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Multicut brings automated neurite 
segmentation closer to human 
performance

To the Editor: The connectomics community is acquiring volumetric 
electron microscopy (EM) images of the brain at an unprecedented 
rate with the aim of mapping out and understanding in detail the 
physical correlates of information processing in animals. Reliable 
automatic segmentation is urgently needed for upcoming whole-
brain data sets (>100 terabytes (TB) per volume). Manual analysis, 
despite impressive progress in collaborative annotation1, will not 
scale to this massive task. We present an algorithm and software 
package to segment such data sets with low error rates. The software 
is made available open source in the Supplementary Software and 
at online repositories, and we also provide precompiled binaries (see 
Supplementary Note 1). 

At the ISBI 2012 conference, a challenge for segmenting anisotropic 
3D EM images was launched. In this ‘blind’ challenge, which remains 
open to new submissions, participants can submit tentative segmen-
tations of the test data set. The organizers then measure the accuracy 
of the submitted segmentation in terms of Rand error. The latter is a 
statistic summarizing—for each and every pair of points—how often 
these points are correctly assigned to the same segment, or to dif-
ferent segments, as dictated by ground truth. The organizers publish 
the Rand error of a submission without giving away the ground truth 
segmentation itself, thus ensuring fair comparison and minimal bias2. 
Our algorithm produces the best known result on the ISBI 2012 blind 
challenge, halving the error of the 2012 winner.

Our pipeline comprises three major steps (Supplementary Note 2).  
First, we apply a cascaded random forest (which needs less training 
data) or a convolutional neural network (which gives even better 
accuracy) to predict membrane probabilities. In the neural network, 
we found skip layers, elastic data augmentation during both training 
and prediction, and inception-like modules to be critical for perfor-
mance (Supplementary Note 3).

Second, we aggregate pixels into ‘superpixels’ to coarse grain the 
problem and to extract higher order region information in a data-
dependent fashion. Superpixels should be few (and thus large) to 
reduce the problem size for the final processing stage; but superpixel 
boundaries must also form a strict superset of true neurite boundaries. 
Distance transform watershed superpixels (Supplementary Note 4) 
offered the best trade-off in our experiments, yielding large super-
pixels that are robust against minor gaps in the boundary probability 
maps.

Finally, we merge superpixels to tentative neurites while respecting 
consistency constraints across distances that are larger than a neural 
network’s field of view. Specifically, we solve the (Lifted3) Multicut4 
problem, which introduces attractive or repulsive potentials between 
(nonadjacent) superpixels, and we find the graph partitioning that 
optimally balances these cues. We always reason in 3D, even for 

anisotropic data (Fig. 1 and Supplementary Notes 5 and 6). This 
NP-hard partitioning problem is solved approximately using the fast-
est known method5. 

Each of these choices is the result of extensive experimentation, 
and the lesion study summarized in Figure 1 and in Supplementary 
Notes 7 and 8 shows how performance degrades when deviating from 
these choices. 

The same pipeline works well on the anisotropic murine neo-
cortex ‘SNEMI3D’ data and the isotropic Drosophila medulla 

Figure 1 | The automated neurite segmentation pipeline and the influence 
of its components on performance. (a, i) Example of ISBI 2012 data. 
Membrane probability estimates (a, ii) are used to find superpixels (b, i). 
Pairs of these regions are associated with attractive (cyan) or repulsive 
(red) potentials that are informed by local appearance (b, ii). A region 
adjacency graph is constructed in 3D, even for strongly anisotropic data (c). 
We consider next neighbor interactions (straight lines and straight dashed 
lines) and longer range interactions (curved lines) for the Lifted Multicut. 
Solving the (Lifted) Multicut graph partitioning problem yields tentative 
neurites (d). The table (e) shows the performance reached on the ISBI 2012 
challenge using; from top to bottom: a cascaded Random Forest; the same 
with distance transform watershed superpixels (DT WS) and multicut (MC); 
our neural network; the same with standard watershed superpixels and MC; 
the same with DT WS and MC; and finally the proposed pipeline. Accuracies 
are measured by scores2 derived from the Rand index (RI) and the variation 
of information (VI), and higher scores are better. 
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(Supplementary Note 1), there is currently no available open-
access software to achieve high-accuracy localization independent 
of specific registration fiducials that also offer nonrigid registration 
both in two and three dimensions (2D and 3D) and semisupervised 
registration. 

We present easy cell-correlative light to electron microscopy  
(eC-CLEM), a free open-source software implemented as a plugin 
in the Icy platform3. As CLEM applies to a wide variety of data sets,  
eC-CLEM allows several types of registration, corresponding to differ-
ent correlative workflows (Fig. 1 a–c and Supplementary Note 2) in 
2D and 3D (or a mix of both dimensions). For example, eC-CLEM can 
be used to register 3D LM with 2D EM (to reposition a slice in a stack; 
Fig. 1a), or to extract a slice with the correct transformation from an 
LM stack using artificial (e.g., quantum dots) or natural fiducials (e.g., 
nuclei, melanosomes, sample defects) (Fig. 1b). The software works 
well with time-lapse, multichannel or multidimensional images; and 
it offers preliminary image preprocessing for rapid data extraction 
(Supplementary Notes 2 and 3).

Registration can be done rigidly (only scale, rotation and transla-
tion are applied), or nonrigidly (nonlinear transformations based 
on spline interpolation, after an initial rigid transformation; Fig. 1d) 
for 2D or 3D data (Supplementary Note 4). All computations are 
done directly in physical units (nanometers), and evaluation of the 
registration error is displayed live (Supplementary Note 5). With 
eC-CLEM, we address several challenges of LM and EM micrograph 
registration in 2D and 3D.

First, we estimate the target registration error (TRE) between a 
target structure in EM and its corresponding position in LM, in any 
position of the image (Supplementary Note 5 and Supplementary 
Data 1). We present the TRE in the form of a heatmap showing the 
predicted TRE (in nanometers) in every point of the image. This 
error map can be generated at any moment during the registration 
process in order to guide the user to add fiducials where needed—
for example, next to an area that contains a structure of interest but 
lacks accuracy in registration. 

Our eC-CLEM software also evaluates the need to apply nonrigid 
registration (warping) to obtain accurate registration. Whilst vitrifi-
cation techniques allow preservation of biological samples in a near-
native state in cryo-electron microscopy (cryo-EM) with limited 
physical deformations, structural changes and sample deformations 
can occur at several steps when performing correlative microscopy 
on material that is not near to native (chemical fixation, embedding, 
sectioning)4–6. Selecting the parameters of the transformation (rigid 
or nonrigid) may be challenging. Allowing nonrigid transformation 
can warp the image locally. The warping interpolation can therefore 
induce warping in neighboring  regions where it is not required and 
lead to false matching. It can also increase the TRE (Supplementary 
Note 6 and Supplementary Data 1). eC-CLEM analyzes the fiducial 
localization discrepancy after rigid registration and the predicted 
registration error, which is a prediction of the error if no deforma-
tion occurs. If the discrepancy range is above the predicted registra-
tion error for some fiducials, warping registration is suggested to 
correct for local deformations.

Automated registration is a challenging technical problem, and 
eC-CLEM offers the ‘AutoFinder’ option as a major step forward 
in this area. After markers in LM and EM have been predetected, 
and without knowing the exact location of the cell of interest, the 
AutoFinder will screen the image to find the matching position. 
This option allows finding a cell of interest from LM in EM, or 

eC-CLEM: flexible multidimensional 
registration software for correlative 
microscopies

To the Editor: Correlative light and electron microscopy (CLEM) is 
becoming increasingly popular within the life sciences. The diversi-
ty of light microscopy (LM) and electron microscopy (EM) modali-
ties has led researchers to develop a multitude of CLEM workflows 
tailored to different scientific investigations1,2. Finding the corre-
sponding area between LM and EM images can be facilitated with 
specific sample holders, finder grids, laser marks or pattern recog-
nition1. However, for all these workflows, the accurate association 
of a fluorescent object with its corresponding ultrastructure from 
data sets differing in scales by several orders of magnitude remains 
a universal bottleneck. Although several software solutions to the 
problem of achieving accurate association have been proposed 

‘Neuroproof ’ data (Supplementary Note 7). This work substan-
tially narrows the accuracy gap between humans and computers for 
neurite segmentation (Supplementary Note 9). We expect this gap 
to close within the decade, at least for high-quality data, allowing 
neuroscientists to make the most of the impressive data sets that are 
currently being acquired.  

Data availability statement. Any Supplementary Information and 
Source Data files are available in the online version of the paper or 
provided there as references.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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