
A Generalized Successive Shortest Paths Solver for
Tracking Dividing Targets

Carsten Haubold, Janez Aleš, Steffen Wolf, and Fred A. Hamprecht

IWR/HCI, University of Heidelberg, Germany
firstname.lastname@iwr.uni-heidelberg.de

Abstract. Tracking-by-detection methods are prevailing in many tracking sce-
narios. One attractive property is that in the absence of additional constraints they
can be solved optimally in polynomial time, e.g. by min-cost flow solvers. But
when potentially dividing targets need to be tracked – as is the case for biological
tasks like cell tracking – finding the solution to a global tracking-by-detection
model is NP-hard. In this work, we present a flow-based approximate solution
to a common cell tracking model that allows for objects to merge and split or
divide. We build on the successive shortest path min-cost flow algorithm but alter
the residual graph such that the flow through the graph obeys division constraints
and always represents a feasible tracking solution. By conditioning the residual
arc capacities on the flow along logically associated arcs we obtain a polynomial
time heuristic that achieves close-to-optimal tracking results while exhibiting a
good anytime performance. We also show that our method is a generalization of
an approximate dynamic programming cell tracking solver by Magnusson et al.
that stood out in the ISBI Cell Tracking Challenges.

1 Introduction

Tracking proliferating cells is a task that arises e.g. in developmental biology and high-
throughput screening for drug development. Tracking-by-detection methods are often
the tool of choice because they allow for fine tuned detection algorithms, give room
for a lot of modeling decisions, and do not require that the number of targets is known
beforehand. One common ingredient in all tracking models for divisible targets is the
constraint that a division can only occur in the presence of a parent. These constraints
require the formulation of the objective as an integer linear program (ILP) [1,2,3]. Such
ILPs can be solved to optimality up to a certain size, in spite of their NP-hardness; but
they do not scale to the huge coupled problems that arise from long video.

Recently, min-cost flow solvers have become a popular choice to tracking multiple
targets like pedestrians, cars, and other non-dividing objects [4,5,6,7]. These methods
provide a polynomial runtime guarantee and are very efficient in practice, while solving
the problem to global optimality. Unfortunately, min-cost flow solvers are not directly
applicable to tracking problems with additional constraints such as the division con-
straint. Such additional constraints lead to a coupling of the flow along different arcs,
destroying the total unimodularity (TUM) property of the constraint matrix – which is
a necessary requirement for the linear programming relaxation solution to be integral,

2 Carsten Haubold, Janez Aleš, Steffen Wolf, Fred A. Hamprecht

s bo

co

aoai

bi

ci

Detection

Source/Sink

Constraint

App./Dis.

1/1

0/0

1/1

0/1

1/1

1/1

0/2
0/2

0/0

0/0

0/1
0/1

Detection

Source/Sink

Mitosis

App./Dis.

s bo

co

aoai

bi

ci

f(ai,ao)

f(s,ao)

2-f(ai,ao)

f(ai,ao)
-f(s,ao)

2-f(a
o ,bi)

2-f(bi,bo)

2-f(ci,co)

2-f(a o,c i)
f(ao,c i)

f(ci,co)

f(bi,bo)
f(a

o ,bi)

s bo

co

aoai

bi

ci

Detection

Source/Sink

Constraint

App./Dis.

0/0

0/0

1/2

0/0

0/2

0/2

1/2
1/2

0/0

0/0

0/0
0/0

s bo

co

aoai

bi

ci

Detection

Source/Sink

Constraint

App./Dis.

1/1

0/0

1/1

0/1

1/2

1/2

1/1
1/1

0/1

0/1

0/0
0/0

s bo

co

aoai

bi

ci

Detection

Source/Sink

Constraint

App./Dis.

0/0

1/1

1/1

0/0

1/1

1/1

0/1
0/1

1/1

1/1

0/1
0/1

s bo

co

aoai

bi

ci

Detection

Source/Sink

Constraint

App./Dis.

0/0

0/0

0/2

0/0

0/2

0/2

0/2
0/2

0/0

0/0

0/0
0/0

s bo

co

aoai

bi

ci

Detection

Source/Sink

Constraint

App./Dis.

0/1

0/0

1/1

0/1

0/2

0/2

1/1
1/1

0/1

0/1

0/0
0/0

s bo

co

aoai

bi

ci

Detection

Source/Sink

Constraint

App./Dis.

1/0

0/1

1/1

0/0

1/1

1/1

1/1
1/1

0/1

0/1

0/1
0/1

Fl
ow

 a
ug

m
en

ta
tio

n C
apacity update

Detection

Source / Sink

Constraint

Transition / Division

t t+1

s bo

co

aoai

bi

ci

Detection

Source/Sink

Constraint

App./Dis.

-10

+10

+5

-5

-2

-1

-1
-1

+1

+1

+2
+2

example where ILP wins!

a)

c)

e)

g)

b)

d)

f)

h)

i) j)

A
B

C

0/1

Fig. 1: Case study: A minimal example excerpt of a trellis graph i) and a few iter-
ations of the proposed constraint-aware flow algorithm. a) shows how residual arc
capacities cr(u, v) are derived from the flow f . In general for forward arcs this is
cr(u, v) = c(u, v) − f(u, v) and for reverse arcs cr(v, u) = f(u, v). To realize the
coupling between parent and division flow, we change how their residual capacity is
derived (red). b) The graph with zero flow f := 0 and resulting initial residual arc ca-
pacities. Note the red border indicating that the division arc capacity is zero because of
the coupling. Edge annotations are f(u, v)/cr(u, v). c) A shortest path (in orange) is
found in the residual graph, and one unit of flow is pushed along that path. d) Deriving
the new residual arc capacities, changes denoted in red. Because the parent detection
a now contains flow, the coupled division arc residual capacity becomes one, making
the division available for the next shortest path. e-f) The next shortest path and new
residual arc capacities. The capacity of the reverse arc of the parent cell is set to zero
because the division arc contains flow. g) A negative cost cycle is found, pushing flow
along the reverse arcs. This is the same as canceling out a formerly found track. h)
Flow along the division was removed again, leaving a residual graph with proper arc
capacities such that the division could still be used in a later path. j) Failure case of our
algorithm: arcs are now labeled with their costs, where the arc of the parent detection
is so expensive that crcSSP will never get to the point where the rewarding division
arc becomes available because it will not send flow along (ai, ao). The optimal solution
would be to send flow along both parent and division.

A Generalized Successive Shortest Paths Solver for Tracking Dividing Targets 3

and hence optimal. Some attempts have been made to apply min-cost flow solvers to
network flow problems with side constraints nevertheless [8,9], but they mostly resort
to rounding to finally obtain an integral solution.

In this work, we present an approximate primal feasible flow-based solver for track-
ing dividing targets. To achieve this, we modify the successive shortest paths (SSP) al-
gorithm to handle the division constraints by conditioning certain residual arc capacities
on the flow along logically associated arcs as shown in Fig. 1. This leads to a polyno-
mial time algorithm that empirically exhibits attractive anytime performance and gives
close to optimal results.

2 Related Work

Many tracking-by-detection models link the detections of a previously acquired per-
frame segmentation between pairs of frames [10] or create short chains of detections
and stitch them [11,12,13]. Others build a model spanning the entire time sequence
to find a globally optimal configuration [4,5,6,14,15]. Standard tracking-by-detection
expects all targets to be detected individually, which is not necessarily the case. [16]
introduces a contains relationship employing prior knowledge that e.g. a person entered
a car and track both objects at once. In the cell tracking domain such knowledge is usu-
ally not applicable: merging of targets occurs due to poor image quality or occlusion,
leading to errors in the segmentation, apparent especially in densely populated areas.
Furthermore, if cells are merged together into one segment, it is visually barely dis-
tinguishable whether this segment is splitting up or dividing, which is why dedicated
methods [1,2,8,17] model those events explicitly. Most cell tracking models are solved
as ILP because the division constraint prevents the application of optimal and efficient
min-cost flow solvers.

Optimization problems that can be formulated as min-cost flow with convex cost
and without additional constraints can be solved optimally in polynomial time. A va-
riety of efficient solvers have been proposed: push-relabel, capacity scaling, network
simplex, successive shortest paths (SSP), etc. [18,19,20]. Multi-target tracking can be
solved using such a min-cost flow setup as shown in the seminal work by Zhang and
Nevatia [4]. They model detections as a pair of nodes, with a connecting arc whose
capacity limits the number of tracks through each detection to one and whose cost rep-
resents the detection cost. They allow negative arc costs so that they do not need to
send a predefined amount of flow, but rather solve a series of min-cost flow problems
with varying number of tracks to find the globally optimal configuration. Instead of
solving a full min-cost flow problem for each number of tracks, [5] propose to use the
SSP algorithm and add tracks as long as they lead to a lower cost solution. Berclaz et
al. [7] improve on the runtime by using K-shortest paths instead of a single shortest path
in each iteration. Lenz et al. [6] also present several ways to speed up the successive
shortest paths search by updating only nodes for which the shortest path has changed
due to flow augmentations along the previous shortest path. They transform their costs
to be nonnegative, and can thus employ Dijkstra’s algorithm to find the shortest paths
efficiently. Lastly they develop an optimal and a heuristic but memory limited online
tracker with very good runtimes.

4 Carsten Haubold, Janez Aleš, Steffen Wolf, Fred A. Hamprecht

For tracking proliferating targets, division constraints are needed. There has been
some work on integrating side constraints into min-cost flow trackers, but they all relax
the problem and then round the result to get a feasible solution. Butt et al. [9] build
a tracklet linking model which is stated as a min-cost flow problem with additional
exclusion constraints. They build the Lagrangian relaxation to get to a standard min-cost
flow problem as subproblem, and then optimize the dual by stochastic gradient descent.
As this need not converge to a primal feasible solution, they employ a greedy path
selection scheme to resolve exclusion constraint violations. In contrast to this approach,
we propose a heuristic that stays in the primal feasible domain and which does not need
to solve the full min-cost flow in each iteration.

When tracking dividing targets, one needs to obey the constraint that a division can-
not occur if there was no parent object in the first place. To handle this constraint in a
flow network, there must be a means to spawn another unit of flow at a division, but
this option should only be allowed when the parent detection holds some flow. Unfor-
tunately these constraints violate the necessary criteria for the applicability of min-cost
flow solvers. Despite that, Padfield [8] introduced coupled flow to handle divisions in a
flow network for cell tracking, but they have to resort to a linear programming solution.

Magnusson et al. [21,17] – who showed outstanding performance at the 2013 and
2014 ISBI Cell Tracking Challenges [3] in both segmentation and tracking – set up a
similar problem as we do here. They formalize their track linking heuristic as applica-
tion of the Viterbi algorithm to find the shortest path in an acyclic graph where all arcs
are directed forward in time. Instead of resorting to an ILP solver to cope with division
constraints, they handle them by hiding arcs that could lead to invalid configurations
from the shortest path search in each iteration. We borrow from this idea when devel-
oping our approximate min-cost flow based SSP solver and will later reason that our
algorithm generalizes that of [17].

One additional complication is that in microscopy data, it is often not obvious from
a single image how many objects are in a cluster. The study [22] revealed that underseg-
mentations are the prevailing segmentation error in cell tracking pipelines, and so here
we focus on a tracking-by-detection model that allows for merged detections. Allowing
detections to be shared by several tracks means that arc capacities in the network flow
graph will be greater than 1. If this arc cost function is non-convex, solving the min-cost
flow problem becomes NP-hard even in the absence of additional constraints [18].

3 Tracking Model

Throughout this work, we consider a tracking model where detections can divide, but
targets can also temporarily merge into one detection due to undersegmentation, before
they split again. This kind of model was used in e.g. [2] and [17]. We follow the design
of [2], but for the sake of brevity we disregard their additional constraints which dis-
allow the appearance/vanishing of merged detections and divisions of objects that just
appeared1. For details we refer the reader to [2].

1 Our implementation accounts for these constraints nevertheless, as they can be modeled by
conditioning residual arc capacities on other arc flows similar to the division constraint, as we
will explain in section 4.

A Generalized Successive Shortest Paths Solver for Tracking Dividing Targets 5

t = 1 t = 2

E

A
C

DS T

B

(a) Trellis Graph

S

t = 1 t = 2

Co

Do

EoBo

Ao

T

Bi

Ai Ci

Di

Ei

Detection

Source/Sink

Division

App./Dis.

0

0

-1

-1

-1

-1

-1

-2

-2

-4

+10

+10-4

-1

-3

-4

-5

-20

+10

+10

+10

(b) Flow Graph

Fig. 2: a) Trellis graph representing exemplary detection and transition candidates. b)
Corresponding network flow graph. Detection nodes are split into two and the cost of
the connecting arc accounts for the detection probability. Transition and division prob-
abilities are represented by the other arc costs. This is the base graph without disabling
any arcs due to division constraints (4). Exemplary costs are written alongside the arcs.

For our tracking model, we build a trellis graph as in Fig. 2 a) for the complete video
time span, where all detections in all time steps are represented by nodes that can hold
zero, one, or more than one target. The arcs in the graph depict possible assignments
of objects across timeframes. Every arc thus points from a node in timeframe t to a
node in t + 1. To reduce complexity, we only include transition hypotheses that sat-
isfy a dataset-dependent distance threshold. Target appearance and disappearance are
modeled as special assignment arcs, originating at the source or ending at the sink node
respectively. Divisions can occur whenever a node has at least two outgoing arcs.

We now first state the optimization problem as integer linear program (ILP), and
then present an equivalent network flow graph.

3.1 Integer Linear Program

To transform the aforementioned graph into an ILP, we assign random variables to all
detection nodes and transition arcs. Let V := X∪T ∪D be the set of all detection nodes
X , transition arcs T and division indicators D in the graph. Every random variable
V ∈ V can take a discrete state or label k ∈ L(V) := {0, . . . ,m} indicating the number
of contained targets, where m is the upper bound on the number of targets allowed
to be merged into one detection. We introduce division random variables D ∈ D to
indicate whether the corresponding detection X(D) is dividing. 2 By Source and Sink
we denote the source and sink node. Let y ∈ Y be a valid labeling, that is, a vector
assigning one state yV ∈ L(V) to every variable V , where L(V) is the label space of
V .

We introduce a unary potential θV (k) for every random variable V ∈ V . We set this
potential to the negative log of the probability that the respective random variable V

2 We slightly abuse the notation here and indicate the parent detection X of a division D as
X(D) and vice versa D(X).

6 Carsten Haubold, Janez Aleš, Steffen Wolf, Fred A. Hamprecht

takes state k. This probability could for instance be estimated by a classifier, given the
local observations. This choice of potentials ensures that the minimal energy configu-
ration equals the maximum-a-posteriori (MAP) solution.

The energy minimization problem can be stated as

y
∗
= argmin

y∈Y
E(y) = argmin

y∈Y

∑
X∈X

EX(yX) +
∑
T∈T

ET (yT) +
∑
D∈D

ED(yD) (1)

= argmin
y∈Y

∑
X∈X

∑
k∈L(X)

θX(k)1[yX = k] +
∑
T∈T

∑
k∈L(T)

θT (k)1[yT = k]

+
∑
D∈D

∑
k∈L(D)

θD(k)1[yD = k] (2)

subject to:

Flow conservation: (3)

∀X∈X∪{Sink} : yX =
∑

I∈I(X)

yI , ∀X∈X∪{Source} : yX + yD(X) =
∑

O∈O(X)

yO

Division: (4)

∀D∈D : yD − yX(D) ≤ 0,

where I(X) denotes all incoming transition variables of detection X , and O(X) its
outgoing transitions respectively. The outgoing transitions of the source O(Source) in-
clude all appearances and divisions, while the incoming transitions at the sink I(Sink)
consist of all disappearances.

The objective (2) is a linear combination of configuration y and unary potentials θ,
where 1 is the indicator function. The constraints ensure equality of the number of in-
coming and outgoing targets at a detection, including appearances and disappearances.
Only in the presence of a division the number of outgoing targets can and must be
greater than the number of incoming (3). Furthermore, a detection cannot divide more
often than it contains targets (4). This last constraint is the key difference to a standard
min-cost flow problem. As mentioned before, the full constraint matrix is not totally
unimodular and standard flow solvers cannot be applied directly to find a feasible inte-
gral solution.

In [2], Schiegg et al. present a variant of the model above, introduce a few more
constraints to represent design decisions like that the children of a division have to be
two separate detections, and use IBM’s CPLEX solver to find an optimal assignment
y∗ to the ILP. For all ILP results presented in the evaluation section of this work, we
build the model as stated in (2), add equivalent constraints to those in [2], and solve it
with the ILP solver Gurobi.

3.2 Network Flow Graph

Let us now present a transformation of the ILP – first without division constraints (4) –
into an equivalent network flow graph G = (V,E), as shown in Fig. 2 b). We are going
to iteratively push one unit of flow through this network, where each additional path
corresponds to the track of one object. We use the function w(u, v, k) ∈ R to denote
the cost (which must be convex w.r.t. k) for a directed arc from u to v with current flow
k := f(u, v), and c(u, v) ∈ N+ to represent the arc capacity.

A Generalized Successive Shortest Paths Solver for Tracking Dividing Targets 7

• Each detection X ∈ X is represented as a pair of in- and out-nodes xi and xo

connected by a link with capacity c(xi, xo) := |L(X)| − 1 and a weight depending
on the detection probability for containing k targets, akin to [4]. The cost for the
connecting arc is then w(xi, xo, k) := θX(k + 1)− θX(k).
• Transitions T ∈ T , including appearances and disappearances, are represented as

arcs which can leave from some out-node vo or the Source, and arrive at a detec-
tion’s in-node xi or the Sink . Let src(T) and dest(T) denote functions that return
the source and the destination node of transition T . Costs w are then assigned to
arcs with capacity c(src(T), dest(T)) := |L(T)|− 1 as w(src(T), dest(T), k) :=
θT (k + 1)− θT (k).

• Possibly dividing detections X get a special division in-arc from the source to xo

with cost w(Source, xo, k) := θD(k + 1) − θD(k). Their capacity is defined in
terms of the flow inside the parent detection, as we will see in the next section.

Thus we can state the full graph as

G =(V,E),V = {xi
, x

o|X ∈ X} ∪ S,

E ={(src(T), dest(T))|T ∈ T } ∪ {(xi
, x

o
)|X ∈ X} ∪ {(Source, xo

(D))|D ∈ D}.

In the next section we will see that shortest paths in G are found, and flow is pushed
through the network along these paths. The path of each unit of flow through the net-
work then corresponds to the track of one target. To make sure that the tracking solu-
tions induced by the ILP and the network flow graph are equivalent, the accumulated
cost w(P) =

∑
u,v∈P w(u, v, k) of each path P must be equal to the change in energy

if one adds one target to the ILP solution y along that track to get ŷ, 3 which can be
given as E(ŷ)− E(y) =

∑
V ∈V θV (ŷV)− θV (yV). To show the equality we decom-

pose path P into the arcs that correspond to the sets of random variables X , T , and
D.

w(P) =
∑

T∈ P
w(src(T), dest(T),yT) +

∑
X∈ P

w(x
i
, x

o
,yX) +

∑
D∈ P

w(Source, x
o
(D),yD)

=
∑

T∈ P
θT (yT + 1)− θT (yT) +

∑
X∈P

θX(yX + 1)− θX(yX) +
∑
D∈P

θD(yD + 1)− θD(yD)

=
∑
V∈P

θV (yV + 1)− θV (yV) = E(ŷ)− E(y)

4 Approximate Min-Cost Flow: Conditioned Residual Capacities

In the preceding section we blithely ignored the division constraint (4). This section
shows how to account for that constraint in a min-cost flow setup. Recent work [5,6,7]
on solving the multi-target tracking problem as min-cost flow employed the successive
shortest paths algorithm [19, p. 104]. We give a brief summary of SSP and generalize
the algorithm to handle division constraints by conditioning the capacities of some arcs
in the residual graph on the flow of logically associated arcs in the original graph. As
the residual graph costs can be negative, not all shortest path solvers can be used for
SSP. We argue why transforming the arc costs to be all positive in order to use Dijkstra’s
efficient algorithm is too expensive in the given scenario, so we use Bellman-Ford with
performance improvements instead.

3 which increases only the states of variables along the path V ∈ P

8 Carsten Haubold, Janez Aleš, Steffen Wolf, Fred A. Hamprecht

4.1 Successive Shortest Paths

The SSP algorithm finds a global optimal solution to a min-cost flow problem by it-
eratively finding a path P with the lowest cost in the residual graph Gr(f) and then
sending maximum feasible flow along this path [19, p. 104].

Let f(u, v) denote the amount of flow traversing an arc (u, v) with capacity c(u, v)
in the original graph G. The residual graph Gr(f) is then defined as a graph with the
same nodes as G, forward arcs (u, v) with residual capacity cr(u, v) = c(u, v)−f(u, v)
and cost wr(u, v) = w(u, v), and backwards arcs with residual capacity cr(u, v) =
f(u, v) with cost wr(v, u) = −w(u, v). By adding reverse arcs with capacity corre-
sponding to the flow along the forward arc in the original graph, flow can be redirected
in the residual graph.

Algorithm 1 Successive Shortest Paths with Conditioned Residual Capacities
1: procedure CRCSSP(G, S, T)
2: f ← 0, P ← ∅, Gr(f)← G
3: repeat
4: f ← AUGMENTFLOW(f,P)
5: Gr(f)← UPDATERESIDUALGRAPH(Gr(f), f)
6: Ĝr(f)← UPDATECONDITIONEDRESIDUALCAPACITIES(Gr(f), f)
7: P ←FINDSHORTESTPATHORCYCLE(Ĝr(f), S, T)
8: until w(P) ≥ 0

9: return f
10: end procedure

4.2 Successive Shortest Paths with Conditioned Residual Capacities

In section 3.2 we mentioned that the presented network flow setup does not support the
division constraints yet. The obvious effect is that flow could be sent along a division
arc even though no flow passes through the parent detection, yielding an invalid config-
uration. Rephrasing the division constraint to “the flow along a division arc is bounded
by the amount of flow through the parent detection” directly leads to our main idea: we
adjust the residual arc capacity in each iteration of SSP depending on the flow along
other arcs in the original graph. In the general SSP algorithm, residual arc capacities
cr(u, v) and cr(v, u) are derived only from the flow f(u, v) along the corresponding
arc in G. Our extension to the SSP algorithm adds rules for deducing residual arc ca-
pacities depending on the flow of other arcs.

Let us formally state how we derive the conditioned residual arc capacities for
the division constraint. According to the rephrased division constraint we define the
residual arc capacity as cr(Source, xo) := f(xi, xo) for each possible division of
detection X (see Figure 1). This only covers one half of the division constraint in
the residual graph Gr(f), as sending flow along the reverse residual parent arc could
lead to f(xi, xo) < f(Source, xo). To prevent that we also condition cr(xo, xi) :=
f(xi, xo) − f(Source, xo) on the division arc flow. These adjustments are handled by
line 6 in Algorithm 1. Figure 1 walks through an example of using crcSSP.

A Generalized Successive Shortest Paths Solver for Tracking Dividing Targets 9

This extension to the SSP algorithm allows us to handle division constraints in a
way that maintains a feasible flow-induced tracking solution throughout all iterations
of crcSSP. However, this comes at the cost of losing the global optimality guarantees
and, moreover, introduces a dependency on the order in which paths are found. See
Figure 1 j) for an example where the arc costs suggest that using parent detection and
division arc together reduces the overall cost, yet our algorithm would use neither be-
cause sending flow only along the parent is costly and the division arc is not available
yet. Nevertheless, when we apply Algorithm 1 to a dataset with no divisions, then line 6
has no effect and Algorithm 1 executes as the original SSP algorithm [19, p. 104], thus
finds a global optimal solution.

4.3 Shortest Path Search: Bellman-Ford

The cyclic nature of the residual graph and the negative arc costs restrict the choice of
shortest path algorithms applicable in SSP. One algorithm that can cope with negative
cost cycles is Bellman-Ford (BF), which has a runtime complexity of O(|V| ∗ |E|).

However, in the absence of negative cost cycles, one could once transform the arc
costs to be non-negative, and then use the more efficient Dijkstra algorithm
(O(|V|log|V| + |E|)) to find the shortest path based on these reduced costs w>0 [18,
p. 97], which is used by [6]. For this transformation, one needs to solve an auxiliary
problem where an additional source node is added along with zero cost arcs to all nodes
in the graph. Using BF one can now determine the shortest distance d(v) to every node
v in the original graph. Reduced costs are then given as w>0(u, v) := w(u, v)− d(u) +
d(v). Note that w>0 is zero for all arcs on shortest paths. This means that when arc
costs are linear, the corresponding reverse oriented residual graph arcs also have zero
reduced cost. So one can continue to use Dijkstra to search for SSP without the need
to run the transformation again. Unfortunately, this does not hold in our situation for
two reasons. First, we have non-linear cost, so after flow augmentation the costs of arcs
change which in turn invalidates the distances d(V) and, second, line 6 in our adjusted
SSP Algorithm 1 can change the availability of other arcs in the residual graph, which
also invalidates d(V) if these arcs happen to have negative cost. This means that we
would have to recompute at least part of the distances d after each iteration, where new
cycles with negative weight might have been introduced.

Due to the structure of our tracking residual graph, which is a multipartite graph
with node partitions indexed by time coordinate, and because of the necessity to have
paths from source to sink with overall negative cost, the graph contains long chains of
negative accumulated cost. This renders the solution of the auxiliary problem for the
transformation very challenging. Our experiments verified that the combined runtime
of the transformation plus Dijkstra exceeds the runtime of BF on the residual graph,
which is why we chose to employ the latter solution.

Performance Improvements The BF algorithm runs in iterations, where each iteration
performs |E| arc relaxations – which means it checks for each arc whether the current
distance to the arc’s destination node can be reduced by going along this arc. In the
worst case, the number of these iterations is |V|, which BF needs to run to prove the

10 Carsten Haubold, Janez Aleš, Steffen Wolf, Fred A. Hamprecht

existence of a negative cost cycle [20]. We base our BF implementation on the LEMON
Library [23], which uses an early termination criterion: if nothing changes between
two iterations, BF has computed the shortest paths to all nodes in the graph. Another
included performance improvement is that only those nodes whose predecessors have
changed in the previous iteration are processed in the next iteration.

We add two more stopping criteria to deal with negative cost cycles. Firstly, con-
sidering that in our model we perform a single source, single destination shortest path
search, it is easy to see that if the shortest distance to the Source node – which is ini-
tially zero – gets updated in any iteration of BF, then we definitely found a negative
cost cycle. Secondly, we know that our tracking graph has only a fixed number of time
frames, so we can check how many iterations it takes in general to find a path. If a
negative cost cycle is present in the residual graph, it could be discovered at each BF-
iteration using a check which takes O(|V|2). This is costly, but we still know that a
cycle can be found much earlier than in iteration |V|, so we check for cycles every α
iterations of BF. In our experiments we use α equal to three times the number of time
steps. These cycle detection checks are crucial to the practicability of our algorithm, as
a considerable amount of negative cost cycles needs to be found. Without the checks
this takes up to the order of minutes when a cycle is present.

Furthermore, the BF algorithm needs the least number of arc-relaxation iterations
when the arcs are processed in the order of the shortest paths. If there are no arcs point-
ing backwards in time, BF can terminate after only one iteration by processing arcs in
a time-wise order. Our experiments show that this arc ordering yields a significant run-
time improvement even in the presence of arcs that are directed backwards in time. We
call this crcSSP-o in the evaluation.

Lenz [6] improves Dijkstra’s runtime when solving the SSP problem as follows.
They observe that after augmenting flow along paths P , only the distances to those
nodes need to be updated, for which the shortest path to the node was modified by this
flow augmentation. They achieve this by initializing Dijkstra’s priority queue of unpro-
cessed nodes with exactly those nodes that were influenced by the last path. We apply
the same idea when running BF, and initialize as follows: We invalidate the predecessor
and shortest path to every node on the path P and perform a dynamic programming
sweep starting with the outgoing arcs which belonged to shortest paths. Next, we con-
struct the set of nodes to be processed with all those nodes in the graph that have an
outgoing arc to one of the now invalidated nodes. We only employ this when there was
no negative weight cycle. Otherwise we perform the default initialization. We denote
the application of improved initialization by crcSSP-i.

4.4 Runtime Complexity

The residual graph has N nodes representing the source, sink and split detections, as
well as additional division nodesN = 2+2∗|X |. The number of arcsM is composed of
the transitions, divisions, detections, appearances, and disappearances, so M = |T | +
|D|+ 3 ∗ |X |. BF has runtime O(N ∗M), and it is invoked once for each augmenting
path. Let P be the set of paths comprising the final solution and P = |P|, then our
overall runtime is O(N ∗M ∗ P). In the worst case we have a complete graph where
M = N2, and as many paths as there are detections |P| ≈ N

2 . Hence, the worst case

A Generalized Successive Shortest Paths Solver for Tracking Dividing Targets 11

complexity is O(N4). Let L be the average number of possible outgoing transitions
from each detection (in practice L < 10, for us L ≈ 3). Hence, we can estimate M =
|X |(3+L), where we have |X |∗L transitions, plus one appearance, disappearance, and
one connecting arc between the split detection nodes. Also, P is usually much smaller
than |X |, more in the order of thousands in our experiments. The overall runtime is then
O(P ∗N ∗ |X |(3 + L)) = O(P ∗N2).

4.5 First-order residual graph approximation

Magnusson et al. [17] proposed to perform track linking by iteratively augmenting the
set of tracks by the highest scoring track in a trellis graph that only has arcs directed
forward in time – which can be found in linear time by dynamic programming [20,
p. 592]. They also adjust the arc costs and availability in each iteration according to the
current tracking solution and constraints.

Even though [17] did not draw the link from their work to network flow solvers,
one could interpret their approach as removing backward arcs from the residual graph
and finding the shortest path there. Let t(x) denote the time frame of node x4, and
Gr(fi) = (V,Eri) be the residual graph at iteration i. Then the set of arcs directed
forward in time is given as Ẽri = {(k, l)|(k, l) ∈ Eri , t(k) < t(l)}. A shortest path P̃
between two nodes found in the restricted residual graph G̃r(fi) = (V, Ẽri) is always
also a valid path in Gr(fi), but it is obvious that the cost w(P̃) is always greater than or
equal to the cost w(P) of the shortest path (SP) in Gr(fi) because the shortest path in
the full residual graph can travel along negative cost arcs directed backwards. Using this
restricted graph for the SP search in Algorithm 1 trades an improvement of the runtime
of line 7 from O(|V| ∗ |Eri |) to O(|V| + |Ẽri |) for a larger optimality gap, which can
be seen in the results section.

To allow the algorithm to escape from local minima, [17] introduce swap arcs,
which we will now restate using residual graph terminology. On top of Ẽri they instanti-
ate every possible 3-arc sub-path of the residual graph {(k, l), (l,m), (m,n)} ∈ (Eri)

3

– where the middle arc is oriented backwards in time – as swap arc (k, n) with cost
w(k, n) = w(k, l)−w(l,m) +w(m,n).5 As all swap arcs are also directed forward in
time, the shortest path in the graph can still be found by dynamic programming. Once
such a swap arc is used, the flow in the original graph is augmented by pushing 1,−1, 1
units of flow along the 3 arcs respectively, which represents a short flow redirection.
If we interpret G̃r(fi) as a first order approximation of the full residual graph, then
including swap arcs leads to a second order approximation.

Because finding the shortest paths in acyclic approximations of the residual graph
has linear time complexity, the approach by [17] should run much faster than BF. In our
experiments we thus do not only compare against the results by Magnusson et al., but
we also try a two-stage approach, where we first run [17] and then use crcSSP to find
negative weight cycles and reduce the total energy even further.

4 where t(xo) = t(xi) + 1
5 Actually they ignore arc-triplets which contain a division arc, and thus never allow flow to be

redirected along divisions.

12 Carsten Haubold, Janez Aleš, Steffen Wolf, Fred A. Hamprecht

5 Experiments

We evaluate the proposed algorithm on two challenging datasets from developmental
biology, a 3D+t drosophila scan [24] and 2D+t pancreatic rat stem cells (PSC) pre-
sented in [22], both publicly available with ground-truth. The former is a time series of
a developing embryo where exact cell lineages over long time spans are desired, and
the latter presents stem cells in a dish which can overlap and often change their shape.
As in [2] and [17], we assign to each detection the probability for containing a certain
number of cells Pdet(k) ∀k ∈ [0,m], as well as a probability for division Pdiv .6 These
probabilities are predicted by Random Forest classifiers which were trained on the same
subset of the data as described in [24]. Transition arcs are inserted for nodes that sat-
isfy a forward-backward nearest neighbor check between consecutive frames, and the
transition probability is given by the inverted exponential of the Euclidean distance. En-
ergies are derived from those probabilities by taking the negative logarithm. We use the
open source implementation of [2] included in ilastik [25] to generate segmentations,
predict probabilities with their classifiers and to construct the trellis graph. The result-
ing network flow graph for the Drosophila dataset then consists of around 45k nodes
and 110k arcs, of which ∼10k are division arcs. For the much bigger PSC dataset the
graph has roughly 260k nodes and 770k arcs including 126k division arcs.

Convex energies are required to obtain an optimal integral solution when applying
SSP to a network problem. We obtain these energies by finding a convex upper envelope
θ̄i to each potential θi independently. We first select the state with minimal energy
and make sure that when increasing or decreasing the state from there on, the absolute
slope of the gradient is monotonically increasing. Our experiments showed that the cost
convexification does not impact the quality of the final tracking results when applied to
the energies of either datasets used.

As mentioned before, the tracking model presented in section 3 is a slight simplifi-
cation of the model in [2]. For the experiments we use their full model where we handle
additional constraints similar to the division constraint.

We compare the tracking performance w.r.t. the ground truth by checking for the
agreement of move, merge, and division events per pair of consecutive frames. A merge
event in this case means that a detection contains more than one cell in the ground
truth, and is only found correctly by a contestant if the number of contained tracks
matches. Table 1 shows the results for the first and second order residual approxima-
tion as presented in [17], our proposed new method using the full residual graph, and
the ILP solution found with Gurobi. In Figure 3 we compare the anytime performance
of the same solvers. The anytime performance refers to the energy of a solution ob-
tained after any time point during the optimization. There one can also see the impact
of the different BF performance improvements we added, as well as the performance of
warmstarting crcSSP from the solution of Magnusson’s approach. We implemented
all methods ourselves in C++ and used the Lemon graph library [23] as base for our
improved BF, and OpenGM to interface Gurobi.7

6 m = 4 for the Drosophila dataset, m = 3 for PSC.
7 http://github.com/opengm/opengm and http://www.gurobi.com.

http://github.com/opengm/opengm
http://www.gurobi.com

A Generalized Successive Shortest Paths Solver for Tracking Dividing Targets 13

Inference Method Forward Only Magnusson crcSSP-o-i ILP (Gurobi)
Dataset and Event p r F p r F p r F p r F

Drosophila: Overall 0.89 0.90 0.89 0.90 0.91 0.90 0.93 0.92 0.92 0.96 0.91 0.94
Drosophila: Moves 0.93 0.96 0.95 0.94 0.97 0.96 0.95 0.98 0.96 0.97 0.98 0.97
Drosophila: Mergers 0.27 0.60 0.37 0.31 0.63 0.41 0.50 0.65 0.56 0.84 0.50 0.63
Drosophila: Divisions 0.49 0.42 0.45 0.70 0.36 0.48 0.80 0.46 0.58 0.85 0.67 0.75
PSC: Overall 0.69 0.89 0.78 0.75 0.91 0.82 0.89 0.93 0.91 0.88 0.94 0.91
PSC: Moves 0.82 0.92 0.87 0.86 0.95 0.90 0.92 0.96 0.94 0.92 0.97 0.94
PSC: Mergers 0.08 0.51 0.14 0.11 0.52 0.18 0.33 0.52 0.40 0.34 0.55 0.42
PSC: Divisions 0.08 0.11 0.10 0.13 0.16 0.14 0.34 0.32 0.33 0.33 0.37 0.35
Drosophila Runtime/RAM 13s / 0.5GB 17s / 0.5GB 17s / 0.5GB 19s / 1.2GB
PSC Runtime/RAM 140s / 2.1GB 210s / 2.1GB 515s / 2.2GB 987s / 3.6GB

Table 1: F-Measure F , precision p and recall r for the different occurring events in
solutions obtained by the SSP solver using first and second order residual graph ap-
proximation (Magnusson), the full residual graph, and lastly the optimal ILP solver.
Our proposed crcSSP solver performs much better than the residual graph approxi-
mations in terms of solution quality, and is significantly faster than the ILP solver on
the big PSC dataset while giving close to optimal results (bold means better or on par).
Last two columns: runtime and RAM usage on a 2.8GHz Intel Core i7 with 8GB RAM

6 Discussion

Figure 3 shows that the proposed crcSSP-o-i algorithm yields a very good trade-
off between runtime and solution quality. While Magnusson’s dynamic programming
shortest path search [17] leads to a fast energy reduction in the beginning, which is
especially apparent for the PSC dataset, crcSSP-o-i is able to find paths with high
contribution throughout because it can redirect flow and handle negative weight cycles
in each iteration.

As all crcSSP variants are greedy and we use different node ordering and initial-
ization strategies it must not always be that the same heuristic achieves the lowest over-
all energy. Nevertheless, they all reach an energy close to the optimum. The benefit of
applying the different BF performance improvements is huge, ordering the nodes alone
yields a speed-up of factor 2 and 3 on the different datasets respectively. Restricting
BF to only recompute the shortest paths to those nodes whose minimal distance could
have changed brings another significant improvement, and judging from the runtime,
it reduces the need for node ordering. With all improvements enabled, our algorithm
outperforms Gurobi in terms of runtime on both datasets. On the larger PSC dataset it
finishes in about only half the runtime, and the runtime complexity dictates that this gap
grows with graph size, making crcSSP-o-i an attractive choice for large scale prob-
lems. We verify this by artificially duplicating the PSC model, where Gurobi converges
after around 3300 seconds and crcSSP-o-i after roughly 1300 seconds.

As one would expect, the first and second order residual graph approximations are
fast, but cannot find a very low overall energy. Feeding the solutions found with [17]
as initialization into crcSSP allows to improve the energy further, but because then

14 Carsten Haubold, Janez Aleš, Steffen Wolf, Fred A. Hamprecht

Fig. 3: Anytime performance of the optimal ILP solver, the residual graph approxima-
tions by [17], and our proposed crcSSP solver on two datasets. The crcSSP perfor-
mance improvements of ordering nodes (-o) and initializing BF to update only part of
the nodes (-i) turn out to have a strong impact on the runtime. Using crcSSP to refine
the solutions found by [17] cannot compete with running crcSSP-o-i throughout.

the graph is quite saturated with flow, crcSSP finds negative cost cycles in nearly all
iterations. The BF runtime is much higher when a negative cost cycle is present, which
is why the anytime performance suffers. The tracking accuracy evaluation in Table 1
reveals that our proposed solver does not only exhibit attractive anytime performance,
but that it also produces very accurate tracking results, which are on a par with the
optimal ILP solution for the PSC dataset, and still significantly better than the residual
graph approximations for merger and move events in the Drosophila dataset.

7 Conclusion

In this work we have proposed a way to integrate division constraint handling into the
successive shortest paths min-cost flow algorithm by conditioning residual arc capaci-
ties on the flow along other arcs. While these conditioned residual capacities render our
approach greedy, the evaluation shows that it gets close to the optimal energy and yields
high quality tracking results for proliferating cells with attractive anytime performance.
The core idea is well suited to be adapted to other types of constraints. We have made
our code for the ILP model8 and our presented solver publicly available9.

8 http://github.com/chaubold/multiHypothesesTracking
9 http://github.com/chaubold/dpct

http://github.com/chaubold/multiHypothesesTracking
http://github.com/chaubold/dpct

A Generalized Successive Shortest Paths Solver for Tracking Dividing Targets 15

Acknowledgements This work was partially supported by the HGS MathComp Gradu-
ate School, the SFB 1129 for integrative analysis of pathogen replication and spread, the
RTG 1653 for probabilistic graphical models and the CellNetworks Excellence Cluster
/ EcTop.

References

1. Bise, R., Yin, Z., Kanade, T.: Reliable Cell Tracking by Global Data Association. In: IEEE
International Symposium on Biomedical Imaging (ISBI). (2011) 1004–1010 1, 3

2. Schiegg, M., Hanslovsky, P., Kausler, B.X., Hufnagel, L., Hamprecht, F.A.: Conservation
tracking. In: IEEE International Conference on Computer Vision (ICCV), IEEE (2013)
2928–2935 1, 3, 4, 6, 12

3. Maška, M., Ulman, V., Svoboda, D., Matula, P., Matula, P., Ederra, C., Urbiola, A., España,
T., Venkatesan, S., Balak, D.M., et al.: A benchmark for comparison of cell tracking algo-
rithms. Bioinformatics 30(11) (2014) 1609–1617 1, 4

4. Zhang, L., Li, Y., Nevatia, R.: Global data association for multi-object tracking using network
flows. In: IEEE Conference on Computer Vision and Pattern Recognition, (CVPR), IEEE
(2008) 1–8 1, 3, 7

5. Pirsiavash, H., Ramanan, D., Fowlkes, C.C.: Globally-optimal greedy algorithms for track-
ing a variable number of objects. In: IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), IEEE (2011) 1201–1208 1, 3, 7

6. Lenz, P., Geiger, A., Urtasun, R.: Followme: Efficient online min-cost flow tracking with
bounded memory and computation. In: IEEE International Conference on Computer Vision
(ICCV). (2015) 4364–4372 1, 3, 7, 9, 10

7. Berclaz, J., Fleuret, F., Türetken, E., Fua, P.: Multiple object tracking using k-shortest paths
optimization. Pattern Analysis and Machine Intelligence, IEEE Transactions on 33(9) (2011)
1806–1819 1, 3, 7

8. Padfield, D., Rittscher, J., Roysam, B.: Coupled minimum-cost flow cell tracking for high-
throughput quantitative analysis. Medical image analysis 15(4) (2011) 650–668 3, 4

9. Butt, A., Collins, R.: Multi-target tracking by lagrangian relaxation to min-cost network
flow. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE
(2013) 1846–1853 3, 4

10. Kuhn, H.W.: The hungarian method for the assignment problem. Naval research logistics
quarterly 2(1-2) (1955) 83–97 3

11. Xing, J., Ai, H., Lao, S.: Multi-object tracking through occlusions by local tracklets filtering
and global tracklets association with detection responses. CVPR 2013 (2009) 3

12. Castanon, G., Finn, L.: Multi-target tracklet stitching through network flows. In: IEEE
Aerospace Conference, IEEE (2011) 1–7 3

13. Jaqaman, K., Loerke, D., Mettlen, M., Kuwata, H., Grinstein, S., Schmid, S.L., Danuser,
G.: Robust single-particle tracking in live-cell time-lapse sequences. Nature methods 5(8)
(2008) 695–702 3

14. Andriyenko, A., Schindler, K., Roth, S.: Discrete-continuous optimization for multi-target
tracking. In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on,
IEEE (2012) 1926–1933 3

15. Brendel, W., Amer, M., Todorovic, S.: Multiobject tracking as maximum weight independent
set. In: Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, IEEE
(2011) 1273–1280 3

16. Wang, X., Türetken, E., Fleuret, F., Fua, P.: Tracking interacting objects optimally using
integer programming. In: European Conference on Computer Vision (ECCV). Springer
(2014) 17–32 3

16 Carsten Haubold, Janez Aleš, Steffen Wolf, Fred A. Hamprecht

17. Magnusson, K., Jalden, J., Gilbert, P., Blau, H.: Global linking of cell tracks using the viterbi
algorithm. Transactions on Medical Imaging 34(4) (2014) 911 – 929 3, 4, 11, 12, 13, 14

18. Bertsekas, D.P.: Network optimization: continuous and discrete models. Athena Scientific
Belmont (1998) 3, 4, 9

19. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows. Technical report, DTIC Document
(1988) 3, 7, 8, 9

20. Cormen, T.H.: Introduction to algorithms. MIT press (2009) 3, 10, 11
21. Magnusson, K.E., Jaldén, J.: A batch algorithm using iterative application of the viterbi algo-

rithm to track cells and construct cell lineages. In: International Symposium on Biomedical
Imaging (ISBI), IEEE (2012) 382–385 4

22. Rapoport, D.H., Becker, T., Mamlouk, A.M., Schicktanz, S., Kruse, C.: A novel validation
algorithm allows for automated cell tracking and the extraction of biologically meaningful
parameters. PloS one 6(11) (2011) e27315 4, 12

23. Jüttner, A., Dezsö, B., Kovács, P.: Lemon: Library for efficient modeling and optimization
in networks. Technical report, Dept. of Operations Research, Eötvös Loránd University,
Budapest 10, 12

24. Schiegg, M., Hanslovsky, P., Haubold, C., Koethe, U., Hufnagel, L., Hamprecht, F.A.: Graph-
ical model for joint segmentation and tracking of multiple dividing cells. Bioinformatics
(2014) btu764 12

25. Sommer, C., Straehle, C., Kothe, U., Hamprecht, F.A.: Ilastik: Interactive learning and seg-
mentation toolkit. In: IEEE International Symposium on Biomedical Imaging: From Nano
to Macro (ISBI), IEEE (2011) 230–233 12

