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Abstract—Real-world scene understanding requires recognizing object categories in novel visual scenes. This paper describes a

composition system that automatically learns structured, hierarchical object representations in an unsupervised manner without

requiring manual segmentation or manual object localization. A central concept for learning object models in the challenging, general

case of unconstrained scenes, large intraclass variations, large numbers of categories, and lacking supervision information is to exploit

the compositional nature of our (visual) world. The compositional nature of visual objects significantly limits their representation

complexity and renders learning of structured object models statistically and computationally tractable. We propose a robust descriptor

for local image parts and show how characteristic compositions of parts can be learned that are based on an unspecific part vocabulary

shared between all categories. Moreover, a Bayesian network is presented that comprises all the compositional constituents together

with scene context and object shape. Object recognition is then formulated as a statistical inference problem in this probabilistic model.

Index Terms—Image categorization, object recognition, compositionality, graphical models, visual learning.

Ç

1 INTRODUCTION

LEARNING object models for detection and recognition
poses one of the key challenges of computer vision. The

complexity of this problem depends on several factors, such
as the level of supervision during training, the degree of
intraclass variabilities, and the constraints (e.g., constraints
on variation in scale or viewpoint) that can be imposed on
scenes. Despite these problems, learning of object repre-
sentations from a small number of samples is possible due
to the compositional nature of our (visual) world. As Attneave
[1] points out, the visual stimulus is highly redundant in the
sense that there exist significant spatial interdependencies
in visual scenes. Compositionality (c.f. Geman’s work [2])
serves as a fundamental principle in cognition and
especially in human vision [3] that exploits these depen-
dencies. It refers to the prominent ability of perception to
represent complex entities by means of comparably few,
simple, and widely usable parts. Additional information
that is missing in the individual parts is added by
incorporating relations between them. To this end, percep-
tual organization [4] provides a number of Gestalt laws that
establish a basis for perceptually founded relations between
parts. In contrast to modeling an object directly based on a
constellation of its parts (e.g., [5]), the compositional
approach learns intermediate groupings of parts—possibly
even forming a hierarchy of recursive compositions. As a

consequence, compositions bridge the semantic gap be-
tween low-level features and high-level object recognition
by establishing intermediate representations.

In this paper, we investigate models for learning the

compositional structure of objects and integrate them in a

category-level object recognition system. The approach

detects characteristic compositions of atomic parts for each

category without supervision, requiring neither hand

segmentations nor object localization. Learning higher level

compositions of compositions then proceeds in a recursive

manner. Finally, a Bayesian network serves as a coherent

statistical model that comprises all the compositions

together with object shape. Inference based on this prob-

abilistic model yields a decomposition of a scene into

relevant compositions, and finally, enables localization and

recognition of objects. Moreover, the generative model of

compositions can be used to sample object representations

and explain away background clutter.
The compositional object recognition model from [6] realizes

feature sharing on the lowest level where robust statistics are

available. Therefore, edge and color distributions of small

image patches are computed. A generic set of atomic parts

that is shared among categories is established by forming a

small codebook of these features. Category-specific relations

between parts are used to build compositions, which are

represented by probability distributions over their constitu-

ent parts, i.e., distributions over atomic parts yield composi-

tions, distributions over compositions yield higher level

compositions of compositions, and so on. Finally, a

statistical, hierarchical scene representation is obtained

which captures the spatial arrangement of all compositions.

This compositional shape model couples all compositions by

means of: 1) their spatial arrangement; 2) by forming

relations between compositions that yield higher level

compositions; and 3) by a co-occurrence of all compositions

that roughly describes the context of the scene.
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2 RELATED WORK AND KEY MODELING DECISIONS

Visual recognition can be pursued on different levels of
semantic granularity. One extreme strategy is exemplar
detection (e.g., [7]), where exactly the same query object is
sought in scenes with different environmental conditions
such as background, lighting, occlusion, viewpoint, etc. The
other extreme is category-level object recognition, where all
instances of a category are to be recognized. Therefore, the
granularity of the set of categories controls the complexity
of the recognition task as it defines the within-class
variability (e.g., compare the task of finding all sports cars
with that of finding cars of all types). Influential papers
such as [8], [9] have focused research in the field of
category-level object recognition on principled probabilistic
object models with semilocal feature descriptors. The
general goal is to represent objects by learning local
appearance features and their spatial configuration and
comprising both in a common model.
Within this coarse fundamental modeling framework, the

current approaches to object categorization can be char-
acterized by the core modeling decisions they make.

1. Local descriptors. A classical way to capture image
region information is the use of appearance patches, i.e.,
subsampled image patches that are vector-quantized
into a large codebook (e.g., [10], [5], [11], [12]). Another
popular choice is SIFT features [7]. These are complex
edge histogram features that have been proposed for
exemplar detection. Nevertheless, they have also
shown to yield acceptable performance in the task of
categorization. In [13], we have proposed a low-
dimensional representation of image patches that is
based on compact local edge and color histograms of
subpatches. The lack of specificity is compensated by
capturing relations between the local descriptors. We
use these localized feature histograms in this contribu-
tion. Such edge-based features are the limit case of
neurophysiologically motivated Gabor filters (used, for
instance, in [14]) with spatial filter width approaching
zero. Another popular descriptor is geometric blur [15].
This feature weights edge orientations around a
feature point using a spatially varying kernel. More-
over, edge contour-based methods have been pro-
posed in [16], [17]. Opelt et al. [16] extract curve
fragments from training images and they apply
Adaboost to learn strong object detectors.

2. Spatial model. A second choice concerns the model that
combines all local features with their spatial distribu-
tion to represent object shape. It should be empha-
sized that this notion of shape is not based on the object
boundary but on the geometry of object parts that are
distributed all over the object. This view of shape is
common in the field of object categorization (e.g., [5],
[18]). Object models have to deal with two problems
simultaneously. On the one hand, individual local
appearance descriptors in a test image are to be
matched against those from a learned model. On the
other hand, the co-occurence and the spatial relations
between individual features have to be taken into
account to represent the global object geometry. The
simplest approach is therefore to histogram over all

local descriptors found in an image (e.g., [19]) and
categorize the image directly based on the overall
feature frequencies. On the one hand, such bag of
features methods offer robustness with respect to
alteration of individual parts of an object (e.g., due to
occlusion) at low computational costs. On the other
hand, they fail to capture any spatial relations between
local image patches and they often adapt to back-
ground features. By making the restricting assump-
tion that the spatial structure of objects is limited in its
variation with respect to the image, Lazebnik et al. [20]
can improve the performance of the bag of features
approach using a spatially fixed grid of feature bags.
At the other end of the modeling spectrum, we find
constellation models: Originally, Fischler and Elschla-
ger [21] have proposed a spring model for coupling
local features. Inspired by the Dynamic Link Architec-
ture for cognitive processes, Lades et al. [22] followed
the same fundamental idea when proposing their face
recognizer. Lately, increasingly complex models for
capturing part constellations have been proposed,
e.g., [23], [5], [11], [24]. However, the complexity of
such a joint model of all parts causes only small
numbers of parts to be feasible. To incorporate larger
numbers of parts, Agarwal et al. [10] and Leibe and
Schiele [12] use a simpler object model and a
comparably large codebook of distinctive parts. Leibe
and Schiele [12] use a probabilistic Hough voting
strategy to distinguish one category from the back-
ground. In [6], we advance the idea of large numbers
of parts by grouping parts prior to spatially coupling
the resulting compositions in a graphical model.
Conflicting categorization hypotheses proposed by
compositions and the spatial model are then recon-
ciled using probabilistic inference in the underlying
Bayesian network. Finally, Berg et al. [15] describe and
regularize the spatial distortion resulting from match-
ing an image to a training sample using thin-plate
splines.

3. Hierarchies. For a long time, research on object
recognition has aimed at building hierarchical models
[25]. Despite this effort, many popular current
methods, such as [12], [5], [19], are single layered.
Recently, probabilistic latent semantic analysis (pLSA)
[26] and latent dirichlet allocation [27] have become
popular (e.g., [28], [29]), where a hidden representa-
tion layer of abstract concepts is introduced. Fergus et
al. [29] have extended pLSA by incorporating spatial
information. Other examples for hierarchical ap-
proaches are the feature hierarchies of [30], the
hierarchical parts and structure model of [31], or the
deep compositional hierarchies of [32].

4. Learning paradigm. Another modeling decision is
related to the learning paradigm, i.e., pursuing a
generative versus a discriminative approach.
Although discriminative approaches have been
shown to yield superior performance in the limited
case of large training sets [33], generative models
have been very popular in the vision community,
e.g., [34], [35], [12], [36], [37], [10], [13], [15]. They
naturally establish correspondences between model
components and image features. Discriminative
approaches are, for instance, [19] and [38]. To
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recognize faces in real time, Viola and Jones [38] use
boosting to learn simple features which are based on
local intensity differences. Holub et al. [24] propose a
hybrid approach using Fisher kernels.

5. Degree of supervision: Similar to the influential paper
by Fergus et al. [5], several other approaches (e.g.,
[10], [19], [6]) have been proposed that only need
training images (showing objects and even back-
ground clutter) and the overall category label of an
image. The restriction of user assistance is desirable
for scaling methods up to large numbers of categories
with large training sets. A system that can be trained
in an unsupervised manner is, for instance, that of
[39], whereas Felzenszwalb and Huttenlocher have
taken a supervised approach to object detection in
[40]. Furthermore, Jin and Geman [41] present a
compositional architecture with manually built
structure for license plate reading. In their conclu-
sion, they emphasize the complexity of the future
challenge of learning such a compositional model.
This contribution deals with exactly this problem in
the even less constraint case of large numbers of
natural object classes.

3 TERMINOLOGY AND OUTLINE OF THE FRAMEWORK

FOR RECOGNITION

Part-based object models represent objects using a set of
parts. These parts represent local regions of an image and are
therefore commonly referred to as descriptors or features. The
spatial arrangement of these parts can be either fixed [20] or
flexible [40] and the number of parts can also be predefined
[5] or variable [18]. All of these approaches have in common
that they strive for very specific part descriptors that act as
fingerprints of objects—local regions that are highly dis-
criminative for object classes. In this paper, we follow an
orthogonal approach: We start off with generic parts that can
be shared among categories and are thus not category-
specific. To compensate for discriminative information that
is lacking in the individual parts, object representations are
based on compositions of parts. Compositions are carrying
additional information by virtue of the relations they
establish between parts. Thus, the underlying idea is to
avoid complex, highly specific part descriptors and rather
learn to automatically form characteristic groupings of
generic parts. Since compositions are themselves also
grouped to form compositions of compositions (a higher
level in the resulting hierarchical object representation), we
call the initial, local descriptors atomic parts to express that
they are not further decomposable. Table 1 summarizes the
building blocks of the compositional model.

Fig. 2 shows examples where the compositional approach
succeeds, while simpler models would exhibit limitations:
Fig. 2a shows that recognition is possible based on generic
parts when they are used in compositions. Fig. 2b visualizes
the effectiveness of compositions of compositions, whereas
Fig. 2c demonstrates the value of context combined with local
appearance. Finally, in Fig. 2d, the flexible compositional
shape model can handle changes in viewpoint, while rigid
representations such as [20] would fail to model the shape of
the object.

Let us now briefly overview the approach to composi-
tional scene analysis (illustrated in Fig. 1) before presenting
the individual processing steps of the recognition algo-
rithm (Algorithm 2) and the learning of the underlying
model (Algorithm 3) in detail in later sections. For a novel
image, a set Eð�Þ of small patches, the atomic parts ei 2 Eð�Þ,
is extracted on different scales � at interest points. For each
of them, localized feature histograms [13] are computed as
local descriptors. Thereafter, vector quantization is per-
formed to represent parts by distributions over a small
codebook of feature prototypes which is shared by all
objects. As patches are only local features and the code-
book is shared by all categories, these atomic parts alone
are far from being category-specific. To compensate for this
lack of information, compositions gj 2 Gð�Þ of these parts
are established subsequently.

We develop a learning algorithm that automatically
learns to establish relevant compositions rather than
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TABLE 1
Summary of the Main Building Blocks of the Compositional Model and Their Mathematical Definition

Fig. 1. Processing pipeline for automatic scene analysis. Key steps:
Feature extraction, perceptual grouping to form compositions, selection
of relevant compositions, object localization and recognition, and top-
down grouping to form compositions of compositions which then yield an
update of object hypotheses.



manually modeling a set of grouping laws (c.f. [32]) that
lead to characteristic compositions. Hence, we employ a
simple, proximity-based grouping to form candidate com-
positions Gð�Þ. Thereby, the search space for the subsequent
relevance learning is restricted. Out of these candidate
compositions, relevant compositions are selected by a
relevance model that has been learned during the training
phase (Algorithm 3). The relevant compositions are then
coupled in a Bayesian network (the compositional shape
model) and the category posterior is computed.

At this stage, a large fraction of all possible object
categorization hypotheses can already be rejected with high
confidence. Conditioned on each of the remaining hypoth-
eses, we seek a set eR of relevant compositions of
compositions (the constituents are compositions them-
selves) to accumulate additional evidence for the correct
hypothesis. This procedure defines a top-down grouping
process which is guided by previously inferred object
information. The newly generated compositions enter then
into the Bayesian network together with the compositions
from before to refine the categorization hypothesis.

4 ATOMIC PARTS FOR COMPOSITIONALITY

The compositional approach learns hierarchical object
representations that are based on groupings of constituent
parts. The features representing the atomic parts in the
initial layer of the compositional hierarchy should exhibit:

1. good localization,
2. robustness to local image changes,
3. low dimensionality, and
4. they should be shareable by object categories.

4.1 Localized Feature Histograms

A classical representation of image content is given by local
appearance patches which have been widely used in the
field of object categorization, e.g., [10], [18], [5]. However,
due to the global subsampling and intensity normalization,
translations or local distortions still corrupt the feature.
Moreover, the low-pass filtering retains only the strongest

edges while blurring the remaining patch content. An
alternative approach at the other end of the modeling
spectrum is that of using histograms over complete images
(c.f. [42]). In summary, the former approach facilitates
almost perfect localization, while the latter one offers
maximal invariance with respect to local distortions. As a
compromise between these two opposing goals, we aim at a
representation whose invariance properties are transpar-
ently adjusted between these two classical extremes and
add the specificity lost by invariance through the relations
incorporated in compositions.

To process an image, quadratic patches of size

20� 20 pixels are extracted at interest points (obtained

using the Harris detector of [43]). Each patch is divided up

into four equally sized subpatches with locations fixed

relative to the patch center, see Fig. 3. In each of these

subwindows, l ¼ 1; . . . ; 4, marginal histograms over edge

orientation and edge strength are computed (allocating four

bins to each of them), denoted as e
ðolÞ
i ; e

ðslÞ
i 2 ½0; 1�4.

Furthermore, an 8-bin color histogram e
ðcÞ
i 2 ½0; 1�

8 over all

subpatches is extracted. All these histograms are then

combined in a 40D (4� 4þ 4� 4þ 8 ¼ 40) feature vector:

ei :¼
�
e
ðo1Þ
i ; . . . ; e

ðo4Þ
i ; e

ðs1Þ
i ; . . . ; e

ðs4Þ
i ; e

ðcÞ
i

�T
: ð1Þ

The proposed representation differs from SIFT features
[7] not only in that color is used. Whereas SIFT features aim
at distinguishing different instances of the same object from
another, we seek a representation that is invariant to the
specificities of individual object instances and environment
configurations. To obtain a small codebook of atomic
representatives for compositionality (Section 4.2), we
propose local descriptors of reduced complexity (40D),
whereas the other approach would have to perform this
reduction of complexity indirectly by clustering in a high-
dimensional space (128D) with few prototypes. An experi-
mental comparison of localized histograms with SIFT and
an analysis of the effective dimensionality of both descrip-
tor types is presented in Section 7.2.

Features on multiple image scales. Features on several
image scales � ¼ f1; 1

2 ;
1
4g are computed by rescaling the

image and extracting the features in the resized image as
described above. For � ¼ 1=2, for instance, this corresponds
to subsampling to half the original scale. All features on the
same scale are summarized in a set Eð�Þ (see line 4 of
Algorithm 1).

Algorithm 1. Extracting composition candidates from

images

ALLCOMPOSITIONCANDIDATES(I) . I: a novel test image

1 P  INTERESTPOINTS(I) . Harris detector of [43]

2 for all scales � 2 S
3 do Eð�Þ  ATOMICPARTS(I, P; �Þ

. Eð�Þ is a set of ei on scale �, (1)

4 Gð�Þ  COMPOSITIONCANDIDATES ðEð�ÞÞ
.Gð�Þ¼fgj :gj from scale �g, c.f. Section 5.1

5 G  
S
�2S Gð�Þ

6 gI  1
Gj j
P

gj2 G gj . context descriptor from (9)

7 return G;gI
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Fig. 2. Advantages of the compositional approach over other represen-
tation schemes. (a) Simple, generic, unspecific parts suffice when used
in compositions. (b) Compositions of compositions help to distinguish
categories based on constituents that are not characteristic in isolation.
(c) Context provides valuable information when object classes are
visually diverse. (d) The flexible compositional shape model helps to
recognize the shape of both cougar faces where a rigid object model
such as a rigid grid of histograms [20] fails to capture that structure.



4.2 A Codebook of Atomic Parts

To obtain a common representation for compositions

consisting of different numbers of parts, a part codebook

is established that is shared by all categories. Therefore, part

descriptors ei detected in the training images of all object

classes are vector-quantized using k-means clustering

yielding a k ¼ 200D codebook V, k ¼ jVj. To make the

representation robust, each part is described by a Gibbs

distribution [44] over the codebook. Let d�ðeiÞ denote the

squared euclidean distance of ei to a centroid a� 2 V. The

local region is then encoded by the following distribution of

its cluster assignment random variable Fi:

P ðFi ¼ �jeiÞ :¼ ZðeiÞ�1 exp �d�ðeiÞð Þ;
ZðeiÞ :¼

X
1���k

exp �d�ðeiÞð Þ: ð2Þ

In summary, we are first extracting edge and color

histograms for local regions. Thereafter, these descriptors

are vector-quantized based on a small codebook of part

descriptors. Thus, parts as well as compositions can be

encoded by distributions over the codebook.

Algorithm 2. Compositional scene analysis (single object

per image)

OBJECTRECOGNITION(I) . I: a novel query image

. extract atomic parts and form composition candidates:

1 ðG;gIÞ  ALLCOMPOSITIONCANDIDATES(I) .Algo. 1

2 x 
P

j:gj2G
xj
P

c2L pðgjjc;g
I ÞP ðcjgI ÞP

j:gj2G;c2L
pðgjjc;gI Þ P ðcjgI Þ

. estimate object center using (17)

3 R  RELEVANTCOMPOSITIONS ðG;xÞ
. select relevant compositions using (11)

4 P ðcjEÞ  COMPOSTTIONALSHAPEMODEL ðR;gI ;x; ;Þ
. recognition using (16)

. draw compositions of compositions for most likely categories:

5 eG  COMPOFCOMPCANDIDATES ðGÞ
. random subset of G � G, Section 5.4

6 eR  RELEVANTCOMPSOFCOMPS ðeG; P ðcjEÞÞ
. select relevant comps of comps, (12)

. update previous object category hypothesis by using

comps. R and higher order comps. eR for recognition:

7 P ðcjEÞ  COMPOSITIONALSHAPEMODEL ðR;gI ; x; eRÞ
. recognition, (16)

8 return P ðcjEÞ;x . object category posterior and location

5 LEARNING A HIERARCHY OF RELEVANT

COMPOSITIONS ON MULTIPLE SCALES

Subsequently, we present an approach that automatically
learns to build category-specific compositions without
requiring prior knowledge regarding the compositional
nature of objects.

5.1 Composition Candidates

On each scale � of an image, 40 parts are selected from the
set Eð�Þ of all atomic parts that have been extracted as
described in Section 4. Around each of these parts, all parts
in a local neighborhood of three local patches are grouped
together. This size offers a good trade-off between localiza-
tion of compositions and the statistical robustness of their
estimation during training. The proximity grouping yields
unordered agglomerations of atomic parts. We call these
sets of parts composition candidates gj and the set of all
candidates on scale � is Gð�Þ (line 4 of Algorithm 1).

Equation (2) provides a representation of atomic parts ei
based on a probability distribution ðP ðFi ¼ 1jeiÞ; . . . ; P ðFi ¼
kjeiÞÞ 2 ½0; 1�k over the k-dimensional part codebook V. Let

�j ¼ fe1; . . . ; emg denote the grouping of parts e1; . . . ; em.

The number of constituents j�jj ¼ m is not predefined since

the grouping is defined by the grouping diameter and not

by the number of parts. Compositions are then represented

by the multivariate random variable Gj. Realizations gj 2
½0; 1�k of this random variable are again distributions over

the part codebook V. The distribution that represents a

composition gj is a mixture of the distributions of all the

parts ei 2 �j:

gj ¼
X
ei2�j

1

j�jj
ðP ðFi ¼ 1 j eiÞ; . . . ; P ðFi ¼ k j eiÞÞ>: ð3Þ

Finally, each of the k dimensions of compositions is
independently standardized to zero mean and unit variance
across the whole training set, giving z-scores. This mixture
model is robust w.r.t. missed or corrupted individual local
parts, since it leverages an ensemble of parts. Second, it is
invariant to shifts of the local parts in the composition, which
result from fluctuations in the interest point detection. Third,
the mixture model exhibits low dimensionality irrespective of
the number of constituents that are grouped together.

5.2 Learning Relevant Compositions of Parts

A significant number of composition candidates do actually
only capture clutter such as background or other unspecific
regions of the scene and should thus be discarded.
Subsequently, an approach will be developed that auto-
matically learns to retrieve those compositions which are
actually relevant for our task of recognizing object
categories. Therefore, we present a Bayesian criterion that
defines what relevant compositions are and we propose a
statistically feasible learning algorithm.

From a Bayesian point of view, a composition gj that is

drawn from an image I is relevant for representing objects

of some category c if it has a high likelihood pðgj j �cÞ. The

indicator function �cðIÞ 2 f0; 1g specifies whether an image

I contains an object of category c:
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Fig. 3. Sketch of localized feature histograms.



�cðIÞ :¼ 1; I contains an object of category c;
0; otherwise:

�
ð4Þ

By applying Bayes’ theorem, the likelihood factorizes

P ð�c j gjÞ ¼
pðgj j �cÞ P ð�cÞ

pðgjÞ
: ð5Þ

Since all categories are a priori equally likely, P ð�cÞ can be
absorbed in a normalization constant:

pðgj j �cÞ / P ð�c j gjÞ pðgjÞ: ð6Þ

Assume for the moment that we have already estimated the
object location x (c.f. (17)). In this case, the estimate of
compositional relevance from (6) can be refined by
incorporating the relative position of the object center
w.r.t. to the location xj of a composition, Sj ¼ x� xj:

pðgj j �c; Sj ¼ x� xjÞ / P ð�c j gj; Sj ¼ x� xjÞ
� pðgj j Sj ¼ x� xjÞ:

ð7Þ

Compositional relevance as defined in (6) and (7)
factorizes into two distributions. The first expresses the
discriminative power of a composition gj, whereas the
second indicates how reliably gj can be detected. While the
first distribution can be estimated using discriminative
learning, the second one requires a density estimation in a
high-dimensional feature space which we avoid by means of
a cross-validation-based approach (illustrated in Fig. 4).
Therefore, the posterior P ð�c j gj; sjÞ is learned on one part
of the training data before using it to predict the relevance of
compositions in the other part. Unfavorable compositions
with low prior pðgj j sjÞ also have a low probability of
appearing in the validation set so that validation prevents
overfitting to the training set. The learning algorithm, which
is summarized in Algorithm 3, starts by randomly splitting
T ðþÞc , the training images of category c, into two disjoint
subsets T ð1Þc and T ð2Þc of equal size. Moreover, a set of
irrelevant compositions T ð0Þc has to be established by taking
a random sample of compositions from all categories other
than c. Then, a probabilistic classifier is trained to
distinguish compositions in T ð1Þc from the irrelevant ones
in T ð0Þc and it yields an estimate of P ð�c j gj; sjÞ, line 7. For
classification, we use nonlinear kernel discriminant analysis
(NKDA) [45], a kernelized version of linear discriminant
analysis. However, experiments with SVMs have shown the

same performance so that the choice of this particular
classifier is not crucial. To discard erroneously detected
compositions in T ð1Þc (e.g., background or other objects),
line 8, we use this classifier to predict the relevance of
compositions from the other training subset T ð2Þc , which
thereby act as a validation set. Given this ranking, the subset
R2 � G2 of cardinality � with the highest relevance is
selected from all compositions of the validation set (� is set
to retain 50 percent of the original compositions). In line 11,
the relevant subsets of each half of the training data are
merged to train a single NKDA classifier that is used to
measure compositional relevance in novel images.

Algorithm 3. Algorithm for learning relevant compositions

from cluttered images
RELEVANCELEARNING ðT ðþÞc ; T ð0Þc Þ
. T ðþÞc : set of training images for category c.

. T ð0Þc : irrelevant images of other categories

1 ðT ð1Þc ; T ð2Þc Þ  SPLITTRAINSET ðT ðþÞc Þ
2 for i 2 f0; 1; 2g . collect comps for images in the train

subsets:

3 do Gi ¼ ;
4 for I 2 T ðiÞc
5 do Gi  Gi [ ALLCOMPOSITIONCANDIDATES(I)

. Algo. 1

6 for i 2 f1; 2g
7 do pð�cjgj; sjÞ  LEARNPROBCLASSIFIER ðG0;GiÞ

. Train on i-th train set

8 pð�cjgj; sjÞ
��
gj2Gf1;2g�i

 PREDICT ðpð�cjgj; sjÞ;Gf1;2g�iÞ
. Predict on other half

9 Rf1;2g�i  subset (cardinality �) of Gf1;2g�i
with highest pð�cjgj; sjÞ

��
gj2Gf1;2g�i

10 R  R1 [R2 . Learn relevance on both parts of the train

set:

11 pð�cjgj; sjÞ  LEARNPROBCLASSIFIER ðG0;RÞ
12 return pð�cjgj; sjÞ;R

5.3 Visualizing Relevant Compositions

Now, we visualize the compositions that have been learned
to be relevant. Therefore, all candidate compositions of the
training data that have been predicted to be relevant for a
category c are clustered using histogram clustering (using
the histogram clustering of [46]). The relevances of all
compositions that are assigned to a centroid are averaged
and the centroids with the highest relevance for the category
are presented in Fig. 5. We depict each centroid by plotting
the three closest representatives that have been assigned to
it during clustering. Each of these three compositions is
visualized by displaying the image patches from the
training image that constituted the respective composition.

5.4 Learning Higher Order Compositions

To incorporate additional information into object models,
direct dependencies between compositions can be captured
by learning groupings of compositions. To build these higher
order compositions, we select random tuples of composi-
tions ðgk;glÞ and measure relations rkl between them. Our
current model uses only the distance vector rkl ¼ xk � xl,
although various other kinds of perceptual relationships are
conceivable. The relevance score (6) is then adapted:
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Fig. 4. Learning relevant compositions.



pðgk;gl; rkl j �cÞ / P ð�c j gk;gl; rklÞ pðgk;gl; rklÞ; ð8Þ

and plugged into Algorithm 3 to learn the relevance of

higher order compositions as in Section 5.2.

6 OBJECT CLASSIFICATION AND DETECTION USING

A COMPOSITIONAL SHAPE MODEL

Subsequently, object classification and detection will be
formulated as two coupled inference problems that are
combined in a single statistical model and are solved
alternatingly.

6.1 Binding Compositions in a Compositional
Shape Model for Object Classification

Classification of an object requires that all compositions are
combined in a single object model so that a concerted
categorization hypothesis can be derived. This structured
object model should couple: 1) the appearance of salient
object regions, 2) object shape (that is the geometry of the
local features), and 3) the scene context in which the object
appears (c.f. Fig. 6a). To this end, we utilize a Bayesian
network, which is illustrated in Fig. 6b. In this composi-
tional shape model, the appearance of object regions is
covered by compositions, whereas the shape is represented

through spatial relations between compositions and the

object center and by means of higher order compositions.
Last, scene context is captured by the co-occurence of all

compositions gj 2 G. Therefore, a mixture gI of the
distributions of all gj is computed:

gI :¼ 1

jGj
X
gj2G

gj: ð9Þ

Assume for the moment that an estimate of the object center x

has been established. Object recognition does then amount to

finding the category c 2 L that maximizes the posterior

P ðc j gI ;x; fgj;xjggj2RÞ: ð10Þ

6.1.1 Selecting Relevant Compositions

The set of relevant compositions R is formed by retaining

those % ¼ 50% of all compositions gj 2 G with the highest

relevance score (7), i.e.,

R :¼ A : A � G ^ jAj � % � jGj
^ 8gj 2 A;gj0 2 G � A :

max
c2L

P ð�c j gj; sjÞ 	 max
c2L

P ð�c j gj0 ; sj0 Þ:
ð11Þ

Relevant higher order compositions are selected using a

top-down grouping. Candidate composition tuples are

formed by randomly drawing from G � G. The most

relevant ones are then selected by maximizing the relevance

(8). This time, however, we can make use of the category

hypotheses that have been established based on singletons

(10). Therefore, we look only for those tuples ðgk;glÞ 2 eR
that are most relevant for the 10 categories with the highest

posterior (10). Let LR � L; jLRj ¼ 10 denote the 10 most

likely categories given the posterior (10):

eR :¼ A : A � G � G ^ Aj j � 1

2
Gj j

^ 8ðgk;glÞ 2 A; ðgk0 ;gl0 Þ 2 ðG � GÞ � A :

max
c2LR

P ð�c j gk;gl; rklÞ 	 max
c2LR

P ð�c j gk0 ;gl0 ; rk0l0 Þ:
ð12Þ

Consequently, singleton compositions focus the search for

higher order compositions. The higher order compositions

are then used to confirm the correct category hypothesis.
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Fig. 5. Clustering of relevant compositions. For each category, the

two centroids with the highest relevance are shown by visualizing the

three closest compositions to that prototype. (a) Airplanes. (b) Bass.

(c) Crayfish. (d) Dragonfly. (e) Faces. (f) Hawksbill.

Fig. 6. (a) Illustration of the different constituents of the compositional
shape model. (b) Bayesian network that couples compositions Gj by
means of scene context GI , object shape (represented by shifts
between composition locations Xj and object center position X),
relations Rkl between compositions, and finally, object categorization C.



We have chosen a subset of 10 categories since the correct
class is among this set in more than 90 percent of all cases.

6.1.2 Object Recognition Using Statistical Inference

Now, the category posterior conditioned on all composi-
tions and higher order compositions is derived—the
posterior for singletons is then a special case of this
distribution. Let us abbreviate the posterior by using E as
a shorthand notation for the collected evidence. We start by
applying Bayes’ formula:

P ðcjEÞ ¼ P ðc j gI ;x; fgj;xjggj2R; fgk;gl; rklgðgk;glÞ2eRÞ
¼
pðfgj;xjggj2R; fgk;gl; rklgðgk;glÞ2eR;gI j x; cÞP ðc j xÞ

pðfgj;xjggj2R; fgk;gl; rklgðgk;glÞ2eR;gI j xÞ :

ð13Þ

Now, we neglect the evidence in the denominator as it is
independent of c. Moreover, we factorize the enumerator by
exploiting that compositions are independent conditioned
on parameters c;x:

P ðc j EÞ / p
�
fgj;xjggj2R j x; c

�
� p
�
fgk;gl; rklgðgk;glÞ2eR j x; c� pðgI j x; cÞP ðc j xÞ

¼ P ðc j xÞ � pðgI j x; cÞ �
Y

gj2R
pðgj;xj j x; cÞ

�
Y

ðgk;glÞ2eR pðgk;gl; rkl j x; cÞ:
ð14Þ

Combining the first two factors and applying Bayes’ rule to
the individual likelihoods yields

P ðc j EÞ / P ðc;gI j xÞ �
Y
gj2R

P ðc j x;gj;xjÞpðgj;xj j xÞ
pðc j xÞ

�
Y

ðgk;glÞ2eR
P ðc j x;gk;gl; rklÞpðgk;gl; rkl j x

�
p
�
c j xÞ

:

ð15Þ

Factors that are independent of c can be neglected. More-
over, the object class is independent of the absolute position
of the object in the image. Therefore, only the relative
positions of compositions w.r.t. the object center are
retained since these shifts sj ¼ x� xj represent object
shape. Thus, we obtain,

P ðc j EÞ / P ðc j gI ;xÞ � pðgI j xÞ �
Y
gj2R

P ðc j x;gj;xjÞ

�
Y

ðgk;glÞ2eRP ðc j x;gk;gl; rklÞ
/ exp lnP ðc j gIÞ þ

X
gj2R

lnP ðc j gj; Sj ¼ x� xjÞ

24
þ

X
ðgk;glÞ2eR lnP ðc j gk;gl; rklÞ

375:
ð16Þ

Here, the logarithm has been introduced for numerical

stability. Computing (10) is then a special case of this

formula where the last sum over eR has been omitted. The

individual distributions of (13) are all estimated using a

probabilistic classifier (we use NKDA).

6.2 An Initial Estimate of Object Location

Subsequently, a first estimate of the object center is

computed. Therefore, gI from (9) is employed to bind

compositions based on their co-occurrence. The object center

is then estimated by weighing the contribution of each

composition with the probability that it should be observed:

x ¼
P

j xj
P

c2L pðgj j c;gIÞ P ðc j gIÞP
j;c pðgj j c;gIÞP ðc j gIÞ

: ð17Þ

The first distribution is estimated using Parzen windows and
the second one using NKDA. In the training phase, when the
true category label is available for images, the second sum
reduces to the true category c and the distribution over
categories degenerates to a discrete Dirac distribution:

x ¼
P

j xj � pðgj j ctrue;g
IÞP

j pðgj j ctrue;gIÞ
: ð18Þ

An evaluation on the Caltech-101 database shows that
the estimate for the object center in (17) deviates from the
true center (provided by the hand annotations) by
8:8
 3:8 percent of the bounding box diagonal (averaged
over all categories). This is roughly the size of the atomic
parts, and therefore, exact enough to couple compositions
in the compositional shape model.

6.3 Simultaneous Classification and Detection of
Multiple Objects

6.3.1 Recognition Phase

Now, we extend the compositional approach so that it

can localize the bounding boxes of multiple objects in

heavily cluttered scenes, i.e., the scenario defined in the

PASCAL Visual Object Classes Challenge 2006 (VOC ’06)

[47]. The following extends the recognition procedure

from Algorithm 2 so that multiple objects per image can

be handled under the assumption that there is maximally

one instance per category. Bounding box hypotheses are

inferred for each category and a confidence in each

hypothesis is computed—this is carried out in the main

loop starting at line 2 of Algorithm 4. To start the

alternating localization and classification of objects, an

initial bounding box estimate is computed by weighting

the location of each composition with the compositional

relevance P ð�c j gjÞ from (6). The bounding box is a

square which is determined by its center Bc
x 2 IR2 and by

its side length 2 � Bc
� 2 IRþ:

Bc
x ¼

P
j:gj2G xj � P ð�c j gjÞP
j:gj2G P ð�c j gjÞ

;

Bc
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j:gj2G kB

c
x � xjk2 � P ð�c j gjÞP

j:gj2G P ð�c j gjÞ

vuut :

ð19Þ
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The relevance score is computed according to (7), which

in this case has the form pðgj j �c; Sj ¼
kBc

x�xjk
Bc
�
Þ. Based on the

set R of relevant compositions, a new estimate of the

bounding box can be obtained. The locations xj of relevant

compositions are weighted with the compositional relevance

P ð�c j gj; Sj ¼
kBc

x�xjk
Bc
�
Þ from Section 5.2, giving an updated

estimate of Bc (see line 8). This alternating estimation of

relevance R and bounding box Bc is repeated iteratively.
The remainder of the recognition algorithm proceeds

then according to Algorithm 2: First, candidates for higher
order compositions are established within the estimated
bounding box (i.e., for ðgk;glÞ 2 eG � G � G both constituents
must lie within the bounding box).

Finally, the object localized by the bounding box is to be
recognized. The underlying inference algorithm has been
derived in Section 6.1.2. To make it applicable to the
extended approach of this chapter, only the shifts Sj have to
be adapted in (16):

’c : ¼ P ðC ¼ cjEÞ
¼ P ðc j gI ;x; fgj;xjggj2R; gk;gl; rklf g

ðgk;glÞ2eRÞ
/ exp lnP ðc j gIÞ þ

X
gj2R

lnP c j gj; Sj ¼
kBc

x � xjk
Bc
�

� �24
þ

X
ðgk;glÞ2eR lnP ðcjgk;gl; rklÞ

375:
ð20Þ

The object hypothesis (category c, localization Bc) is then
rated with the confidence score ’c.

Algorithm 4. Simultaneous Classification and Detection of

Multiple Objects

OBJECTRECOGNITIONANDDETECTION(I) . I: query image

1 ðG;gIÞ  ALLCOMPOSITIONCANDIDATES(I) . Algo. 1

2 for all c 2 L
3 do . obtain initial estimate of bounding box Bc:

4 Bc
x  

P
j:gj2G

xj�P ð�cjgjÞP
j:gj2G

P ð�cjgjÞ

5 Bc
�  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j:gj2G

kBc
x�xjk2�P ð�cjgjÞP

j:gj2G
P ð�cjgjÞ

s
6 repeat . update R and Bc alternatingly for cat. c:
7 R  RELEVANTCOMPOSITIONS ðG; Bc; cÞ

. find relevant comps in Bc, (11)

8 Bc
x  

P
j:gj2R

xj�P
�
�cjgj;Sj ¼

kBcx�xjk
Bc�

�P
j:gj2R

P
�
�cjgj;Sj ¼

kBcx�xjk
Bc�

�
9 Bc

�  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j:gj2R

kBc
x�xjk2�P

�
�cjgj;Sj ¼

kBcx�xjk
Bc�

�P
j:gj2R

P
�
�cjgj;Sj ¼

kBcx�xjk
Bc�

�
vuut

. update Bc for given R
10 until convergence

. draw compositions of compositions for category c:

11 eG  COMPOFCOMPCANDIDATES ðG; BcÞ
. random subset of G � G, Section 5.4

12 eR  RELEVANTCOMPSOFCOMPS ðeG; cÞ
13 . select relevant comps of comps, (12)

. confidence in cat. hypothesis c for obj. within Bc:

14 ’c ¼ P ðC ¼ cjEÞ . (20)

 COMPOSITIONALSHAPEMODEL ðR;gI ; Bc; eRÞ
15 return f’c;Bcgc2L . obj. cat. posterior & B.Box

6.3.2 Learning Phase

Learning object models from unsegmented, cluttered train-
ing images implies that objects need to be localized
automatically. This task is challenging since we are not
provided any object models in this phase. Therefore, we
apply an alternating update scheme (Algorithm 5): Object
hypotheses are established for all training images before
using these models to localize objects in the training images.
Thereafter, the models are updated again based on the
localization. The algorithm requires a set of images T ð1Þc that
show objects of some category c and a set of irrelevant
images T ð0Þc from other categories. The learning algorithm
starts by extracting candidate compositions out of all the
training images. In line 5, the distribution P ð�cjgjÞ is
learned using NKDA before computing an initial bounding
box estimate in line 6. Now, an alternating update of
bounding boxes and compositional relevance starts. The
final bounding boxes are then used to select the relevant
compositions for category c by employing Algorithm 3 and
discarding all compositions that lie outside of a bounding
box. Based on the set of relevant compositions and the
estimated bounding boxes, the remaining distributions in
(20) can be learned using multiclass NKDA as has been
previously done.

Algorithm 5. Learning relevant compositions from images

with multiple objects by alternating bounding box detection

and the estimation of compositional relevance

LEARNINGRELEVANCEANDOBJECTDETECTION

ðT ð1Þc ; T ð0Þc Þ
. T ð1Þc : set of training images for category c.

. T ð0Þc : irrelevant images of other categories.

1 for i 2 f0; 1g . collect comps. for imgs. in T ð1Þc ; T ð0Þc :

2 do Gi ¼ ;
3 for I 2 T ðiÞc .Algo. 1:

4 do Gi  Gi [ ALLCOMPOSITIONCANDIDATES (I)

5 P ð�cjgjÞ  LEARNPROBCLASSIFIER ðG0;G1Þ
6 for I 2 T ð1Þc . obtain initial estimate of B.Box Bc:

7 do Bc
xðIÞ  

P
j:gj2G

xj�P ð�cjgjÞP
j:gj2G

P ð�cjgjÞ

8 Bc
�ðIÞ  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
j:gj2G

kBc
x�xjk2�P ð�cjgjÞP

j:gj2G
P ð�cjgjÞ

s
9 for h ¼ 1 to 3 . alternat. update of relevance & B.Box:

10 do P ð�cjgj; SjÞ  LEARNPROBCLASSIFIER ðG0;G1; B
cÞ

11 for I 2 T ð1Þc

12 do Bc
xðIÞ  

P
j:gj2R

xj�P
�
�c

��gj;Sj ¼ kBcxðIÞ�xjk
Bc�ðIÞ

�P
j:gj2R

P
�
�c

��gj;Sj ¼ kBcxðIÞ�xjk
Bc�ðIÞ

�
13 Bc

�ðIÞ  
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j:gj2R
kBc

x�xjk2�P ð�cjgj;SjÞP
j:gj2R

P �cjgj;Sj ¼
kBcxðIÞ�xjk

Bc�ðIÞ

	 
vuut
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. selection of relevant compositions using Algo. 3:

14 ðpð�cjgj; sjÞ;RÞ
 RELEVANCELEARNING ðT ð1Þc ; T ð0Þc ; fBcðIÞg

I2T ð1Þc
Þ

15 return pð�cjgj; sjÞ;R; fBcðIÞg
I2T ð1Þc

7 EVALUATION OF THE COMPOSITIONAL APPROACH

7.1 Results on Caltech-101

We first evaluate the compositional approach on the
challenging Caltech-101 database consisting of 101 object
categories and a background category. Categories have
varying numbers of samples (between 30 and 800) and
range from photos with clutter to line drawings. The large
intracategory variations in this database render object
recognition a challenging task. However, there are only
limited variations in pose. Following common practice,
retrieval rates (fraction of correctly predicted test images)
are averaged per class to avoid a bias toward the easy
classes with many images. The overall retrieval rate � is,
therefore, defined as

� :¼ 1

jLj
X
c2L
ftrue positive rate for category cg: ð21Þ

Moreover, five-fold cross validation is performed to obtain
error bars.

Berg et al. [15] have calculated a reasonable baseline
performance of 16 percent using texton histograms (random
classification is below 1 percent). Table 2 summarizes the
retrieval rates achieved by the state-of-the-art approaches
on this database using 30 training images per category.
Note that the top-ranked methods exploit the peculiarity of
this specific database that the spatial structure of objects is
limited in its variation with respect to the image, e.g., [20],
and split the image into a regular grid and concatenate the
individual descriptors to a joint one. In contrast to this, our
approach aims at learning the compositional structure of
objects. Recently, the approach of [20] has been extended
[48] by further adapting the features, including an ROI
search, and testing different types of classifiers. However,
judging from the authors’ discussion of their results, the
performance gain to around 80 percent on Caltech-101 is
mainly due to the adapted features.

Gain of compositionality over a baseline model. In the
following experiments, different aspects of our composi-
tional approach will be investigated. To evaluate the gain of
compositionality, we start with a model that discards the
compositional structure completely and uses features from a
single scale. Recognition is then based on the bag representa-
tion gI by maximizing P ðcjgIÞ. This model achieves a
retrieval rate of 35:3
 0:8 percent for 30 training images. In
contrast to this, the full compositional model increases
performance to 58:8
 0:9 percent using compositionality.
A two-tail Student’s t-test underlines the significance of this

improvement (p-value of 0.005). Removing context gI from
this model decreases the performance to 54:2
 0:8 percent.
Finally, we investigate an even simpler model: Images are
tiled (a 5� 5 grid showed the best performance), each grid
cell is represented using a bag-of-features (same codebook
as before), and an image is classified by maximizing the
product of the individual posteriors. This model performs
at 50:9
 1:1 percent.

MultiScale approach and different codebook sizes. In the
previous experiment, recognition has been only conducted
on a single scale. When processing images on three scales
�1 ¼ 1; �2 ¼ 1=2; �3 ¼ 1=4 (where � ¼ 1 corresponds to the
original image scale), the retrieval rate is further improved to
60:7
 0:8 percent. This shows that although the individual
scales alone yield weaker performance (the individual
performances are 58:8
 0:9 percent, 56:3
 1:3 percent, and
52:5
 0:7 percent), combining the image representations
from multiple scales is effective in boosting the performance.

In Fig. 7b, different codebook sizes are investigated.
Increasing the codebook from 200 prototypes in the
previous experiments to 300 improves the performance to
61:3
 0:9 percent.

Analyzing the established category hierarchy. From the
category confusion table, it can be judged how similar the
different categories are. Therefore, the confusion probabil-
ities are used to establish a class hierarchy which reveals the
degree of relatedness of categories.

The probability that a test image of category ctrue 2 L is
classified by our architecture as belonging to class cpred 2 L
is given by P ðcpred j ctrueÞ and the confusion table is then
represented by the matrix Mctrue;cpred

:¼ P ðcpred j ctrueÞ. The
matrix is symmetrized by adding its transpose:

fM :¼ �E� MþMT � 2 diag½M�
� �

: ð22Þ

Here, E denotes the matrix of only ones, � is a constant, and
diag ½M� is M with its off-diagonal entries set to zero. fM is
used as a distance matrix between categories for a
subsequent hierarchical clustering of categories (using
Ward’s Method). The resulting cluster tree (Fig. 8) has
categories at its leaves and the length of a path between two
classes is proportional to their dissimilarity. The confusion
table is presented with permuted rows and columns so that
it fits to the leafs of the adjacent hierarchy tree. The
categories that are judged to be most similar are “water lily”
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TABLE 2
Retrieval Rates of Current Approaches on Caltech-101

Using 30 Training Images Per Category

Fig. 7. (a) Retrieval rates of the full, multiscale compositional approach
for different training set sizes and a 200D codebook of atomic parts
(retrieval rate for 30 training images is 60:7
 0:8 percent). (b) Retrieval
rates of the full compositional approach for different sizes of the part
codebook. The algorithm is trained on 30 images per category.



and “lotus,” “ketch” and “schooner,” and “crocodile” and
“crocodile head.” These similarities are intuitive since they
are between pairs that are semantically close.

7.2 A Comparison of Feature Descriptors for
Atomic Parts

The low dimensionality of localized feature histograms is
crucial to render the learning of compositional object
models statistically feasible. Subsequently, we contrast this
feature with a common representation, the SIFT features [7].
Both representations are compared by plugging either of
them as local feature ei into the single-scale version
(running on scale �2 ¼ 1=2, using a 200D codebook and
30 training images per category) of our compositional
system. However, we first analyze the effective dimension-
ality of both descriptors by randomly drawing 10,000
features from all Caltech-101 categories and applying PCA
to the resulting features. Fig. 9 shows the eigenvalue
spectrum for both descriptors. For the 40D localized feature
histograms, a small subspace of 20 dimensions captures
more than 90 percent of the total variance. Similarly, for
SIFT, half of all eigenvalues represent 90 percent of the
variability. Now, we plug either descriptor type into our
system and summarize the results in Table 3. This
evaluation underlines that localized feature histograms are
effective in capturing local object particularities in a low-
dimensional representation and clearly outperform SIFT as
a representation basis for atomic compositional parts.

7.3 Influence of Color in Localized Feature
Histograms

To analyze how much color attributes to the performance of
localized feature histograms, we again use the compositional
approach from Section 7.2 (scale �2 ¼ 1=2 and 200D code-
book). Two different versions of local features ei are set up.
The original 40D features described in Section 4.1 and a
variant where the 8-bin color histogram is replaced by a 4-bin
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Fig. 8. Category hierarchy and category confusion table permuted to fit to the class tree. The retrieval rate is 61:3
 0:9 percent.

Fig. 9. Eigenvalue spectrum of (a) localized feature histograms and

(b) SIFT features. The effective dimensionality of localized feature

histograms is roughly a third of SIFT.



gray-scale histogram. Fig. 10 compares the retrieval rates of
both approaches achieve for different training set sizes. On
average, the color version yields a retrieval rate that is
roughly 2 percent higher than that of the gray-scale version.
Therefore, the difference in performance between our
features and SIFT is only to a small extend caused by the
additional color information but rather due to the lower
dimensionality which renders learning statistically feasible.

7.4 Sampling a Compositional Representation from
the Generative Object Model

During recognition, inference propagates information from
local image features over intermediate compositions to an
object category label. However, the graphical model in Fig. 6b
can also be applied in a generative manner: Given object
category c and object position x, compositions and, finally,
image patches can be inferred. It should be noted that this
generative process infers atomic parts (the image patches),
rather than directly generating pixels. Since the mapping
from image patches to atomic parts is not invertible in
general, we identify a synthesized atomic part with the image
patch in the training data whose atomic part is the nearest
neighbor of the synthesized part. To obtain the image
representation in a region around xj, compositions gj have
to be sampled from the likelihood

pðgj j c;x;xjÞ ¼
P ðc j gj; Sj ¼ x� xjÞ � pðgj j Sj ¼ x� xjÞ

P ðc j x;xjÞ
:

ð23Þ

The denominator can be dropped since it only depends on
evidence variables. Moreover, all candidate compositions
that are established in the training images are distributed
according to the composition prior, gj � pðgj j Sj ¼ x� xjÞ.
Compositions can, therefore, be sampled by evaluating the

category posterior P ðc j gj; Sj ¼ x� xjÞ (which has been
learned for (16)) on compositions gj that have been drawn
from the training data:

pðgj j c;x;xjÞ / P ðc j gj; Sj ¼ x� xjÞjgj from training: ð24Þ

The resulting compositional image puzzles in Fig. 11
provide insights into this generative process. Here, compo-
sitions have been inferred at points xj on a regular grid (five
compositions have been drawn at each point). We allow the
sampled compositions to shift a short distance by perform-
ing gradient ascent on the likelihood (24) over xj in a local
neighborhood to reduce artifacts that result from sampling
on a regular grid. This experiment reveals that the
composition system has learned relevant compositions
and their spatial relations to the object.

7.5 Inferring Missing Object Components

The higher order compositions which have been introduced
in Section 5.4 can be used to infer missing compositions of an
object. Given a composition gk, the remainder of an object can
be inferred by drawing compositions gj from the likelihood:

pðgj j gk;xk; c;xjÞ ¼
P ðc j gj;gk; rjkÞ � pðgj j gk; rjkÞ

P ðc j gk;xk;xjÞ
/ P ðc j gj;gk; rjkÞjgj from training:

ð25Þ

In Fig. 12, a single composition is given together with the
object category label. This information is used to infer a
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Fig. 10. Performance of the compositional approach (scale �2 ¼ 1=2 and

200D codebook) based on the original 40D localized feature histograms

that use color and based on a 36D variant of these features that discards

all color information.

Fig. 11. Compositional image puzzles obtained by sampling composi-
tions for (a) grand piano and (b) ferry. Given the position of the image
center and a category label, compositions are sampled from the
generative model.

Fig. 12. Inferring compositions for (a) a cougar face and (b) an elephant.
Given only the composition displayed in the box at the bottom left and
the true category label, image patches corresponding to the inferred
compositions are shown. The location of the conditioned composition is
marked by a cross in the inferred image.

TABLE 3
Performance of the Compositional Approach

(Single Scale �2 ¼ 1=2, 200D Codebook, 30 Training Images
Per Category) Using Different Local Descriptors and

After Dimensionality Reduction Using PCA



maximum likelihood solution on the basis of composi-
tions derived from the training set. The spatial structure
of the reconstructed objects underlines that the composi-
tional model has learned characteristic relationships
between compositions.

7.6 Analyzing the Relevance of Compositions

Subsequently, the relevance of individual compositions for
categorizing a test image is evaluated. Therefore, the
category posterior of the true category,

P ðc j gI ;x;gj;xj;gk;gl; rklÞjc¼True Category; ð26Þ

is computed for individual pairs of compositions. In Fig. 13,
the resulting probability is then encoded in the opaqueness
of the underlying image parts. We obtain probabilistic
segmentations of scenes based on the relevance of composi-
tions. The visualization shows that relevant compositions
cover meaningful object parts. Note that this segmentation
is learned from unsegmented training images and for
multiple categories simultaneously, as opposed to [18].

7.7 Detection and Classification of Multiple Objects:
PASCAL VOC’06

7.7.1 Classification Performance

For each of the 10 classes, the system must decide if an
instance of that class is present in a test image. The

confidence scores are then used to rank the individual

predictions so that a receiver operator characteristic (ROC

curve) can be drawn. Fig. 14a shows the ROC curves for all

10 categories. The corresponding AUCs are in the range of

0.81 to 0.96 except for one outlier, category person with an

AUC of 0.66. This class is particularly complicated as it

features panoramic pictures that show full persons as well

as close-up views that show only parts of a person.

Altogether, the model is competitive compared with the

average of all submissions to the VOC ’06 challenge which

is displayed in Fig. 14b. Since the compositional approach is

not specifically tailored to any of these classes and

does—unlike most of the PASCAL competitors—not use

location information in training, achieving comparable

performance to these models is remarkable. The largest

performance gap can be observed for class person for which

a lot of specifically designed approaches exist. The manual

tuning toward this category and the rich supervision used

by these methods explain their advantage.
In addition to the PASCAL challenge, we can also test

our approach in a more complicated multiclass setting. The

confusion table is presented in Fig. 14c and it shows a

retrieval rate of 46.3 percent. The best performance is

achieved for man-made objects, whereas retrieval rates for

animal and person categories are generally lower. The

dominant off-diagonal entries are confusions between cat

and dog (23 percent) and cows mistaken for sheep (22 percent

of all cows).

7.7.2 Detection Performance

The localization accuracy is measured in VOC’06 by

predicting object bounding boxes together with a con-

fidence score for test images. For a detection to be correct,

VOC ’06 demands that the area Að�Þ of overlap between a

predicted bounding box Bc and a ground truth bounding

box Bgt must be more than half the union of both areas:
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Fig. 13. Relevance of a composition is illustrated for recognition of
objects. The opaqueness encodes the category posterior evaluated at
compositions. The visualization shows which image patches contributed
to recognizing the object.

Fig. 14. Classification performance. (a) ROC curves for all categories of the PASCAL database, computed according to the guidelines of the
PASCAL competition. The legend provides the categories names and the corresponding area under ROC curve (AUC). (b) The bars show the AUCs
for all 10 categories. The lines indicate the average/min/max performance over the 20 submission of the PASCAL 2006 challenge. These methods
include highly supervised approaches trained with bounding box information. (c) Multiclass recognition of all 10 categories. The overall retrieval rate
is 46.3 percent.



bounding box hypothesis Bc correct, AðBc \ BgtÞ
AðBc [ BgtÞ

>
1

2
:

ð27Þ

Fig. 15a shows the precision recall curves and compares

against all PASCAL entries. Although these methods use

heavy supervision and are mostly tailored to just a few

categories, the compositional approach outperforms all of

them for category bus and its performance is well within the

range of competition entries for categories dog, bicycle, and

horse. It is remarkable that a model trained without any

localization information on cluttered training data is

nevertheless competitive to state-of-the-art detection algo-

rithms that have been trained in a supervised manner.

An example that depicts object localization is presented

in Fig. 16. The blue bounding box on the left is the ground

truth, whereas the green one in Fig. 16b is the predicted

box. The probability map for category dog visualizes

P ð�c¼00dog00 j gj; Sj ¼
kBc

x�xjk
Bc
�
Þ for all compositions gj. This

map shows that compositions on the object have a high

confidence for dog and faithfully cover the animal. The

example also indicates that the choice of bounding box

localization may underrepresent the model’s true, pixel-

level localization capabilities.

7.8 Analyzing the Performance of the
Compositional Model

In Section 7.1, it has been shown that the compositional
approach significantly outperforms a baseline bag repre-
sentation. To further investigate the performance gain
achieved by compositionality over the baseline model, we
focus on only the classification task: The correct object
bounding box is given and only the object category is
queried. Now, we can compare the performance of the full
compositional model from Section 6.3.1 with that of the
baseline model, which performs recognition by maximizing
P ðc j gIÞ. As an additional, intermediate experiment, we
neglect the spatial information in the compositional model
so that the gain of localization information can be measured
separately. Therefore, recognition is based on maximizing

P ðc j gI ; fgjggj2RÞ / exp
X
gj2R

lnP ðc j gjÞ

24 35: ð28Þ

Fig. 17 compares the retrieval rates achieved by the three
models. Since the evaluation is restricted to a classification
task of limited complexity, the performance differences of
the approaches are also reduced. Nevertheless, it shows
that even the compositional representation without spatial
information (28) performs significantly better than the bag
model. In conclusion, the experiment has underlined that
compositions play a crucial role in building powerful
vision systems.

8 CONCLUSION

Composition systems for real-world object recognition have
been developed in this contribution. We have, in particular,
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Fig. 15. Detection performance. (a) Precision recall curves for detection
as defined in VOC ’06. The legend provides next to each category label
the average precision of that class. (b) The bars show the average
precision (AP) for each category. The colored markers denote the
performance of entries in the PASCAL competition which are mostly
trained using heavy supervision.

Fig. 16. Detection. (a) Test image with ground truth bounding box.
(b) Probability map for category dog. This map depicts how confidently
compositions vote for category dog.

Fig. 17. Comparing the performance of a bag representation gI , with that

of a simple compositional approach without spatial information (28), and

the full compositional model from Section 6.3.1.



investigated how the compositional nature of objects can be
learned automatically without requiring manual super-
vision. Therefore, relevant object structure is automatically
discovered in cluttered training images without requiring
hand segmentations or other manual localization informa-
tion. Moreover, it has been shown how compositions can
bridge the large semantic gap between robust, but
unspecific local descriptors and high-level categories. A
small codebook of these local descriptors, which is shared
by all categories, is therefore sufficient to represent large
numbers of diverse categories and the system automatically
compensates for the information that is lacking in the local
features by learning characteristic relations between them.
Finally, a Bayesian network has been presented that couples
all compositions with relations between them, object shape,
and scene context to provide a concerted object hypothesis.
Thus, our compositions system efficiently learns structured
object models to infer complex scene interpretations.
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