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Abstract

We use weakly supervised structured learning to track
and disambiguate the identity of multiple indistinguishable,
translucent and deformable objects that can overlap for
many frames. For this challenging problem, we propose
a novel model which handles occlusions, complex motions
and non-rigid deformations by jointly optimizing the flows
of multiple latent intensities across frames. These flows are
latent variables for which the user cannot directly provide
labels. Instead, we leverage a structured learning formula-
tion that uses weak user annotations to find the best hyper-
parameters of this model.

The approach is evaluated on a challenging dataset for
the tracking of multiple Drosophila larvae which we make
publicly available. Our method tracks multiple larvae in
spite of their poor distinguishability and minimizes the num-
ber of identity switches during prolonged mutual occlusion.

1. Introduction

In recent years, brilliant studies have emerged from the
marriage of behavioral biology to sophisticated multiple-
object tracking algorithms, e.g. [5, 14, 6]. The reported
method is motivated by an investigation into the social dy-
namics of Drosophila larvae, a popular model organism in
biology. These experiments require visual tracking from a
single camera view of multiple interacting individuals mov-
ing on a well plate. While these controlled experimen-
tal conditions facilitate detection and segmentation of iso-
lated individuals, the main challenge is the identification
and tracking of the animals while they are touching or oc-
cluding one another over several frames. In this scenario,
two aspects violate the assumptions of state of the art track-
ing algorithms that exploit object appearance features (e.g.

[9, 30, 23, 11]) and/or motion models (e.g. [18, 7]) in order
to handle mutual occlusions:

• Larvae are poorly distinguishable, translucent and
mostly untextured objects of deformable shape.

• Larvae, when in contact, can exhibit an erratic motion.

Our formulation handles complex motion and non-rigid
deformations without assuming the tracked objects to be
distinguishable. At the core of our approach, we model
the observed image intensities during mutual occlusion as
a mixture of the latent intensities of each individual ob-
ject. Thus, we disambiguate object identities by jointly
optimizing the movement of multiple latent flows of in-
tensity masses. This leads to a highly flexible model with
many parameters that balance costs derived from generic
low level cues. Rather than manually tuning these param-
eters, an important difference between our approach and
[9, 30, 23, 11, 18, 7] is that we exploit structured learn-
ing with latent variables [28] to learn optimal weights from
training annotations. Our main contributions are:

• The first formulation of the multiple object tracking
problem which is targeted to disambiguate mutually
occluding identical, deformable and translucent ob-
jects.

• A weakly supervised structured learning strategy to
parametrize the corresponding energy terms that re-
quires minimal user effort: only two clicks on each
object before and after a training occlusion event.

• A solution to low density tracking of Drosophila larvae
which minimizes the number of identity switches. We
benchmark our approach on a challenging large dataset
that we make publicly available for future studies1.

1Download at http://hci.iwr.uni-heidelberg.de/Benchmarks
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Figure 1. Top row: selected sub-frames from the raw data. Center and bottom rows: two possible interpretations of the sequence. The
interpretations of the object identities are encoded in terms of boundary conditions (here shown in saturated colors, frame 1 and 34). Under
our model (Eq. (1)), inference allows the estimation of the latent variable states (shown with desaturated colors) and gives the energy of
the interpretation associated with the current boundary condition. Given training data, again in terms of boundary condition, learning finds
model parameters so that the correct interpretation (central row) has lower energy than any erroneous interpretation.

2. Related Work

Multiple object tracking from a single camera view has
a long history in computer vision where most of the work
has focused on pedestrian and vehicle tracking. State of
the art approaches that handle mutual occlusion of such tar-
gets often leverage two key characteristics of the tracked ob-
jects: (i) they are distinguishable, for example pedestrians
with different clothes or cars of different colors, and/or (ii)
they have easily predictable trajectories (such as are well de-
scribed by linear motion models). These two characteristics
have been exploited in frame-by-frame tracking by com-
bined motion and appearance models like [18], and more
recently by global data association techniques. These ob-
tain state of the art performance by integrating over time
local appearance and motion cues in order to jointly opti-
mize the identity assignments to candidate detections, e.g.
[11, 30, 7, 23]. Occluded and merged objects are commonly
handled as misdetections. In [2, 9] the authors propose a
global inference scheme in order to determine merged de-
tections and then match the objects before and after occlu-
sion using costs derived from appearance and motion fea-
tures. Similarly to that approach, we build on our previous
work [8] where we showed how larvae occlusions can be
reliably detected. Differently from [9], we avoid relying on
discriminative object features and instead seek a minimum
action interpretation of the scene (expressed through flow of
latent intensities) that is compatible with the observations.

Animal tracking and segmentation: The recent de-
mand for automatic analysis of images in biology poses a
new set of problems to the tracking community that are
rarely found in natural images. In fact, objects of inter-
est in biology are, on the one hand, highly deformable, of-

ten indistinguishable and sometimes translucent; and on the
other hand they can exhibit motion that appears stochas-
tic and they may divide into multiple parts. In biolog-
ical image analysis, most of the research that explicitly
handles overlapping and deformable objects has focused
on frame-by-frame tracking of blob-like structures such as
cells [15, 3, 22]. In [15], merged cells are separated by com-
bining level sets with a motion filter, while [3] uses frame-
by-frame partial contour matching and [22] a Gaussian mix-
ture model. Excellent work exists on mice tracking [5] us-
ing particle filters to keep track of the object contours but
this approach is limited to represent affine transformations
of a small number of manually designed shape templates.
Particle filters have also been used for ants tracking [14],
but simpler and independent constant velocity models are
implemented in most software packages, such as Ctrax [6]
for Drosophila. A recent review of open-source worm like
object trackers is [10]. According to the authors, all these
softwares work in uncrowded situations and do not handle
occlusion. Tracks are simply terminated on mutual occlu-
sion events and reinitialized afterwards while identity errors
are often manually edited [6]. Wählby [26] has proposed
a method for segmentation of overlapping worms. How-
ever, this approach relies on candidate segments produced
by skeletonization and performs best for elongated objects
which have a low probability to lie side by side.

Structured learning and transportation theory: The
methods in [18, 5, 11, 30, 15, 3, 9, 23, 7] require parameters
which are set manually. Our approach builds on the intu-
itions of Lou et al. that in [17] proposed to use weakly su-
pervised structured learning [28] for parametrizing the en-
ergy of a data association model for cell tracking [16]. Fol-
lowing [17], we show how to learn our energy parameters



from weak user annotations. However, our application and
energy formulation differ from [16, 17]. In these works ob-
jects identities were lost at occluded regions as only frame-
by-frame assignments were considered.

Our model also draws ideas from the literature on Earth
Mover Distance (EMD) [21]. EMD finds the minimum cost
flow between two distributions of masses one of which is
seen as the source and the other as the sink. This distance
has several applications in tracking, e.g. [20, 19, 27]. Ren
et al. in [20] introduced EMD for single object tracking and
used it to model the observed flow of intensity. Oron et
al. [19] showed that EMD costs can be updated online and
Wang et al. [27] proposed to learn their values from training
data. We extend these ideas by allowing the masses to take
different colors, and we jointly minimize the cost of multi-
ple flows in a fashion similar, but not identical to, a multi-
commodity flow problem [1]. These are used in operations
research to minimize the total shipment cost of multiple dis-
tinguishable products over the same network.

3. Problem Formulation and Modeling

Our key idea is sketched in Fig. 1. When two indistin-
guishable objects overlap and then separate again, we have
two possible interpretations of their identity assignment. To
build intuition, pretend that each object has a unique color
but that we have only a monochrome sensor. In such a sit-
uation, the color of each pixel is a latent variable, while
the pixel grey value intensities are observed data. Given a
boundary condition determined by the current interpretation
(i.e. the identity assigned to each individual before and af-
ter the occlusion), our model is an energy function which
allows estimating the state of all latent variables as the min-
imum energy solution. The aim of learning is to find model
parameters such that the correct interpretation obtains the
lowest energy.

Our model is a generalization of EMD in the sense that
the motion of multiple larvae is represented by the flow of
multiple differently colored masses. These flows are jointly
optimized across several frames, subject to costs that ex-
press the following notions:

• To obtain the most parsimonious interpretation of the
action, colored masses should move around as little as
possible, while still satisfying the boundary condition.

• The spatial distribution of each color should be smooth
inside each object.

• The intensity of all colors in a pixel should sum up
to approximate the observed overall intensity in that
pixel.

• The conservation of colors over time holds only ap-
proximately, to account for overall fluctuations in the

image intensity, as well as Poisson and sensor noise or
sensor saturation.

In formulating this energy function, we make two design
choices. First, by using a weighted sum of costs derived
from multiple features, we make sure that the model is suf-
ficiently expressive to allow assigning the lowest energy to
the correct solution for each training sample. Second, we
restrict our formulation to terms that are convex in the la-
tent variables, thus allowing for efficient optimization.

3.1. Precise formulation

The energy function in Eq. (1) gives expression to the
notions from the previous section (cf. Table 1). It depends
on two kinds of variables: the flows {f} and the masses
{m}. If we index each pixel inside the spatiotemporal vol-
ume of the video as i = 1, ..., NP , a colored mass vari-
able mk

i represents the intensity mass associated with larva
k = 1, ..., NL at pixel i. Masses can be observable variables
or latent variables of the problem. In particular, the masses
of pixels inside an isolated object are observable variables
because during the learning we may ask the user to annotate
the entire isolated objects with a single stroke. Conversely,
pixels of overlapping objects are associated with latent mass
variables. In cases where we need to distinguish between
observable and latent masses, we use respectively symbols

•
mk

i and m̊k
i : { •

m} \ {m̊} = ; and { •
m} [ {m̊} = {m}.

We reserve the symbol m†
i to represent the measured grey

value intensity of a pixel i and we collect the elements of
the countable sets {m̊}, { •

m}, {f} in the vectors ˚m, •
m, f .

E( f , ˚m|{z}
latent variables

;

•
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To model motion, we define flows on a directed graph con-
necting pixels in the video. The graph connectivity is built
on a spatiotemporal neighborhood N st connecting pixels
in consecutive frames. The flow variables fk

ij , assigned to
each edge ij 2 N st, represent the flow of the mass asso-
ciated with larva k between pixel i at time t and pixel j at
time t + 1. Flows are always latent variables of the prob-
lem and maintain temporal coherence between the pixels in
consecutive frames.

The energy is a sum of terms weighted by wl, l =

1, ...,M . These terms fall into four categories: from the
bottom to the top of Eq. (1), flow cost terms penalize flow
of mass between pixels which are different according to
the parameter dlij dependent on the lth image feature. The
costs dlij can take into account not only spatial distance,
as expressed by various powers of the Euclidean distance,
but also dissimilarities in local appearance, etc. (see section
3.4). The smoothness term favors spatially smooth solutions
where adjacent pixels have similarly colored masses. For
each frame, this term is defined on pairs of pixels within
the spatial neighborhood N s. The data fidelity term fa-
vors solutions where the sum of the colors associated with
each pixel is close to the grey value intensity m†

i . Finally,
the flow conservation terms enforce temporal consistency
of proximate pixels at neighboring time steps. In classical
flow problems these terms are imposed as linear constraints
while we include these terms in the objective to account for
fluctuations in the intensity. Although not required by the
formulation, we reduce the number of parameters by giving
the same weight w1 to data fidelity and flow conservation
terms.

Under the boundary condition given by observed mass
variables •

m, the optimization of Eq. (1) allows estimating
the latent masses and the latent flows, ˚m and f . The energy
optimization problem

argmin

f ,m̊2RM
+

E(f , ˚m ;

•
m,w) (2)

is linear in the weights w and linearizable in the flows f
and the masses m when replacing the absolute values with
auxiliary variables. This is a standard technique, see [4].
Problem 2 is therefore a convex problem that can be solved
efficiently by linear programming2.

3.2. Inference: identity interpretation

Problem 2 requires the masses •
m associated with

the pixels of all isolated (non-overlapping) individuals as
boundary conditions. In the training set, these boundary
conditions are observed; at prediction time, they are merely
observable (but not observed). To identify and track all ob-
jects, we seek to identify those boundary conditions that

2The optimization of Eq. (1) is implemented using ILOG Cplex.

Symbol Definition
t Time index t = {1, ..., T}
i, j Pixel indices. There are Np pixels inside

the spatiotemporal volume of the video:
i, j 2 {1, ..., Np}

N s spatial neighborhood relates pixels in the
same frame

N st spatiotemporal neighborhood relates pixels
in consecutive frames

l Feature index, l 2 {1, ...,M}
k Mass color index, k 2 {1, ..., NL}
fk
ij Flow associated with larva/color k

between pixels i, j 2 N st

dlij Cost of flow between pixels i, j 2 N st

computed from the lth feature.
wl Weight associated with the lth feature
mk

i Mass associated with larva/color k
in pixel i. Masses can be:

•
mk

i observable variables
m̊k

i latent variables
m†

i Measured grey value intensity in pixel i

Table 1. Notation.

are most plausible according to our energy function. Valid
boundary conditions must respect two constraints: first,
each isolated object has all its pixels labeled entirely by
masses of the same color; and second, each color is as-
signed to only one isolated object per frame. Methods such
as [2, 8] break the entire video into non-occluded parts (easy
to track) and occlusion events (difficult to track). At occlu-
sion events, these two constraints ensure that each single ob-
ject entering the occluded spatiotemporal region is matched
to another single object leaving that region. If we define I
as the space of such valid interpretations, then in order to
find the lowest energy identity assignment of all objects, we
solve the following optimization problem:

argmin

•
m2I
f ,m̊2RM

+

E(f , ˚m,
•
m ; w) (3)

Rather than incorporating the constraints on I explicitly, we
exploit the structure of the problem: we simply solve re-
peatedly for each of the N c

L! distinct interpretations that are
possible for the identity assignment of those N c

L objects that
aggregate into a cluster. Note that, in most cases, N c

L is only
two or three in our data.

In summary, then, while Eq. (2) is convex, the additional
constraints in Eq. (3) result in a non-convex optimization
problem with a combinatorial number of local optima. We
explore all of these for mutual occlusions of up to three ob-
jects. For four or more occluded objects, we resort to the
approximation detailed in section 4.2.

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/


Figure 2. Illustration of a training example corresponding to an oc-
cluded spatiotemporal region. On the left side, the counting graph
as obtained by the algorithm of [8]: each foreground connected
component is depicted with a circle labeled with the number of
contained objects. Bold lines indicate a subgraph where an occlu-
sion of 3 larvae is detected. On the right side, the spatiotemporal
region of interest corresponding to this subgraph is depicted. Note
that in each frame, only the objects corresponding to subgraph’s
nodes are visible. On the left and right sides: the colors identify
individuals which enter or leave occlusion as labeled by the human
expert during the training phase. The human expert visualizes the
sequence at higher temporal resolution and can therefore provide
confident annotations.

3.3. Parameter learning with partial annotations

The learning determines the optimal weights w in Eq. (3)
so that the correct interpretation of the training data receives
lower energy than any wrong interpretation. We solve this
energy parametrization problem via structural risk mini-
mization [25, 28, 17]. Our training examples, n = 1, ..., N
for the observable colored mass variables are given in term
of user annotations that mark the identity of isolated larvae
only before and after the ambiguous region where they over-
lap, as depicted in Fig. 2. Arguably, this annotation requires
a minimal click effort for the user.

A training example (

•
mn, ˚mn, fn,dn) is composed of

observed and latent variables and by the features of the im-
age region dn. The loss function of the learning problem
penalizes positive differences between the energy of the cor-
rect interpretation and the lowest energy among any of the
wrong interpretations. If we define ¯In = In\

•
mn as the set

of valid but wrong boundary conditions then, similarly to
[28], the loss function can be written as:

L(w,
•
mn) = min

f ,m̊2RM
+

E(f , ˚m ;

•
mn,w)

� min

•
m2Īn

f ,m̊2RM
+

h
E(f , ˚m,

•
m ; w)��(

•
mn,

•
m)

i

(4)

Here, �(

•
mn,

•
m) is the task loss function which depends

only on the observable variables. In this study, we use the
number of identity switches between the predicted interpre-
tation and the gold standard from the training set. Note
that our restriction to the set of valid but wrong interpre-
tations ¯In (see section 3.2) makes the optimization problem
one that is not additive over local cliques of variables. The
model is trained by finding the optimal weights which min-
imize the regularized structural risk:

min

w

1

2

||w||22 +

C

N

X

n

|L(w,
•
mn)|+ (5)

s.t. w1, ..., wM � 0

Here, | · |+ := max ( 0 , · ) is the hinge function which en-
sures a positive contribution from the loss while additional
constraints guarantee the convexity of Eq. (1).

The loss in Eq. (4) is non-convex but is instead the differ-
ence of two convex functions (DC) [24]. Following [28], we
find a local minima to problem Eq. (5) by using the CCCP
procedure [29]. Briefly, this iterative scheme alternates be-
tween estimating the most probable state for the latent vari-
ables and solving the structured SVM problem treating all
variables as observed. We implement CCCP based on the n-
slack [12] formulation of structured SVM3. Taken together,
this allows us to learn the parameters of the model from very
weak annotations and generic features.

3.4. Features

Multiple expressive features dlij , ensure that the model
in Eq. (1) can differentiate between the possible interpreta-
tions of the sequence. This is in contrast to previous work
[9, 30, 23, 11, 7] whose cost functions were parametrized
manually. All features are summarized in table 2. Be-
side traditional features such as the powers of the Euclidean
distance computed from the spatial locations of two pix-
els, we propose a new set of features that captures the lo-
cal spatiotemporal structure of the data. In particular, these
features are derived from the intensity profile �ij(s), s 2
[0, 1]. This is computed for pixel i located in frame t and
pixel j located in frame t + 1, along segment parametrized
by s connecting the spatial locations of the two pixels. As

3Our implementation builds on the open-source library Pystruct.

https://pystruct.github.io/


in table 2, we collect the features in three groups: the first
group are the features multiplying the smoothness and the
data fidelity term, the second group are all the purely spa-
tial costs and the third group includes the proposed features
derived from �ij(s). The learned weights of these features
are shown in Fig. 3.

Feature
d1ii exp

⇣
�m†

i/255
⌘

d2ij constant
d3ij Spatial Euclidean distance between pixels i, j
d4ij Second power of d3ij
d5ij Fourth power of d3ij
d6ij |m†

i �m†
j |

d7ij
R 1
0 �ij(s)ds

d8ij maxs2[0,1] �ij(s)�mins2[0,1] �ij(s)
d9ij h (�ij(s)� h�ij(s)i)2i
d10ij

R 1
0 I{�ij(s)background}ds

Table 2. Definition of used features. I is an indicator function and
the threshold for the background intensity is set to 50.

4. Experiments

In our experiments, we compare the proposed method
to the related work [6, 16, 9, 22]. Firstly, we use the
established software Ctrax [6] that can track multiple
Drosophila adults. Ctrax uses frame-by-frame tracking
based on a constant velocity model and also incorporates
automatic corrections for merged detections by considering
multiple splitting hypotheses. Secondly, we combine ideas
from [9] with [16] in a method that we term L-BM, in order
to enhance bipartite matching used by [9]. Briefly, as in [9]
we compute the minimum cost bipartite matching between
the isolated larvae entering the encounter region and those
exiting the encounter region. In addition, costs are com-
puted as linear combination of three features: Euclidean
distance between the centers of the isolated larvae, differ-
ence in size and difference in average intensity; as in [16]
optimal weights are learned with a structured SVM. Thirdly,
we compare with Conservation Tracking (CT) [22]. Like
our proposal, CT initially detects clusters of occluding ob-
jects and then disambiguate the occlusions. In contrast to
our work, CT fits a Gaussian mixture model for each time
to each occluded region and then performs tracking by data
association. For a fair comparison with our method, we ini-
tialize both algorithms with the results from [8] and opti-
mize the parameters of [22] via grid search.

4.1. Dataset and evaluation metric

We have evaluated our approach on a challenging dataset
of larvae tracking composed of 33 high resolution movies.

Figure 3. Parameters w learned from the training data and normal-
ized to sum to one.

Each movie has a length of 5 minutes, a temporal resolution
of 3.3 frames per second (1000 frames in total) and con-
tains on average 20 larvae. The spatial resolution is 135.3
µm/pixel at 1400⇥1400 pixels/image. For the preprocess-
ing and the construction of the counting graph we follow
the guidelines from [8]. That counting algorithm obtained
a precision of 99.9% on this dataset, indicating an almost
perfect tracking for the isolated larvae. We therefore focus
our evaluation on occlusion events that result from animals
overlapping each other or from undersegmentation. We ex-
tract all subgraphs containing clusters of two or more lar-
vae from the counting graph. These regions are sparse and
correspond mostly to the occlusion of two larvae. A hu-
man expert manually labeled each larva entering or leaving
each region in order to create a gold standard, as sketched in
Fig. 2. Similarly to [13], performance is measured by count-
ing the number of identity mismatches between the output
of the algorithm and the gold standard. Missed detections
and lost tracks are added to the error. This metric is then
normalized by the total number of objects entering the re-
gion: 1478 for regions with two larvae, 96 for three larvae
and 28 for four or more larvae.

4.2. Implementation and experimental details

Three approximations were made in order to reduce the
computational effort of the proposed method. First, for each
encounter we select up to 15 sub-frames linearly spaced in
time in order to reduce the number of variables involved in
the optimization. Second, the threshold for the spatiotem-
poral neighborhood N st is adaptively chosen for each en-
counter as the minimum distance such that each foreground
pixel is connected by at least one temporal edge (10 pix-
els on average). The spatial neighborhood N s is fixed to a
radius of 1 pixel. Third, when four or more larvae are in
the overlapping region, L-BM is used to retrieve only the
first six interpretations with lowest matching cost. Among
these, with our main method, we select the interpretation
which obtains the lowest energy.

Our main proposal as well as L-BM are trained using
only 25 examples of encounters of two larvae (3% of all



Figure 4. Two examples from the test set. Raw data (1A, 2A) and lowest energy interpretation inferred by our algorithm (1B, 2B). In frames
1 and 15 the objects are separated and the value for the masses is set by the boundary conditions. In intermediate frames, the sum of the
two colors is close to the grayvalue intensity in the raw data and influenced from the smoothness term of Eq. (1).

Method Total N c
L = 2 N c

L = 3 N c
L � 4

Random Guess 51.5% 50.0% 66.7% 76.1%
Ctrax [6] 13.2% 11.5% 26.3% 57.1%
L-BM 11.8% 10.5% 23.1% 42.8%
CT [22] 9.4% 6.7% 34.7% 64.3%
This proposal 5.3% 4.2% 14.7% 32.1%

Table 3. Identity assignment error across the dataset: breakdown
into encounters of two, three, four and more larvae, and average
weigthed by the number of encounters per type.

available encounters) and testing is performed on the en-
tire dataset. Most encounters have a very short duration,
so to harvest more hard examples, we perform a first infer-
ence round and then train the model again with a mixture of
15 randomly selected and 10 hard examples. To assess the
variability in performance with a randomly selected train-
ing set, the learning curve of the algorithm with different
number of training examples is included in the supplemen-
tary material. Training our model takes around 8 hrs while
the median inference time is 1.3hr/movie on a 2.4GHz Intel
Quad-Xeon machine. 90% of the time is spent on encoun-
ters of 3 or more larvae. Further details on the running time
are relegated to the supplementary.

4.3. Results and discussion

Fig. 4 and Fig. 5 qualitatively illustrate our results. For
two challenging cases from the test set, Fig. 4 shows the
inferred state of the latent masses of the interpretation with
lowest energy. Fig. 5 compares the inferred states of the
latent variables for the six possible interpretations of an en-
counter of three larvae. Due space limitations, further re-
sults shown at higher temporal resolution as well as the re-

constructed tracking of entire movies are shown in the sup-
plementary material.

The quantitative comparison between our approach and
other methods is presented in table 3. Both L-BM and
Ctrax have similar performance on this dataset. However
L-BM is less prone to misdetections and learns its parame-
ters from training examples. For encounters of two or three
larvae, our main proposal produces consistently more accu-
rate results without using any appearance feature. On en-
counters of four or more larvae, where L-BM is used to re-
trieve candidate interpretations, our approach can improve
the results without however reaching truly satisfactory per-
formance. For all methods, performance decreases with the
number of larvae in the encounter as the scene becomes
more cluttered and the number of interpretations increases.
In particular, [22] which assumes roughly Gaussian shapes,
offers a computationally less expensive alternative to our
method for occlusions of two larvae but it has difficulties
disambiguating clusters of more than two entangled articu-
lated targets, both qualitatively and as indicated by the num-
bers in table 3.

On this dataset, the accuracy of our approach outper-
forms the compared methods. Even so, for some applica-
tions the resulting error for agglomerates of more individu-
als is still high, and in those settings computation time also
needs to be improved further.

In summary, we have presented and evaluated a new
tracking algorithm that specifically addresses the identity
switching problem for the challenging situation of multi-
ple indistinguishable translucent overlapping objects. These
are allowed to be deformable and perform complex mo-
tions, such as crawling across each other. All in all,
Eq. (1) expresses a “least action principle” – after appro-



priate parametrization, a scene can be interpreted in terms
of a minimal-cost transformation, or transport of masses of
different colors. The structured learning framework allows
to fine-tune the costs for these transportation processes so
as to make the true solutions, as given by the training set,
the least costly. A training set can be compiled very conve-
niently by specifying the identity of individual larvae only
before they enter or after they leave an agglomerate. We
solve the associated hard latent variable learning problem,
and achieve encouraging results on challenging sequences
of social larvae. While the computational complexity of our
approach does not yet scale to large populations, it opens
new avenues for the study of social interactions in animals.

A

B

C

D

E

F

G

Figure 5. Selected sub-frames from an encounter of 3 larvae. From
the top: raw data (A) and the 6 possible interpretations ranked by
increasing energy (from B to G). Our approach correctly assigns
the lowest energy to the interpretation in the second row (B).
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