
Original article 

 
How much anatomy do we need? Automated vs. manual 
pattern recognition of 3D 1H MRSI data of patients with 

prostate cancer 
 
 
 
Christian M. Zechmann1*, Bjoern H. Menze2*, Michael B. Kelm2, Patrik Zamecnik1, 
Uwe Ikinger3, Rüdiger Waldherr4, Frederik L. Giesel1, Christian Thieke5,  Stefan 
Delorme1, Fred A. Hamprecht2, Peter Bachert6 
 
 
 
1 German Cancer Research Center (DKFZ), Department of Radiology, Heidelberg, Germany 
2 Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Heidelberg, 
Germany 
3 Urology Department, Salem Hospital, Heidelberg, Germany 
4 Pathology Institute Prof. Waldherr, Heidelberg, Germany 
5 German Cancer Research Center (DKFZ), Clinical Cooperation Unit for Radiation Therapy, 
Heidelberg, Germany 
6 German Cancer Research Center (DKFZ), Department of Medical Physics in Radiology, Heidelberg, 
Germany 

 
 
*shared first authorship 
 
 
 
Corresponding author: Christian M. Zechmann 
    Department of Radiology (E010) 
    German Cancer Research Center (DKFZ) 
    Im Neuenheimer Feld 280 
    D–69120 Heidelberg 
    phone:+49 6221 422525 
    fax: +49 6221 422531 
    e–mail:  c.zechmann@dkfz.de 
 
 
Key words: prostate cancer; proton MR spectroscopic imaging; postprocessing; 
pattern recognition 
 
 
Total word count: 
 
 
 

mailto:c.zechmann@dkfz.de


Abstract 
 
Objective 

To evaluate quantitatively 3D proton MR spectroscopic imaging (3D 1H MRSI) data of 

the prostate in patients with known prostate cancer using anatomical knowledge, 

compared with a single–voxel–spectra evaluation by blinded experts and automated 

processing methods. 

 

Material and Methods: 

MRSI data of 10 patients with histologically proven prostate adenocarcinoma, 

scheduled either for prostatectomy or intensity–modulated radiation therapy, were 

evaluated by two MRS experts using information on anatomy and localization of the 

spectra; and in blinded, randomized lists. Spectra were also classified by automated 

processing methods based on spectral fitting and pattern recognition. Results were 

compared using Kendall’s tau and grouped in a hierarchical segmentation. 

 

Results: 

The experts came to more binary decisions – using information of spectra from 

surrounding tissue in ambiguous cases – when evaluating MR spectroscopic images 

as a whole. Differences between unblinded and blinded evaluation were larger than 

differences between blinded and automated processing methods. 

 

Conclusion: 

An automated approach can be as good as a blinded reader. However, anatomical 

and morphological information are routinely used by human experts, supporting their 

final decisions. Using automated approaches considering anatomical knowledge 

could therefore improve an automated evaluation, supporting the human reader. 
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Introduction 

 

Prostate cancer is still the most frequent malignancy in the western hemisphere with 

29% of all newly diagnosed tumors. The recorded incidence increased mainly due to 

prostate–specific antigen (PSA) screening. Following this a decrease in the death 

rate from 1990 to 2003 of 31.12% is seen [JeSW07], which is related to many 

improvements in diagnosis and treatment. Nevertheless prostate cancer still causes 

the second leading cancer–related mortality in the Western hemisphere (9% in the 

U.S.). 

 

While today the detected cancers are smaller, at a lower stage, and a lower grade, a 

wide range of aggressiveness remains. Therefore the identification of patients who 

will develop a highly infiltrating and metastasizing tumor is crucial [HrCE07].  

 

Adenocarcinoma can be suspected when the level of serum PSA is rising over time. 

Digital rectal examination performed by experienced urologists is commonly used for 

non–invasive diagnosis of prostate carcinoma. For conclusive evidence of a tumor 

lesion the histopathologic grading (Gleason score) determined from a biopsy 

specimen is still required. But often these techniques fail to localize the suspected 

tumor. 

 

The role of imaging techniques for diagnosis and treatment planning depends on the 

modality. Transrectal ultrasound (TRUS) is mainly used for image–guided biopsies, 

whereas computed X-ray tomography (CT) is performed for the assessment of lymph 

nodes or distant metastases in bones and other organs [HrCE07]. Magnetic 

resonance imaging (MRI) permits visualization of the zonal anatomy of the prostate 

and the tumor itself. The tumor can be differentiated as localized (stage T1–T2), 

infiltrative beyond the capsule into periprostatic fat, lymph nodes or seminal vesicles 

(stage T3), or into the surrounding organs (stage T4). High–resolution T2–weighted 

MRI performed with a pelvic array coil, provides good specificity (up to 90% are 

reported), but low sensitivity (27–61%) for tumor detection [ScHV99], [HrWV94]. With 

use of an endorectal coil the sensitivity for the detection of tumor foci larger than 1 

cm in diameter on T2–weighted MRI is improved up to 85.3%, while for smaller 

tumors a sensitivity of only 26.2% was reported [NaTI04]. Critical false–positive 



results mainly arise from factors that also lead to a signal reduction in T2–weighted 

MRI such as biopsy, hemorrhage, prostatitis, and therapeutic effects [PeKJ96]. 

Therefore functional imaging techniques such as dynamic–contrast–enhanced MRI 

(DCE–MRI) and proton MR spectroscopic imaging (1H MRSI) were included into MRI 

studies to increase the sensitivity for detection of prostate tumors. MRSI permits 

non–invasive detection of small metabolites in vivo in the prostate such as citrate (Ci) 

and free choline and choline–containing compounds (Cho) and thus offers a certain 

improvement in sensitivity and specificity for the diagnosis of prostate cancer 

[BaML96], [QuFD94], [DASW98]. Since the concentrations of these compounds 

change characteristically in pathologic tissue, MRSI is in principle well–suited for the 

detection and localization of prostatic tumors [RePR07], [ScHV99], [ScYT92]. 

 

The application of MRSI, however, comes along with a tremendous amount of data 

that must be post–processed and evaluated. In addition, the subsequent signal 

processing demands for a high degree of user interaction, requiring an experienced 

MR spectroscopist. Both factors aggravate the introduction of MRSI into clinical 

routine. If this workload can be minimized by a reliable and robust post–processing 

software of MRSI data this could have a major impact on the diagnosis of prostate 

cancer. 

 

Different approaches exist to facilitate the analysis of the data and to support the 

human reader. Most popular is the automated fitting of mathematical models to the 

spectral data and a diagnostic evaluation using the estimated model parameters. 

Alternatively – or in addition – the spectral pattern can be evaluated by multivariate 

classification methods, directly mimicking the visual inspection of a spectrum 

[KeMZ07]. While both approaches are able to automatically evaluate a large amount 

of single spectra, they are not specifically adapted to the anatomical information 

inherent to a spectroscopic image. 

Trained spectroscopists, however, have supportive information concerning 

anatomical margins like the prostate capsule, on suspicious spectra from surrounding 

tissue or T2–hypointense areas that indicate tumor. This visual inspection of MRSI 

data together with supportive anatomical information can be considered as the gold 

standard in the evaluation of MRSI of the human prostate. 

 



The purpose of our study was therefore to compare such an evaluation using this 

information about anatomy and localization of a spectrum, with the outcome of an 

“anatomically blinded” evaluation as performed by the algorithms used in the 

automated processing. To this end, MRSI data sets of ten patients with histologically 

proven prostate cancer were analysed by two experienced MR spectroscopists using 

knowledge about the localization of each single spectrum and localization of the 

prostate. Then spectra were evaluated separately, by the same experts in a visual 

inspection and by different automated approaches, i.e. fitting in the time domain, 

fitting in the frequency domain, and machine–based classification of the spectral 

pattern. The respective result maps were compared. 



Material and Methods 

 

Data 

 

Patients  

Ten patients with biopsy–proven prostatic cancer who were scheduled either for 

prostatectomy (n  5) or intensity–modulated radiation therapy (IMRT; n  5) were 

included in this study. Before the examination written informed consent was obtained 

from each patient. None of the patients had prior therapy like antihormonal treatment 

or radiation therapy. 

 

Spectroscopic imaging 

At B0  1.5 T (Magnetom Symphony; Siemens Medical Solutions, Erlangen, 

Germany) T2–weighted MRI (TR  4000 ms, TE  24 ms, FOV  140 x 140 mm2, 

matrix 0.7 x 0.5 x 4 [mm]) was performed for diagnosis, planning purposes, and 

localization of the VOI for spectroscopic imaging. 

Water– and lipid–signal–suppressed 3D MRSI (PRESS [point–resolved 

spectroscopy] sequence with measurement parameters: TR  650 ms, TE  120 ms, 

nominal voxel size 6 × 6 × 6 mm3, matrix 16 × 16 × 16, total acquisition time 10–12 

min [ScKR04]) yielded 4096 1H MR spectra per examination. Owing to the elliptical 

shape of the prostate and the position of surrounding signal saturation bands usually 

about 900 spectra (22%) were localized within the prostate. All patients had MRSI 

data of good quality without artifacts or poor signal–to–noise ratio (SNR) except two 

patients (data c and h, Figure 2). 

 

Preparation of spectroscopic imaging data 

The water peak and lipid resonances outside the spectral range of 0–5 ppm were 

removed before further analysis using Hankel–Lanczos–singular–value 

decomposition (HLSVD) [BeBO92], [PiBO92]. After Fourier transformation, frequency 

spectra were phased automatically for display of absorption lines. 

 

Evaluation procedures 

 



First spectra were evaluated visually by two MR spectroscopy (MRS) experts (a), 

employing automatic line fitting and anatomical information, defining the “gold 

standard”; in a second step (b), after random permutation, data were analysed by the 

experts without knowledge of the anatomical context, defining a ‘blinded’ or single–

voxel gold standard for comparison with the automated procedures, which used fitting 

of line–shape models (c) and pattern recognition (d). 

 

(a) Visual–plus–anatomical evaluation 

MRSI data was analyzed by both readers in consensus using software provided by 

the manufacturer (MetaboliteMapper; Siemens Medical Solutions, Erlangen, 

Germany). All spectra were phased for display of absorption lines and labeled 

according to a five–point scale with 1 ( “tumor”), 2 ( “possibly tumor”), 3 ( 

“undecided”), 4 ( “possibly no tumor”) to 5 ( “no tumor”) and the “reject” class. The 

contrast of the morphological T2–weighted images was reduced in order to eliminate 

bias by T2–hypointense areas indicating tumor (Figure 1) without compromising 

visibility of the outer margins of the prostate. This procedure was performed voxel–

by–voxel for all slices covering the prostate (usually 10–12 out of 16). Each spectrum 

was analysed by two radiologists (C.Z., P.Z) with 4–years and 1.5–years experience 

in MRS, respectively, and labels were assigned in consensus (referred to as 

anatomical evaluation ‘an’). First, data quality was assessed. Poor SNR or artifacts 

resulted in an assignment of the spectra to the “reject” class. Relative signal 

intensities of cholines, creatine (Cr), and citrate as well as results from spectral fitting 

were examined (without using the “CC/C” value  [Cho+Cr]/Ci). Finally, spectra were 

classified according to the five–point scale. Spectra localized outside the prostate 

were identified and excluded from further processing. 

 

(b) Randomized visual evaluation 

The order of the spectra was first randomized over all patients, then the spectra were 

phase– and baseline–corrected and finally displayed without the corresponding T2–

weighted MR images. Additional post–processing, like calculation of CC/C ratios was 

not possible. The displayed spectra were evaluated again by the same MRS experts 

and assigned to the five classes and the ‘reject’ class as described above. This time 

the evaluation was performed separately for all spectra by each reader (referred to as 

random evaluation by expert ‘e1’ and ‘e2’) according to the method described above. 



 

(c) Automated spectral–fit–based evaluation 

Three different algorithms were used for fitting of resonance lines (referred to as 

spectral fitting): AMARES (as implemented in jMRUI, [NaCD01]) for fit in the time 

domain (referred to as ‘ft’) and two algorithms for fit in the frequency domain: QUEST 

(referred to as ‘f1’), implemented in jMRUI [NaCD01], and CSITOOLS [SiTools ?] 

(referred to as ‘f2’) described in [KeMZ07]. Spectra were evaluated in terms of the 

CC/C value. Results of spectra with inadequate linewidths [Kreis04] or spectra with 

an estimated Cramér–Rao bound (CRB) of more than 30% of the amplitude in the 

time domain were rejected. 

 

(d) Automated pattern–recognition–based evaluation. 

A software for automated pattern recognition applicable to in vivo MRSI data 

(referred to as ‘pr’, Figure 1) [KeMZ07], developed at the Interdisciplinary Center for 

Scientific Computing (IWR) at the University of Heidelberg, was installed at the 

German Cancer Research Center (DFKZ). The MRSI data and the corresponding 

T2–weighted MR images were read from the DICOM data set and evaluated in a 

single process using the CLARET software [KeMN06]. Spectra with artifacts or poor 

SNR were rejected using a nonlinear classification approach (NoN–Score 

[MeKW08]). Magnitude spectra were classified by a logistic linear model, trained on 

30 MRSI data sets in an earlier study [KeMZ07], [KeMN06] and ranked according to 

the five–point scale mentioned above.  

 

Statistical evaluation 

 

For comparison of the different MRSI data evaluation strategies, we pursued the 

following procedure: We transformed all results from all evaluations (a–d) to the 

same score, i.e., to ranked labels between 1 and 5, and determined that subset of 

data which could be used for a comparison of all methods. A distance metric based 

on the correlation of their outcomes was chosen to measure the similarity between 

the different results. Similiar evaluation approaches were grouped in a hierarchical 

mode. Characteristic and stable groupings were visualized and reasons for (dis–) 

similarities were sought in the original data. Details on the classification of the 



metabolite intensity ratios and the methods used in the comparisons are given in the 

following. 

 

In both the anatomical and the random evaluation (a, b), the experts assigned values 

between 1 (definitely healthy) and 5 (definitely tumor) to the spectra. Likewise the 

automated pattern recognition (d) returned labels between 1 and 5. In contrast, the 

result of the spectral fitting (c) was a continuous score, the CC/C value [KuVH96]. In 

order to allow an unbiased comparison among all evaluation approaches, this score 

was transformed to discrete class labels in a first step. The results of the visual 

inspections (a, b) were used to find thresholds on the ratio–score, allowing for class 

assignments that match optimally the experts’ decisions. The results of the 

anatomical and the two random evaluations were averaged and rounded to the 

nearest integer. Thresholds between two classes were determined using an equal 

amount of samples from both classes. To this end each pair of neighbouring classes 

were subsampled to the size of the smaller of the two; the threshold was fixed to the 

value minimizing the classification error (Figure 4 [THRESHOLDS], Figure 7 

[RATIOS]). This procedure was repeated for each threshold 100 times; values were 

recorded and averaged finally. 

 

A validated principal data set is indispensable in a clinical validation of any diagnostic 

method. In a technical evaluation of different algorithms, however, already a pairwise 

comparison of results allows to gain insight into quality and reliability of these 

methods [BoMa07]. A distance has to be defined which measures dissimilarities 

between results, while distance matrices can be visualized in low dimensional 

projections. We extend the method of Ref. [BoMa07] by a subsequent test for stability 

of the observed (dis–)similiarites. 

 

Distance. To compare the similarity of the results of two evaluation approaches, 

Kendall’s test for correlation was used [Kend48]. Kendall's tau measures the degree 

of concordance between two rankings and estimates the significance of their 

correspondence. The measure is proportional to the number of concordant pairs 

between the two ordered lists and thus allows to measure the closeness of 

agreement in a cross–tabulation (hit matrices) of the classification results. As a rank 

correlation criterion, it ignores transformations which do not affect the ranking and 



which can easily be removed or corrected for by, for example, a rescaling of the 

score, or by an implicit adaptation of the interpreting expert. While the test seeks for 

linear relationships between two sets of ranked, ordinal data, it assigns minimal 

penalties to monotonous shifts (e.g., samples are systematically assigned to the 

higher class), and maximally penalizes extreme deviations from the data (e.g., a 

class–5 sample which is assigned to class 1). A value of 0 indicates independence 

(and hence a complete random assignment of labels in the given task), while a value 

of 1 indicates a perfect correlation between the two distributions. 

 

Visualization. The comparison of all seven different methods including the average 

‘ea’ of ‘e1’ and ‘e2’ leads to an 88 matrix with 28 off–diagonal elements (correlation 

coefficients) (Table 2 DISSIMILARITIES). Since the correlation coefficients of the 

tau–test define a metric, distance–based methods are useful to summarize and 

interpret the results. While the distance matrix of the comparison of all evaluation 

methods spans a space of up to six dimensions, multidimensional scaling enables 

the most accurate (in terms of the least–squares error) projection of this space to 

lower dimensions. (Dis–)similarities between different evaluation strategies can be 

visualized as distance in a, for example, two–dimensional plane. To visualize 

effects/interactions which cannot be projected into a two–dimensional subspace, a 

hierarchical splitting or segmentation approach can be used in addition. 

 

Here, a model–free hierarchical cluster algorithm is used to visualize relations in the 

full space. Since we were interested in the connectedness of single methods, i.e., in 

the question which method B is most closely related to method A, the ‘single–linkage’ 

method is used in the grouping. It separates those neighbours on the graph spanned 

by a ‘minimal spanning tree’, which are most dissimilar. The topology of this 

procedure can be described by a tree, indicating what evaluation methods are most 

similar. The higher a split in the tree, the more significant is the difference between 

members of the left and the right node. 

 

Stability. To test the results for stability and consistence over all different data sets, 

i.e., all ten MRSI data volumes, we used a bootstrapping strategy to determine 

variance of the measured distances and homogeneity of the resulting groupings. Two 

bootstrapping strategies were chosen. To assess the general stability of the 



dissimilarity matrix, the full distribution was bootstrapped in a first approach. To 

assess the influence of inter–patient variation, sampling was performed blocked over 

patient labels in a second approach. 

 

The bootstrapping was repeated 100 times, i.e., 100 data sets were randomly 

sampled with replacement from the original data. Correlations were calculated for 

each of them and the variance of the observations was determined for each entry of 

the dissimilarity matrix. The hierarchical clustering was performed on each matrix, 

and finally a consensus tree [Holm07] was determined (using the “ape” package with 

the statistical programming language R), representing the topology of the most 

frequent splits. 

 



Results 

The ‘reject’ option limited the evaluation to the smallest common subset of all 

methods. This, together with the transformation of intensity ratios from spectral fitting 

to class labels will be presented first, before results of the test for correlation will be 

explained. Dissimilarities expressed in Kendalls tau are proportional to the 

percentage of concordant pairs in a cross tabulation. Cross tabulations, or hit 

matrices, are a mean for the paired comparison of two distributions. Few of such 

comparisons stand out from Table 2 [DISSIMILARITY] and Figure 6 [HIERARCH] 

and shall finally be looked at in detail. 

 

Data preparation 

 

Evaluation times. The manual evaluation including anatomical information (‘an’) of a 

single patient data set with up to 4096 spectra lasted 120–180 min. When the experts 

considered anatomical information and excluded all spectra outside the prostate this 

time was cut down to 30–45 min for each dataset. The “blinded” evaluation of a 

single dataset (‘e1’ and ‘e2’) without the anatomical context also lasted 30–45 min, 

since there only the subset from within the prostate had to be evaluated. The 

CLARET tool performed the pattern recognition (‘pr’) of a complete MRSI data set 

within 7–11 min depending on the number of noisy spectra that were excluded in 

advance. The evaluation using the automated spectral fitting lasted XX min for fit in 

the frequency domain (‘f1’ and ‘f2’) and XX min for fit in the time domain (‘ft’). [Das 

weiss Michael.]  

 

Evaluable data. Out of altogether 40960 spectra from all patients about 9000 were 

localized within the prostate. Overall we found 1018 spectra deemed evaluable by all 

methods (for the individual patient: 63, 224, 8, 69, 244, 42, 294, 0, 11, 63). 

Concerning the employed methods (‘an’, ‘pr’, ‘e1’/’e2’, ‘f1’, ‘f2’, ‘ft’) significantly more 

spectra were deemed evaluable when the anatomical context (‘an’) of a spectrum 

was known (Table 1 [OVERLAP], first row; Figure 2 [DATA], Figure 3 [METHOD]). 

Only 40–51% of these spectra were assigned a label in an evaluation without 

anatomical evaluation. Spectra chosen by the automated pattern recognition (‘pr’) or 

by the experts (‘e1’, ‘e2’) were most likely (77–84%, first column, Table 1 

[OVERLAP]) those chosen in the anatomical evaluation while no more than 50% of 



these spectra deemed evaluable in the spectral fitting (‘f1’, ‘f2’, ‘ft’). The following 

analysis is restricted to the 1018 spectra deemed evaluable by all methods.  

 

Class labels from ratios. Average scores from visual inspection and the (median) 

results of the spectral fitting follow a linear trend for low score values (classes 1–4, 

Figure 4 [THRESHOLD]). High ratios for spectra in class 4 and 5, from spectra with 

low or unresolved citrate signal, lead to a distinct overlap of these classes (Figure 4 

[THRESHOLD]) and a variation of the threshold between these two groups. The 

average thresholds were 0.89, 1.29, 1.96 and 5.34, when fitting spectra in the time 

domain (‘ft’); 0.89, 1.30, 1.90, and 3.90, when fitting in the frequency domain using 

algorithm 1 (‘f1’); and 0.81, 1.10, 1.80, 4.50 when using algorithm 2 (‘f2’). 

 

Dissimilarities 

 

Tau values. Correlations between the results of different groups range from tau  

0.51 (all values according to Table 2 [DISSIMILARITIES]) between expert 2 (‘e2’) and 

the time domain fitting (‘ft’) to tau  0.95 between the two frequency domain fits (‘f1’ 

and ‘f2’). The two experts (‘e1’ and ‘e2’) reach a value of 0.84, similar to the 

difference between the spectral fitting routines of frequency and time domain (‘f1’ and 

ft: 0.81; ‘f2’ and ft: 0.85). The experts’ average score (‘ea’) reaches 0.67 when 

compared with the anatomical evaluation and 0.77 when compared with the 

automated pattern recognition (‘pr’). ‘pr’ correlates well with both the spectral fitting 

(0.81, ‘f1’) and the more experienced of the experts (0.83, ‘e1’). It is also the method 

reaching the highest correlation with the anatomical evaluation (‘pr’ and an: 0.73). 

 

Grouping. A projection of the results into two dimensions using multidimensional 

scaling shows a similar pattern (Figure 5 [MDS]). While the anatomical evaluation 

(‘an’) clearly differentiates from the single–voxel–based evaluation, results from the 

visual inspection (‘e1’, ‘e2’) and results from the spectral fitting (‘ft’, ‘f1’, ‘f2’) group 

together, with the automated pattern recognition (‘pr’) in between. A more detailed 

analysis of this grouping – also considering (dis–)similarities beyond the two–

dimensional projection – provides the hierarchical clustering of the entries as 

demonstrated in Table 2 [DISSIMILARITIES]. It shows a similar pattern, i.e., the data 

groups in three different classes: anatomical evaluation (‘an’), single–voxel inspection 



(automated pattern recognition, pr, and visual inspection, ‘e1’, ‘e2’), and spectral 

fitting. The highest correlation – i.e., the lowest, least significant split – was observed 

between the two implementations of spectral fitting in the frequency domain (‘f1’, ‘f2’). 

The two visual inspections (‘e1’, ‘e2’) were also related, although they frequently 

grouped with the automated pattern recognition ‘pr’ (24% in both bootstrapping 

approaches). Comparing both readers, ‘e1’ often labeled spectra that seemed not 

evaluable to reader ‘e2’ (‘e1’ evaluated 422 spectra that deemed not evaluable by 

‘e2’, while ‘e2’ evaluated only 53 spectra which seemed not evaluable to ‘e1’, Table 1 

[OVERLAP]). Nevertheless there is a high agreement (98%) between the labels of 

‘e2’ and ‘e1’ (Table 1 [OVERLAP]). 

 

Single groups 

 

Single voxel. The different spectral fitting approaches show a high similarity 

corresponding to expectation, assigning nearly identical intensity ratios to most of the 

spectra (‘ft’ and ‘f1’, Figure 7 [RATIOS]). This leads to highly correlated cross–

tabulations with almost identical labels (90.1 %, ‘f1’ and ‘f2’, Table 4 [QUANT]). The 

two implementations of spectral fitting in the frequency domain (‘f1’, ‘f2’) show 

significant differences of more than 2 classes in 2.7 % of all spectra, whereas 4.3% 

and 6.9% of the spectra show these differences when comparing the results of the 

time domain fitting ‘ft’ with those of ‘f1’ and ‘f2’, respectively. Overall the spectral 

fitting is highly reproducible (tau  [0.81, 0.85, 0.85]), although also a number of 

gross errors (differences of two or more classes) can be observed. 

 

Differences between spectral fitting and visual inspection (‘e1’, ‘e2’) can be observed 

for those spectra which are affected by technical artifacts (Figure 3 [METHODS]), as 

a close inspection of Figure 2 [DATA] (e.g., slice 12) reveals. 

 

The assignments by the MRS experts were not as consistent as the fitting routines 

(tau  0.83 between experts, tau  [0.95, 0.85, 0.81] between ‘f1’, ‘f2’ and ‘ft’, Table 2 

[DISSIMILARITIES]), due to slight differences in the assignments of definitely–normal 

vs. probably–normal (classes 1 and 2) and definitely tumor vs. probably tumor 

(classes 4 and 5). Differences of 2 or more classes, however, only occurred in 2.1 % 



of the spectra, a value which is less than the inter–algorithm variation of the spectral 

fitting (Table 3 [EXPERTS]). 

 

The automated inspection of the spectral pattern (‘pr’) is biased towards the extreme 

ends of possible class labels, but has – as the high correlation coefficient in Table 2 

[DISSIMILARITIES] indicates – a similar ordering as the visual inspection. It yields 

more ‘conservative’ assignments than the human expert (Figure 9 [CLARET]). 

Among all single–voxel methods it is the one which is closest to the results of the 

anatomical evaluation (tau = 0.73). 

 

Anatomical. A similar binomial behaviour is the most prominent difference between 

anatomical and ‘blinded’ evaluation (‘an’ and ‘e1’, ‘e2’; Figure 8 [SPATIAL]). A 

systematic shift to either end, towards a binary decision (‘tumor’/’healthy’) is enforced 

in the anatomical evaluation (see deviation from polynomial regression in Figure 8 

[SPATIAL]). Besides this, differences of two or more classes can be observed in 

certain areas of the MRSI volume. Most of them occur at the border of the data 

volume which was deemed evaluable in the blinded, single–voxel evaluation (Figure 

8 [SPATIAL]). These regions typically show low SNR and are often also located in 

the periphery of the prostate, or distant from the endorectal coil. 

 

 

Discussion 

 

General limitations of the study  

One limitation of our study could be the missing whole mount section and correlation 

of the tumor histology. Since emphasis was laid on the comparison of manual, 

automated, and blinded MRSI data evaluation, the knowledge about an existing 

tumor however which in this study has been proven in all patients by biopsy appears 

to be sufficient. 

 

The quality of spectral data plays an important role with respect to reproducibility and 

objectivity in the comparison of different evaluation methods. A manual and 

unblinded approach certainly copes better with worse spectral quality since an 

experienced MR spectroscopist is able to determine suspicious patterns also in noisy 



spectra. Since a blinded or automated evaluation with a randomized data “stock” 

would have been prejudiced we excluded not representative MRSI data from further 

evaluation. 

 

We were also able to demonstrate that the more experienced reader (‘e1’) labeled 

more spectra in total (Table 2, Table 3) than the less experienced reader (‘e2’). 

However, it can not be proven that these spectra were labeled correctly, because we 

had no cross section histology. There were also differences between the experts in 

the extreme classifications of “tumor/possibly tumor” and “possibly no tumor/no 

tumor” which we attribute to the fact that no cut–off values, e.g., from CC/C, were 

used, but only a visual pattern. Since only 2.1 % labels differed in more than 2 

classes both experts rated very similar. 

 

Visual inspection of the MRSI volumes 

It is highly time consuming for a reader to classify each spectrum according to a 

tumor probability. This is one of the reasons why MR spectroscopy has up to now not 

found its way into broad routine diagnostic imaging. The enormous number of spectra 

provided by MRSI requires software that manages the data load. Since only a 

fraction of the acquired spectra is usable – a part of the spectra is compromized by 

poor quality or is localized outside the region of interest – a pre–selection is 

desirable. This pre–selection is usually performed by the experienced MR 

spectroscopist in a routine manner because he/she is able to include the anatomical 

information provided by the underlying MR image. Anatomical images certainly help, 

especially for voxels near the prostate capsule and the central gland around the 

urethra and the ejaculatory duct, to decide whether the spectra can be evaluated. 

Nevertheless, this knowledge can also be misleading since tumor areas and 

prostatitis are hypointense on T2–weighted MR images. Therefore we tried to avoid 

this bias in our visual evaluation by modifying the contrast of the image. By this 

means the signal changes in the prostate itself were masked, while the outer margins 

remained visible. 

 

On the other hand the rapid pre–selection of the relevant spectra performed by 

software allows the reader to focus on regions marked as suspicious. The exclusion 

of not relevant spectra outside the prostate can cut down markedly the time for 



screening a whole data set. In doubtful cases the corresponding spectrum should be 

easily inspected and also conspicuous regions in the T2–weighted images be 

considered simultaneously. The inspection of critical areas like tumors near the 

capsule or the seminal vesicles – which influence the surgical strategy (e.g., nerve 

sparing, endoscopic technique etc.) – remains necessary. 

 

One must also expect a bias by spectra from the surrounding tissue that indicate 

cancer which can lead the MR spectroscopist to label a spectrum suspicious while on 

the other hand he would discard it due to poor quality in a different context or a 

blinded situation. In a routine evaluation of spectra this bias can not be excluded and 

is even sometimes welcomed, particularly in patients where a slight decrease of 

citrate levels over a larger area is identified which an automated tool would not 

consider suspicious. Also spectra of poor quality benefit from a manual approach, 

where an expert can detect single usable spectra within a whole MRSI data set. 

 

Single–voxel evaluation 

The spectral fitting routines were highly consistent, indicating that the general 

parameterization and application of these algorithms was appropriate and correct. 

Nevertheless, some ‘noise’ can be observed, leading to a certain number of gross 

misclassifications. Experts are not as accurate as the spectral fitting (in terms of tau, 

Table 2 [DISSIMILARITIES]), but less susceptible to gross errors. In general, both 

approaches follow a linear relationship (Figure 7 [RATIO]), leading to the same 

classification of the data. Differences can be observed, when certain artifacts are 

present in the spectrum, leading to the overall differences observed in the 

hierarchical grouping (Figure 6 [HIERARCH]). 

 

Spectral fitting is the current standard approach in the analysis of MRSI data of the 

prostate, using the ratio of choline+creatine vs. citrate 1H MR signal intensities 

(CC/C) for diagnosis. The ratio itself does not reflect a tumor grade and allows only a 

probabilistic interpretation with respect to the threshold. So this puts down the 

question of correct scaling or transformation of CC/C ratio. Typically a linear relation 

is assumed to hold between the extreme ends of the CC/C distribution, with spectra 

from healthy tissue on the one side and tumor spectra on the other. Consequently, 

the CC/C ratios loose sensitivity near their threshold between cancer and benign 



lesions, raising the question where to set the threshold. In the present study, for 

example, we found CC/C thresholds of approximately 1.1/1.3 indicating critical 

changes, as opposed to values >0.8 in earlier studies [ScHV99], [FüSH07]. These 

differences can presently be explained only by low citrate levels particularly in one of 

our patients with unresolved citrate peak. Also different thresholds are required in the 

peripheral zone and central gland [FüSH07], and some authors rise their classificator 

score when the choline resonance is clearly resolved [JuCV04]. This, however, 

requires information on anatomical localization which is not available in an automated 

analysis of results from spectral fitting. 

 

It might be expected that a MR spectroscopist – visually inspecting the pattern of the 

metabolic signal and being aware of this possibly unphysiological linearity – seeks for 

more deliberate decisions. However, the concordance of results of spectral fitting and 

visual inspection shows that the expert was unwittingly looking for linear relationships 

in the single–voxel evaluation (Figure 4 THRESHOLDS). 

 

Results from the anatomical evaluation done by the experts were different. Here no 

linear relations were observed, but rather binary decisions. In the classification of the 

whole MRSI volume it was more natural to follow the task to “find and locate the 

tumor” – yielding binary decisions rather than to “score the presented spectrum” with 

a linear relation as in a single–voxel examination. 

 

Interestingly, the automated pattern recognition also sought for binary decisions 

(Figure 9 CLARET). Its classifier, a logistic regression, had originally been learned 

from completely labeled MRSI data volumes [KeMZ07]. In this, it is closest to the 

anatomical evaluation, explaining why pattern recognition and anatomical inspection 

showed high similarity (Figure 6 HIERARCH). 

 

Anatomical evaluation 

While we observed that differences in the automated analysis of single spectra were 

quite moderate and in the same order of magnitude as the inter–operator variation on 

blinded evaluation, we still observe a wide gap to the anatomical analysis of a 

spectroscopic image and the evaluation of a single spectrum. 

 



First, the analysis of a spectroscopic image focuses on localizing and outlining a 

possibly suspicious area, requiring a more binary evaluation function. This, as the 

pattern recognition shows, can easily be learned from spectroscopic images and then 

be used in a single–voxel processing. Outlining a tumor, however, requires to focus 

on the transition between spectra from healthy tissue and tumor spectra. At the 

margin of a tumor, the “undecided” spectra of class 3 will clearly be suspicious, while 

being “normal” in other areas of the prostate (e.g., around the urethra). 

 

Second, a much larger data volume could be labeled in the anatomical evaluation 

(Figure 2 [DATA], Figure 2 [METHOD]). Differences between single–voxel and 

anatomical evaluation typically occurred in voxels with weak signals. Random 

fluctuations or artifacts (such as chemical–shift artifacts) were interpreted as changes 

of the spectral signal, which could be identified as such owing to the anatomical 

context, e.g., the presence of spectra from the surrounding region affected likewise. 

In this case the experts were able to classify these spectra, but they were unable to 

classify these spectra when they were presented to them without this additional 

information. 

 

Overall, interpreting the anatomical context of a spectrum and interpreting the 

physiological background led to a more reliable analysis of the data which, of course, 

corresponds to expectation. Two directions of using anatomical context might be 

followed in the future in an automated analysis of the MRSI data set. 

 

First, a localization of the spectrum in its anatomical context, i.e., considering that the 

voxel signal originates from within the prostate, could allow to adjust the analysis for 

the anatomical heterogeneity of the CC/C value of normal tissue. Anatomical atlases 

are available for the prostate [CoDe07] and might be a useful means for this 

localization task. Second, and in addition to this global localization, the anatomical 

context of a spectrum should be considered. Training classifiers on cliques, rather 

than on single voxels, is a straightforward approach here [LaPe05]. Markov random 

fields can be used to trade confidence in the information of the single spectrum with 

the spectral information of its neighbourhood. A fixed coupling term between these 

two domains allows, for example, a semi–supervised classification of MRSI data 

[GoMe07] based on few labeled spectra and segmenting the whole volume. 



Discriminative random fields even allow inferring the spatio–spectral coupling from 

the data, adjusting it optimally to the SNR of the specific instrumental setting 

[KeMW07]. 

 

While we observed advantages in analysing whole MRSI slices instead of single 

voxels, it remains difficult for a human reader to make use of the full information from 

all three dimensions. Thus, beside the general benefit of an automated processing – 

facilitating analysis and increasing objectivity – a main virtue of automation in the 

anatomical analysis might be its potential to be easily extended to higher dimensions 

of the complete MRSI volume. 

 

 

Conclusions 

This study demonstrates the potential role and the need for pattern recognition 

methods for the diagnostic evaluation of data obtained in MRSI examinations. While 

the human reader is better in identifying the anatomical borders and the 

morphological context of spectra the manual evaluation lacks objectivity and 

reproducibility as indicated by the higher amount of spectra assigned to benign tissue 

in manual evaluation. On the other hand, the blinded reader is as good as the 

automated tool. Therefore a combination of manual and automated methods seems 

to be an optimal approach for the MR spectroscopist to cut down time constraints in 

clinical routine, without completely abandoning manual evaluation of MRSI data with 

respect to tissue–specific knowledge. 

A machine–based processing is indispensable in the analysis of MRSI data. 

Robustness is a requirement for automated algorithms. In particular, MRSI of the 

prostate is well suited for such an approach: spectra have lower signal intensities 

compared to MRSI spectra of the human brain and it is highly desirable to take the 

anatomical context of the prostate into account. The organ has a simple shape, but 

an inhomogeneous distribution of normal–state concentrations of the different 

metabolites that are detectable by 1H MRS. It is not even necessary to include the 

anatomical knowledge since the CLARET tool already proved a good separation 

between prostate and surrounding tissue by using a nonlinear classification approach 

[MeKW08]. This way the number of spectra to be evaluated is considerably cut down 

to the relevant within the organ. 



Finally we see a significant advantage of 2D spectroscopic imaging over single–voxel 

MRS, since an automated algorithm considering the anatomical context can naturally 

be extended to the complete information of a 3D MRSI data set. Automated 

approaches have the potential to include anatomical context into the evaluation of the 

MRSI volume. Although to our knowledge no current software provides this service, 

this comparison of a manual, pattern–recognition–based and blinded evaluation 

emphasizes the need for such an automated approach. 
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Figure 1 

Color–coded tumor probability map of the prostate of a patient (pat No, Age) with 

adenocarcinoma, calculated and displayed by CLARET software with tumor voxel in 

red and areas without pathological findings in green. 

 



  
 
 

Figure 2 

[DATA]: In vivo prostate 1H MRSI (1.5 T) data evaluation with (left) and without (right) 

inclusion of anatomical information showing maps for twelve central slices (slices 1–

12) of ten different MRSI data volumes (patients ‘a’ – ‘j’). Spectra were labeled 

according to a five–point scale with 1 ( “tumor”), 2 ( “possibly tumor”), 3 ( 

“undecided”), 4 ( “possibly no tumor”), and 5 ( “no tumor”). Voxel of spectra that 

identify healthy prostate tissue are marked in red (class 1), while bright yellow voxel 

label tumor (class 5). White voxel could not be evaluated due to poor spectral quality 

or localization outside the prostate. 

 

  

 



 
 

Figure 3 

[METHODS]. Results of the evaluation of two exemplary MRSI data volumes (from 

patients ‘b’ and ‘e’, see Figure 2[DATA]) by all seven processing methods employed 

in this study (‘an’, , ft.). Central slices 1–12 are shown which were evaluated by 

experts’ consensus with anatomical knowledge (‘an’), automated pattern recognition 

(‘pr’), expert 1 (‘e1’) and expert 2 (‘e2’) without anatomical knowledge, classification 

based on fitting in the frequency (‘f1’, ‘f2’) and time domain (‘ft’). 

 



Figure 4 

[THRESHOLDS]: Classification of spectra between 0 (normal) and 5 (tumor) based 

on the Ci/(Cho+Cr) signal intensity ratio (y axis, truncated at y  5) obtained by fit of 

1H MRSI signals in the time domain. Observations are grouped along the x axis 

according to the average label assigned to the spectrum in the visual inspections 

performed by two MRS experts (evaluation with and without anatomical information). 

Boxplots show median (thick black lines), quartiles (box extensions) and outliers 

(notches and points) for the distribution of the samples in each of the group. 

Horizontal lines (----, at y  0.89, 1.29, 1.96) indicate optimal thresholding for the 

transformation of the ratios to classes 1–5 (class 5 above y  5.34, not shown). 

Average score from visual inspection and results from the spectral fitting follow a 

linear trend for low score values. 



 
 
 
  ‘an’ ‘pr’ ‘e1’ ‘e2’ ‘f1’ ‘f2’ (‘ft’ 

Expert 
anatomical 

‘an’ 
4516 
(100%) 

2093 
(46.3%) 

2108 
(46.7%) 

1786 
(39.6%) 

2259 
(50.0%) 

2306 
(51.1%) 

2014 
(44.6%) 

Pattern 
recogn. 

‘pr’ 
2093 
(84.0%) 

2493 
(100%) 

1897 
(76.1%) 

1589 
(63.7%) 

1785 
(71.6%) 

1785 
(71.6%) 

1633 
(65.5%) 

Expert 1 ‘e1’ 
2108 
(78.8%) 

1.897 
(71.0%) 

2674 
(100%) 

2252 
(84.2%) 

1897 
(70.9%) 

1906 
(71.3%) 

1906 
(64.1%) 

Expert 2 ‘e2’ 
1786 
(77.5%) 

1589 
(68.9%) 

2252 
(97.7%) 

2305 
(100%) 

1588 
(68.9%) 

1599 
(69.4%) 

1432 
(62.1%) 

Fitting freq 1  ‘f1’ 
2259  
(47.3%) 

1785 
(37.3%) 

1897 
(39.7%) 

1588 
(33.2%) 

4777 
(100%) 

4723 
(98.9%) 

4007 
(83.9%) 

Fitting freq 2 ‘f2’ 
2306 
(47.1%) 

1785 
(36.4%) 

1906 
(38.9%) 

1599 
(33.6%) 

4777 
(96.4%) 

4900 
(100%) 

4010 
(81.8%) 

Fitting time 1 ‘ft’ 
2014 
(49.7%) 

1633 
(40.3%) 

1715 
(42.3%) 

1432 
(35.3%) 

4007 
(98.8%) 

4010 
(98.9%) 

4055 
(100%) 

 
 

Table 1 

[OVERLAP]: Numbers of spectra deemed evaluable in the different approaches 

(numbers in thousands) and overlap between the different evaluation methods. 

Percentages (in parentheses) indicate the amount of overlap between the methods in 

the respective row. As an example: among the 4516 spectra evaluated in the 

anatomical inspection of the data (‘an’, first row), a subset of 44.6 % (2014 spectra) 

could be evaluated by spectral fitting in the time domain (‘ft’). Expert 1 and expert 2 

labeled 2674 and 2305 spectra, respectively with agreement in 2252 spectra. 

 
 
 



 
  ‘an’ ‘pr’ ‘e1’ ‘e2’ ‘ea’ ‘f1’ ‘f2’ ‘ft’ 

Expert 
anatomical 

‘an’ 
100 
(0/0) 

73 
(2/11) 

72 
(2/9) 

62 
(2/11) 

67 
(1/10) 

73 
(1/6) 

68 
(2/6) 

58 
(2/6) 

Pattern 
recogn. 

‘pr’ – 
100 
(0/0) 

83 
(1/6) 

68 
(2/8) 

77 
(2/7) 

81 
(1/4) 

75 
(2/5) 

64 
(2/5) 

Expert 1 ‘e1’ – – 
100 
(0/0) 

84 
(1/5) 

93 
(1/3) 

74 
(2/6) 

68 
(2/4) 

59 
(2/6) 

Expert 2 ‘e2’ – – – 
100 
(0/0) 

93 
(1/3) 

63 
(2/8) 

58 
(2/6) 

51 
(3/7) 

Expert avg. ‘ea’ – – – – 
100 
(0/0) 

69 
(2/7) 

64 
(2/6) 

54 
(2/5) 

Fitting freq 1 ‘f1’ – – – – – 
100 
(0/0) 

95 
(1/1) 

81 
(1/4) 

Fitting freq 2 ‘f2’ – – – – – – 
100 
(0/0) 

85 
(1/4) 

Fitting time 1 ‘ft’ – – – – – – – 
100 
(0/0) 

 
 

Table 2 

[DISSIMILARITIES]: Similar performance of the different processing methods, 

quantified by Kendall’s tau and over all ten MRSI data volumes. Values are given in 

percent, 100 % indicating perfect correlation and 0% complete randomness between 

two methods. Values in parentheses show the standard deviation of Kendall’s tau in 

a patient–wise bootstrapping (first value) or bootstrapping over the full data set 

(second value). Data are visualized in Figure 5 [MDS] and Figure 6 [HIERARCH]. 

 
 



 
 

Figure 5 

[MDS]: Projection of entries of Table 2 [DISSIMILARITIES] into two dimensions by 

multidimensional scaling. Distances in the plane encode the (dis–)similarity of the 

different MRSI data processing methods. While results of fitting in the frequency 

domain (‘f1’, ‘f2’) are at nearly identical positions, the anatomical evaluations (‘an’) 

separate from the other post–processing methods. Automated pattern recognition 

(‘pr’) is located between visual inspection (‘e1’, ‘e2’, ‘ea’) and spectral fitting (‘ft’, ‘f1’, 

‘f2’).  



Figure 6 

[HIERARCH]: Similarity of different post–processing methods of in vivo 1H MRSI data 

in a hierarchical segmentation, based on data in Table 2 [DISSIMILARITIES]. The 

higher the split in the dendrogram, the more dissimilar are the members of the nodes. 

Evidence for a certain grouping is determined in a bootstrapping (first value: patient–

wise sampling; second value: random sampling). As expected results of anatomical 

analysis are different from all methods evaluating spectra without anatomical 

information, ‘f1’ and ‘f2’ are in the same node, and finally a grouping in spectral fitting 

(‘ft’, ‘f1’, ‘f2’) pattern and inspection (‘pr’, ‘e1’, ‘e2’) is observed. 



Figure 7 

[RATIOS]: Results for Ci/(Cho+Cr) ratios from fitting in frequency (y–axis) and time 

domain (x axis, ’AMARES’ implementation); each cross indicates the result for a 

single spectrum. Ranges are truncated at 5.xxx for both axes. Dotted lines indicate 

the thresholds transferring the continuous ratios to discrete classes 1–5 (Figure 4 

THRESHOLDS).  

 



 
 e2 1 e2 2 e2 3 e2 4 e2 5 
e1 1 315 86 15 0 0 
e1 2 28 317 7 2 0 
e1 3 1 11 83 0 1 
e1 4 0 2 13 44 6 
e1 5 0 0 0 7 80 
 
 

Table 3 

[EXPERTS]: Comparison of estimations by the two experts independently evaluating 

single spectra without anatomical knowledge. The cross tabulation shows a high 

coincidence of the assessments. Disagreement occurred most frequently between 

classes 1–2 and 4–5. Differences of 2 or more classes were found in 21 spectra (2.1 

% of total 1018, which is less than the inter–algorithm variation of the fitting in the 

frequency domain Table 4 [QUANT]). 

 
 
 
 
 
 f2 1 f2 2 f2 3 f2 4 f2 5 
f1 1 392 3 7 0 0 
f1 2 9 228 9 9 0 
f1 3 1 8 144 7 0 
f1 4 3 5 21 109 1 
f1 5 0 0 2 16 44 
 

Table 4 

[QUANT]. Comparison of the classification based on fitting in the frequency domain. 

The algorithms show a high coincidence, identical labels are assigned to most 

spectra (917 out of 1018 spectra, 90.1%). 27 spectra (2.7%) show differences of 

more than 2 classes, whereas 4.3 % (‘f1’ vs. ft) / 6.9 % (‘f2’ vs. ft) of the spectra show 

this differences when compared with the results of the time domain fits. 

 

 



 

Figure 8 

[SPATIAL]: Cross tabulation of results from the evaluation with anatomical 

information (y axis), grouped by the decisions from visual inspection without this 

information (x axis, average of estimations by both experts). Boxplots show median 

(thick black line), quartiles (box extensions), and outliers (notches and points) of the 

distributions. The curved black line indicates trend determined by local polynomial 

regression. Results deviate systematically, a binary decision (‘tumor’/’healthy’) is 

enforced in the anatomical evaluation. 



 

Figure 9 

[CLARET]: Results from the inspection of the spectral pattern by the automated 

pattern recognition (y axis), grouped by the results of a visual inspection of the 

spectral pattern (x axis, average of estimations by both experts). Boxplots show 

median (thick black line), quartiles (box extensions), and outliers (notches and 

points). The curved black line indicates trend determined by local polynomial 

regression. The automated algorithm yields more ‘conservative’ assessments than 

the human expert; and a more binary (‘tumor’/’normal’) decision is enforced. 

 


