for classification prob-
lems with pairwise relationships: Metric labeling and Markov random fields. In:
Found. Comp. Sci. (1999) 14–23

7. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. Patt. Anal. Mach. Intell. 23 (2001) 1222–1239

8. Olsson, C., Byröd, M., Overgaard, N.C., Kahl, F.: Extending continuous cuts:
Anisotropic metrics and expansion moves. In: Int. Conf. Comp. Vis. (2009)

9. Bertsimas, D., Weismantel, R.: Optimization over Integers. Dynamic Ideas (2005)
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11. Alberti, G., Bouchitté, G., Dal Maso, G.: The calibration method for the Mumford-

Shah functional and free-discontinuity problems. Calc. Var. Part. Diff. Eq. 16

(2003) 299–333
12. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: Global solutions of variational

models with convex regularization. J. Imaging Sci. 3 (2010) 1122–1145


