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Abstract

Time-resolved hydrogen exchange (HX) followed by mass spectrometry (MS) is a key technology
for studying protein structure, dynamics and interactions. HX experiments deliver a time-dependent
distribution of deuteration levels of peptide sequences of the protein of interest. The robust and complete
estimation of this distribution for as many peptide fragments as possible is instrumental to understanding
dynamic protein-level HX behavior. Currently, this data interpretation step still is a bottleneck in the
overall HX/MS workflow.

We propose HeXicon, a novel algorithmic workflow for automatic deuteration distribution estimation
at increased sequence coverage. Based on an Li-regularized feature extraction routine, HeXicon extracts
the full deuteration distribution, which allows insight into possible bimodal exchange behavior of proteins,
rather than just an average deuteration for each time point. Further, it is capable of addressing ill-
posed estimation problems, yielding sparse and physically reasonable results. HeXicon makes use of
existing peptide sequence information which is augmented by an inferred list of peptide candidates
derived from a known protein sequence. In conjunction with a supervised classification procedure that
balances sensitivity and specificity, HeXicon can deliver results with increased sequence coverage.

The entire HeXicon workflow has been implemented in C++ and includes a graphical user interface.
It is available at http://hci.iwr.uni-heidelberg.de/software.php.

*to whom correspondence should be addressed
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Figure 1: Examples of HX/MS spectrum data from an incubation time series of 0, 30, 300 and 3600 seconds:
the isotope envelope shifts to higher m/z values because of deuterium incorporation. The deuteration content
is encoded in a complex mixture of isotope distributions. Due to the noise and overlapping isotope clusters,
the separation of individual peptides is non-trivial. The abundance of the spectrum is labeled as y.

1 INTRODUCTION

The determination of protein structure and dynamics is a key issue for the understanding of living systems
[7]. By combining the information of the protein dynamics and other classical functional data, a more
complete understanding of protein function can be obtained. In many cases, protein dynamics are directly
related to specific protein functions such as conformational changes during enzyme activation and protein
movements during binding [23]. Hydrogen exchange followed by mass spectrometry (HX/MS) has become
a standard approach for interpreting HX experiments: the location and rate of deuteration are indicative of
solvent accessibility and in particular hydrogen bonding and hence of conformation and dynamics [10]. They
can be estimated by tracking the mass shift of peptide fragments in mass spectra over samples with different
incubation times (Figure [1) [9]. In comparison to Nuclear Magnetic Resonance (NMR) spectroscopy, mass
spectrometry requires lower protein concentrations and amounts, provides higher measurement speed and
better scalability in terms of protein size, and detects coexisting conformations [12]. Whereas manifold
improvements in experimental methodology and instrumentation have been implemented for HX/MS exper-



iments, data processing still remains a major difficulty in the overall experimental workflow [9]. First of all,
the precise deuteration distribution is represented by complex peak patterns that are difficult to separate
and quantitate even in 2D LC/MS (Liquid Chromatography/Mass Spectrometry) representation. Secondly,
the peptide sequences of interest have to be pre-determined via MS/MS search report or selected empirically,
yielding suboptimal sequence coverage of the protein of interest. Finally, manual analysis is time-consuming,
error-prone as well as inaccurate in case of overlapping isotope clusters (Figure [1f).

Several methods and tools have been developed to facilitate the manual analysis. Palmblad and col-
leagues [16] modeled the deuterium incorporation as a binomial distribution and used y?-statistics to extract
the optimal parameter. Weis and Engen [24] designed HX-Express as a semi-automatic data processing tool
which measures the deuteration by the width of the given isotope pattern. TOF2H [I5] is an integrated
software framework designed specifically for semi-automatic LC-MALDI (Matrix-Assisted Laser Desorp-
tion/Tonization) data analysis.

Note that while the approaches mentioned above facilitate the analysis of HX/MS data, they do not yield
the complete deuteration distribution, but only the average deuteration. The true deuteration distribution
offers a more detailed characterization and more insightful description of the exchange process. In particular,
it is suitable for discovering bimodal exchange behaviors of large protein oligomers, which are not detectable
by average deuteration levels.

The algorithms developed for extracting deuteration distribution information mainly fall into two cate-
gories. The first set of methods fit a hypothetical deuterated isotope pattern to the observed spectrum by
least-squares regression [I}, I3} 2I]. They exhibit the advantage of speed but have difficulties in handling
ill-posed problems, which, as shown in the following, are common in large-scale HX/MS data analysis. It is
possible to make use of padding methods to regularize the ill-posed regression problem. Given the optimal
degree of padding, this approach can address data truncation problems and avoid over-fitting to noise [6].
The second set of methods is based on maximum entropy deconvolution [25] [I]. Those methods can handle
ill-posed problems and yield non-negative outputs; however, they are computationally much more expensive
[25]. One common limitation of these two categories is that they are designed for well-tuned and small-scale
problems, i.e. the peptide sequence of interest is pre-selected in a well-separated spectrum, thus making
them less applicable in practice, especially for large-scale HX/MS data processing. These methods have
been implemented by several software tools such as Deuterator [I8] [I7] and Hydra [2I]. Both frameworks
focus on incorporating existing algorithms and providing user-friendly GUI and powerful visualization.

We propose a novel algorithmic approach named HeXicon to the deuteration distribution estimation
problem for large-scale HX/MS experiments. HeXicon exploits information in the retention time and m/z
domains for optimized separation of large HX/MS data and applies NITPICK [I9] for LC/MS feature
extraction, resulting in a robust and regularized estimation of the deuteration distribution. It integrates
protein sequence and protein identification information in an attempt to increase the sequence coverage.

Section 2 of the manuscript elaborates the methodological development of our approach. Sections 3
describes the experimental setup and reports the results, focusing on the novelty of delivering a robust
estimate of the deuteration distribution and the comparison to manual analysis. Discussion and conclusion
are offered in sections 4 and 5, respectively.
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Figure 2: Workflow of HeXicon. A: The list of peptide identification from MS/MS searches is automat-
ically extended by matching theoretical peptides to observed masses to find peptide sequence candidates
for previously unidentified peptides; B: A basis function set is created by modeling all possible deuteration
levels for each peptide sequence; C: The spectra and basis function sets are inserted into the LC/MS seg-
mentation and NITPICK routine and groups of peaks with features are extracted; D: The correspondence
of inter-experiment peak groups are identified via a weighted Euclidean distance measure; E: The deutera-
tion distribution is derived; F: A random forest classifier discriminates high-quality results from low-quality
results; G: The final results are ranked by their quality score.

2 METHODS

As illustrated in Figure [2| our approach consists of two major modules that jointly carry out our goals
of robust deuteration distribution estimation and sequence coverage improvement. Given a hypothetical
set of peptide sequences inferred in Peptide Sequence Set Determination (A), the Deuteration Distribution
FEstimation starts by constructing an over-complete set of basis functions (B) and then feeds them into
the NITPICK algorithm to yield peak groups with features (C). Inter-experiment peak groups are then
associated via correspondence estimation (D) and the deuteration distribution is derived for each association
(E). The subsequent quality estimation of Peptide Sequence Set Determination retains the high-quality
results and thus balances the sensitivity and specificity (F, G). Our approach makes extensive use of the
NITPICK algorithm, a regularized, non-greedy, globally optimal linear mixture modeling algorithm for
feature extraction from multicomponent mass spectra.



2.1 Deuteration Distribution Estimation

Definition Let p be a peptide sequence of interest. The deuteration level k is the number of deuterium
exchanges at the back-bone hydrogens of p. The deuteration distribution p(p, k, 7) is the fraction of peptide
with sequence p at deuteration level k for incubation time 7, where k € {0,1,..., K(p)} and K(p) is the
maximal possible deuteration level. The average deuteration 7(p,7) is the average deuteration level of all
peptides with sequence p at incubation time 7.

2.1.1 NITPICK Algorithm

We formulate the deuteration distribution estimation as a regression problem. That is, the observed spectrum
s is explained as a linear combination of constituent basis spectra which represent a particular peptide. Each
feasible basis spectrum is specified by one column of the regression matrix ®, and the regression coefficients
B determine the abundance of those constituents in the mixture. If the matrix ® contains more basis
functions than are actually present in any given mixture s, the regression problem is ill-posed and has to
be constrained. [22] showed that the introduction of a Ll-constraint leads to a sparse solution vector 3
which assigns non-zero abundance only to those basis functions that are contained in the mixture with high
probability. The resulting regression problem is

B = argmin{||s — ®B|[3 + A ||B]|,} subject to 3 > 0, (1)
B

which can be solved with the same computational efficiency as an ordinary least squares problem by the
LARS algorithm [§]. The regularization parameter A controls the model complexity based on the Bayesian
Information Criterion (BIC) [20]. The NITPICK algorithm [I9] determines its value automatically so that
the number of degrees of freedom in the model is matched to the observed noise level of s.

2.1.2 Basis Function Construction

Assuming that the peptide sequence set of interest P is known (see section [2.2)), the solution to the regression
problem must lie in a space spanned by all deuteration levels of all peptide sequences in the set (Figure
B). Thus, we build the basis function set ® by combining the theoretical isotope distribution for every
deuteration level of each peptide sequence in P:
P = U Jk 2
VpGP,VkG[O,K(p)]¢(p ) 2)
where ¢(p, k) is the transformation function that computes the basis function for peptide sequence p at
deuteration level k (i.e. its theoretical isotopic spectrum); K(p) is the maximum number of exchangeable
hydrogens [23]. To accommodate for the non-constant, m/z-dependent resolution [II], B], we use a m/z-
dependent peak shape function and learn its parametrization from the data (see Supplementary Data).



2.1.3 Quantitative LC/MS Feature Extraction

This feature extraction procedure provides two key steps for the workflow: firstly, it selects a subset of basis
functions ® C @ that optimally explain the observed spectrum and thus determines the peptide sequences
of interest; secondly, it extracts features of selected basis functions for the following deuteration distribution
computation and correspondence estimation.

We first apply segmentation techniques to achieve optimized separation of the LC/MS data, which yields
better signal-noise-ratio (SNR) and groups signals that belong to the same peptide. Manual analysis and
some existing methods normally use a heuristic window-based approach for separating the LC/MS data. The
integration of LC/MS peaks along the entire retention time window yields suboptimal SNR and fails in case
of overlapping peak clusters [2]. Therefore, we integrate over retention time only within segments and are
thus able to benefit from better SNR. The exact retention time position of the peptide is then determined
via a sparse elution profile estimation on the LC/MS data segment [3]. Thereafter, to determine the ratio of
different deuteration levels of the peptide sequence of interest, the abundance of their corresponding basis
function ¢(p, k) is estimated using the NITPICK algorithm (Figure [2[ C). The regression problem (Equation
is normally ill-posed because the basis function construction yields an over-complete set of explanatory
variables. Also, NITPICK provides sparse solutions which represent a subset of the over-complete basis
function set that is indeed necessary to explain the observed spectrum.

Eventually, for each incubation time 7, the feature extraction procedure outputs a list of peak groups
G, where a group g” corresponds to a certain segment and contains peaks with features:

g ={g7} = {(m.8.2.0),. |

where m is the monoisotopic m/z position, S is the abundance of the corresponding basis function, z is the
charge and t is the estimated retention time.

2.1.4 Correspondence Estimation

This step determines the correspondences between the peak groups over incubation time points and the
peptide sequences of interest (Figure 2l D). Given a peptide sequence p of interest, its zero exchange peak
group is first determined by matching a measured peak to its theoretical m/z value,

§° = argmin|mgo — fineoretical (P 2, 0) |, (3)
g%¢cgP

where finheoretical (D, 2, k) computes the theoretical m/z of p at charge z and deuteration level k. The corre-
sponding peak group at every other incubation time is determined by minimal weighted Euclidean distance

g = argmin\/(gT —g°)"S (g7 — g, (4)
gTegT



where S is a diagonal matrix which normalizes and weights the contributions of different features to the
distance measure. The matrix S is designed to express the characteristics of signals belonging to the same
peptide sequence over incubation time. To speed up the computation, we also applied a filtering procedure
to eliminate unlikely candidates by charge consistency and thresholding via retention time window and m/z
accuracy cutoff (see Supplementary Data).

2.1.5 Deuteration Distribution Estimation

After determining the inter-experiment correspondence of peak groups with respect to a peptide sequence
of interest, its deuteration distribution can be derived as (Figure [2| E)

p(p. k. 7) = ﬁzg’“) (5)

where the f4- (k) is the abundance of the basis function corresponding to deuteration level k. The average
deuteration is merely the average of the deuteration distribution over all deuteration levels.

2.2 Peptide Sequence Set Determination

To perform complete deuteration distribution estimation for the entire protein, optimized protein sequence
coverage is desirable. We achieve this goal by extending the peptide sequence set via sequence search and
later using a supervised classification approach to discard incorrect or ambiguous peptide sequences.

2.2.1 Unsupervised Peptide Sequence Inference

We use a two-step procedure to infer possible peptide sequences directly from the observed spectrum and
from prior knowledge (i. e. the protein sequence and the MS/MS report). We first perform peak picking on
the observed spectrum using the NITPICK algorithm. In a second step, the picked monoisotopic masses, for
which no MS/MS identifications are available, are matched to theoretical peptide sequences extracted from
the known protein sequence. Eventually, a list of candidate peptide sequences is generated, which consists
of peptide sequences from two sources: peptides that are identified by MS/MS data and peptides that are
extracted by searching the protein sequence for subsequences with a mass proximate to the picked peaks.



2.2.2 Supervised Quality Estimation

The unsupervised peptide sequence inference procedure exploits information without sufficient concern for
multiple assignments of peptide sequences to the same peak or peptide sequences hallucinated from noise
peaks. Despite the fact that this apparently improves the system’s sensitivity, the payoff is a reduced
specificity, i.e. false positives are mixed into the peptide sequence set. Therefore, HeXicon implements a
quality estimation procedure to recover reasonable specificity while maintaining high sensitivity. We tackle
this problem using a supervised classification approach: given training data {x, ¢} where x € X is the quality
feature vector and ¢ € Q is the quality label, train a classifier h : X — Q that maps « to its estimated
quality ¢. In particular, we use the Random Forest classifier [4], a supervised, decision-tree based ensemble
learning method with high prediction accuracy and little sensitivity to the hyper-parameter settings (Figure

BF).

A representative dataset was selected as training data and each reported peptide sequence was labeled
with a quality score ¢ € {3,2, 1}, in which 3 represents highly confident results, 2 indicates ambiguous results,
i.e. unidentified peptide sequence resulting from multiple assignment to the same peak, and 1 contains all
results containing no useful information. The quality features & are designed to characterize the quality of
a peptide sequence from several different aspects. See the Supplementary Data for a full list of quality
features. Retraining is necessary for different instruments.

3 RESULTS

HeXicon has been evaluated on two protein datasets of different complexity (Table : C terminus of Hsp70
Interacting Protein (CHIP) and High temperature protein G (HtpG). In each experiment, protein samples
were first incubated in heavy water to induce a certain amount of exchange before being subjected to pepsin
digestion. To identify peptic peptides from the investigated proteins we digested the undeuterated protein
under the same conditions as later used for the exchange experiments. We then analyzed the peptic peptides
by automated MS/MS using a 1 hour acetonitrile gradient either on a nanoLC-QSTAR MS system (CHIP,
HtpG) and on a nanoLC-Orbitrap MS system (HtpG). Subsequently we determined, which of the identified
peptides could be found consistently on the HPLC-QSTAR MS system using a 10 min acetonitrile gradient.

Both datasets have been processed manually, yielding average deuterations for selected peptide sequences
that we use as ground truth. Segment retention time extensions are between 20s and 50s.



Measure CHIP HtpG

Protein length 303 636
Protein weight (kDa) 34.8 72.8
Data size (MB) ca. 121 ca. 671
Incubation time (minutes) 0,0.5,5,60 0,5,10,30
Manually selected peptide sequences 21 39
Manual analysis time ca. 2 days  ca. 1 week

Table 1: Summary of the CHIP and HtpG datasets.

Dataset Measure Manual Analysis HeXicon
Number of extracted peptide sequences 21 31
CHIP Sequence coverage 84.2% 90.4%
Analysis time 2 days 1 hour
Number of extracted peptide sequences 39 90
HtpG Sequence coverage 78.5% 85.5%
Analysis time 1 week 3 hours

Table 2: Comparison to manual analysis: sequence coverage and analysis time.

3.1 Deuteration Distribution Estimation

For the CHIP spectra in Figure [3| (first column), HeXicon provides a sparse and condensed estimation of
the deuteration distribution which exhibits smoothness along the deuteration levels, as shown in Figure
(second column). For comparison, we created a well-posed regression problem by constructing basis
functions for the corresponding peptide CIEAKHDKYMADM and applied the non-negative least-squares
regression based method described in [6]. We optimized the degree of padding by manually estimating
the maximal deuteration level, yielding a solution very similar to the HeXicon’s. Without optimizing the
degree of padding, i.e. padding to the theoretically maximal possible deuteration level, Chik’s approach
selects several spurious basis functions due to overfitting (fourth column). Figure {4 (top) shows a mixture
of signals from two peptide sequences: AAERERELE and TAKKKRWNSIEER. HeXicon yields condensed
deuteration distributions for both peptide sequences, as shown in Figure {4| (bottom, first column). After
padding optimization, Chik’s approach gives a similar distribution for AAERERELE but the estimate for
TAKKKRWNSIEER is questionable, see Figure [4] (bottom, second column).

3.2 Sequence Coverage Enhancement

Combining MS/MS identifications and inferred peptide sequences, HeXicon yields an apparent improvement
on the number of extracted peptide sequences with concomitant increases in sequence coverage when com-
pared to the manual analysis (Table . For the manual analysis we only used those peptides identified
that we could find consistently in the 10 min gradient runs on the QSTAR system.
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Figure 3: Comparison of deuteration distribution estimation of CIEAKHDKYMADM from a time series of
0, 30, 300 and 3600 seconds (first column). HeXicon yields condensed solution and avoids overfitting (second
column). With manually optimized degree of padding, Chik’s approach results in similar estimates (third
column). Without padding optimization, Chik’s approach selects several spurious peaks (fourth column,
marked by ”|”) due to overfitting.

3.3 Exchange Rate Inference

The deuteration distribution estimated by HeXicon can easily be transformed into an average deuteration
estimate n'(p, 7) by computing the empirical mean. We validated HeXicon by comparing its average deuter-
ation estimate to the manually obtained average deuteration estimate n™ (p, 7). We applied two metrics to
measure the accuracy: (i) the average m/z difference A, is computed by A, = > _ [n™(p,7) — n™(p, 7)|/N-,
where N, is the total number of incubation time points; (ii) the relative exchange rate difference A,; is com-
puted by A, = |I€M —KH| / max (KVM,/@H), where k is the exchange rate inferred by fitting the average
deuteration to the HX kinetic model function [I4]. Since the fitting is non-linear and non-convex and since
its first-order and second-order derivatives could be derived analytically, we applied a generalized Newton
method to approximate the optimal solution (see Supplementary Data).
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Figure 4: Comparison of deuteration distribution estimation for overlapping patterns. Overlapping patterns
consist of AAERERELE and IAKKKRWNSIEER, (top). HeXicon yields condensed and smooth solutions for
both peptide sequences (bottom, first column). Even with padding optimization, Chik’s approach overfits
the spectrum and yields an unrealistic deuteration distribution for IAKKKRWNSIEER (bottom, second
column). Here ¢(p, k) indicates the maximum peak position of the basis function of peptide p at deuteration
level k.

For the CHIP dataset and 20 of 21 manually selected peptide sequences, the estimates by HeXicon
coincide well with the manual analysis (see examples in Figure [5| top-left and top-right), yielding an average
m/z difference of 0.0688 + 0.0307 Da (mean =+ standard deviation) and a relative exchange rate difference
of 0.0994 + 0.0847. For the HtpG dataset, HeXicon correctly estimates the average deuteration for 32 of
39 manually selected peptide sequences and yields an average m/z difference of 0.0578 + 0.0339 Da and a
relative exchange rate difference of 0.1205 £ 0.0958 (e.g. Figure [5| bottom-left). For the remaining seven
manually selected peptides, the estimates are inaccurate (e.g. Figure 5, bottom-right). The complete list of
peptide sequences and their average deuteration is given in the Supplementary Data.
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Figure 5: Comparison of the exchange rate inference between manual analysis (red) and HeXicon (blue)
for selected examples. While the estimate by HeXicon coincides well with the manual analysis for the
peptides displayed on the top-left, top-right and bottom-left, the estimate for LRELISNASDAADKLRF
(bottom-right) is incorrect due to under-segmentation of overlapping peptides in the LC/MS spectrum.

3.4 Quality Filtering Accuracy

The quality estimation step aims at identifying high-quality results and discarding the remaining results. We
measure the cross validation performance of this step using common criteria from information theory: recall,
precision and F-score. The results given in Table |3|indicate that the quality estimation step is accurate and
generalizes well across data sets, providing an F-score over 90%.

3.5 Runtimes and Implementation

HeXicon has been implemented in C++ and the compiled software is available at http://hci.iwr.uni-heidelberg.de/software.phj
As indicated in Table [3.2] HeXicon strongly reduces the analysis time compared to manual analysis. Since
HeXicon is fully automated, it does not require any real-time user-interaction. Experiments were carried out
without replicates. In order to perform replicate analysis, HeXicon results need to be obtained separately for
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Measure Class 1 Class 2 Class 3
Recall 98.8 91.6 92.2

Precision 98.7 92.9 89.2
F-score  98.7 92.2 90.7

Table 3: Cross validation performance: recall, precision and F-score (in %) are given for high quality (Class
3), medium quality (Class 2) and low quality (Class 1) results.

each replicate and subsequently aggregated. The software package requires the spectrum data as mzXML
files and other information (i.e. the protein sequence and the MS/MS search result) as plain text files. CSV
files are the output.

4 DISCUSSION

As shown in section to avoid overfitting Chik’s approach requires padding optimization by user-input or
pre-processing. The reason is that the least-squares regression attempts to use each predictor without any
restriction and thus overfits the data and causes several spurious basis functions to be selected, as shown
in Figure 3| (fourth column, marked by ”|”). The proposed approach benefits from the sparsity of the L1-
regularization and discards those spurious deuteration levels automatically, and thus requires no additional
processing such as thresholding or any further user interaction. This overfitting problem becomes worse
when overlapping patterns occur. As shown in Figure [4] (bottom, right column), Chik’s approach (with
padding optimization) gives a reasonable distribution for AAERERELE, but yields an unrealistic estimate
for TAKKKRWNSIEER, i.e. the large gaps between neighboring deuteration levels. HeXicon, on the other
hand, keeps the intrinsic smoothness and sparsity of the deuteration levels. Although the estimate for
the low-intensity IAKKKRWNSIEER is subject to low SNR, it is still represented by a compact deuteration
distribution at the most relevant positions and appears to be physically reasonable. While maximum entropy
deconvolution based methods [25] might theoretically be appealing, they are not applicable to the problem
since they require a pre-defined noise level [I] which is usually not available to the users and may vary
among different m/z regions or experiments. Further, these approaches are prone to overfitting and are
computationally expensive [13].

The improved sequence coverage provided by HeXicon is particularly helpful to gain a more complete
and detailed understanding of a dataset. Due to under-segmentation of crowded regions in the LC/MS
data, HeXicon did not recover all manually selected peptide sequences from the HtpG dataset, but it still
managed to yield a higher sequence coverage because other peptide sequences were selected to compensate
for the missing ones. Further, as shown in Table |3.2] HeXicon finds more than twice the number of pep-
tide sequences selected by human experts, which allows exchange behavior prediction in finer regions. For
instance, the estimation of exchange rate at positions 279-284 can be inferred from both HLQRVGHFD-
PVTRSPLTQEQLIPNL (position 259-284) and HLQRVGHFDPVTRSPLTQE (position 259-278). Since we
only considered those HeXicon results with the highest quality score for the computation of the sequence
coverage, this number can be regarded as a conservative estimate. Additional lower quality results provided

13



by HeXicon can guide users towards further targeted experiments. For instance, ambiguous results, when
multiple peptide sequences could be assigned to the same spectrum, might motivate additional MS/MS run
on specific peptide sequences of interest, and thereby allow further improvement on the sequence coverage.

5 CONCLUSION

In this article, we introduced HeXicon, a novel algorithmic workflow for the robust estimation of deuteration
distributions with increased sequence coverage for HX/MS experiments. Comparisons to previous methods
showed that the L1-regularization adopted in our method provides a sparse estimation of deuteration dis-
tributions and avoids over-fitting. The overall sequence coverage is increased by inferring peptide sequences
from prior knowledge, and the tradeoff between sensitivity and specificity is balanced using a supervised
classification procedure.

In comparison to manual analysis, we showed that HeXicon succeeds in accurately extracting the deuter-
ation content while improving sequence coverage and reducing analysis time.
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