
Weakly supervised learning of image partitioning
using decision trees with structured split criteria∗

Christoph Straehle
christoph.straehle@iwr.uni-heidelberg.de

Ullrich Koethe
ullrich.koethe@iwr.uni-heidelberg.de

Fred A. Hamprecht
fred.hamprecht@iwr.uni-heidelberg.de

HCI, University of Heidelberg

Abstract

We propose a scheme that allows to partition an image into a previously un-
known number of segments, using only minimal supervision in terms of a few
must-link and cannot-link annotations. We make no use of regional data terms,
learning instead what constitutes a likely boundary between segments. Since bound-
aries are only implicitly specified through cannot-link constraints, this is a hard and
nonconvex latent variable problem. We address this problem in a greedy fashion
using a randomized decision tree on features associated with interpixel edges. We
use a structured purity criterion during tree construction and also show how a back-
tracking strategy can be used to prevent the greedy search from ending up in poor
local optima. The proposed strategy is compared with prior art on natural images.

1 Introduction
This paper describes a new method to learn edge models from sparse user scribbles
marking regions. Consider Figure 1 and assume that we want to segment each kiwi.
Normally, scribbles as shown on the left would be used to learn region appearance
models that can then serve as potential functions in energy-minimizing segmentation
methods such as graph cuts. However, this does not work here because the individual
objects are indistinguishable by region appearance. Another popular approach would
use the scribbles as seeds for a suitable region growing algorithm such as a seeded
watershed or random walker. However, such an approach would need a seed or scribble
for each and every object.

∗accepted at ICCV 2013

1



Figure 1: Segmentation example. Each connected component of the user scribbles is
treated as an individual label and the decision tree is trained using must-link constraints
inside each component and cannot-link constraints between label components. The
resulting tree learns an edge model consistent with the user-provided constraints and
successfully generalizes to the unlabeled part of the image, where it segments many
objects successfully.

2



When region appearance alone is not informative, segmentation must be based on
an edge model. Our ambition is to train such a model with minimal labeling effort on
the user’s part. Traditional learning methods require the user to place edge scribbles
exactly on the desired edges. The required localization accuracy makes this a time
consuming task. Section 1.1 describes recent proposals for a simplified edge labeling.
In contrast, we strive to use cheap region scribbles like in Figure 1 to train edge models
instead of the usual region models.

Clearly, region scribbles cannot be used for edge learning directly because they
are typically located far away from edges. However, they provide a large number of
constraints that can control edge learning indirectly:

• Each pair of pixels from the same scribble defines a must-link constraint, i.e.
there must be at least one connecting path that does not cross any edge.

• Pixels from different scribbles define a cannot-link constraint, i.e. any connect-
ing path must cross at least one edge.

We call this a “link-or-cut edge learning” problem. It turns out that these constraints
contain sufficient information for successful training of an edge model, and we propose
a structured decision tree-type algorithm to solve this problem.

Since the training data does not contain direct edge annotations, the training error
cannot be defined as the fraction of mis-classified pixels or edges. However, such a
simplistic criterion is unsuitable for segmentation quality assessment anyway [30, 13]:
It cannot penalize the global consequences (big changes in the resulting connected
components) that may be caused by local errors such as a fine gap in an object contour.
Instead, we define the training error in terms of a clustering quality score similar to
the Rand Index (eq. 1), which can be directly derived from the pairwise constraints.
This has profound consequences for the learning algorithm: Local decisions should be
conditioned on the state of the entire segmentation, and our new learning algorithm
reflects this requirement.

The proposed algorithm recursively builds a decision tree that predicts the state
of each edge of the image graph. During tree construction we use a non-local split
criterion which takes into account the global connectivity consequences of local edge
predictions.

To summarize, the proposed algorithm relies on cheap must-link and cannot-link
annotations and has the following virtues:

• it requires no region appearance terms,

• the number of segments need not be specified in advance,

• weak supervision in terms of sparse annotations is sufficient and no explicit edge
labels are needed,

• the training optimizes a global clustering score in a decision tree.

To the best of our knowledge, this is the first time a decision tree is trained using a
non-local structured split criterion.

3



1.1 Related Work
Previous work on edge learning includes many approaches which are based on training
data with exact boundary localization, e.g. [19, 34, 18, 23, 9]. The method presented
in [26] learns an optimal edge labeling policy based on context and gestalt features,
but also requires dense ground truth. An interesting approach using weaker supervi-
sion is the livewire method in [4] which snaps a path to the most probable boundary
predicted by a classifier which is trained online. Another approach using weaker super-
vision is presented in [2]. The author learns an edge model from inaccurate boundary
annotations.

Small errors in the boundary predictions have large global consequences when cal-
culating the connected components. To avoid this some authors introduce higher order
constraints (e.g. boundary closedness) to obtain a consistent segmentation [16, 1, 17].
A novel take at edge learning based on a non local clustering quality measure is used
in [28] to learn a neural network. A non-local warping error that takes topological con-
straints into account is also proposed in [13] but the authors also use a dense labeling
during neural network training.

The decision tree based edge learning algorithm that we propose is related to [25].
The authors learn edge on/off probabilities using a decision tree, but the method re-
quires a dense labeling as input and does not take the effect on the connected compo-
nents of the graph into account – it acts locally. Our special split criterion is inspired
for example by [15] where a special loss function in the split nodes of a decision tree is
optimized. But in contrast to our approach their objective is local, as is the case in [14].
The authors of [20] have introduced a decision tree algorithm that works on locally
structured labels. We build on this idea and extend it to a structured loss function on a
complete image graph. In [21] a decision tree is proposed whose intermediate learning
state is used as a feature for further tree growing. This is the basis for our proposed
algorithm which evaluates a structured split criterion with regard to the intermediate
tree state.

The must-link and cannot-link constraints that we use to train our learning algo-
rithm have also been used by [11, 32]. These algorithms partition an image graph into
connected components using said constraints. Both partitioning algorithm use a single
scalar value associated with each edge whereas our method can take a multitude of
edge features into account and learns an edge model from the given constraints. The
same type of partitioning constraints has been considered in [12] where the authors
introduce must-link constraints in the context of the normalized cut algorithm. In the
context of the image foresting transform cannot-link constraints have been investigated
in [22]. To summarize, must-link and cannot-link constraints haven been investigated
in the literature, but our approach is novel since we use these constraits for weakly
supervised boundary learning.

2 Problem Definition and Objective function
We consider a segmentation problem defined on a graph G(E ,V) in which the nodes
ni ∈ V correspond to the pixels of an image, and the edges (i, j) ∈ E correspond to

4



the pixel neighborhood of the image. We assume a suitable set of edge features wijf
(such as color gradients or structure tensor eigenvalues on different scales) is available
and can be attributed to each edge (i, j). In addition we are given a sparse constraint
matrix C ∈ {−1, 0, 1}N×N that defines whether a pair of pixels (i, j) must be in the
same component (Cij = 1), or in two different components (Cij = −1). The decision
variables xij ∈ {0, 1} determine whether an edge (i, j) is removed from (xij = 0),
or remains (xij = 1) in the graph G. The objective function F (c,x) which we seek
to maximize depends on the set of constraints c and the connected components or
partitions π(x) implied by the binary edge indicator variables xij :

F (c, π(x)) =

TP × TN − FP × FN√
(TP + FP )(TP + FN)(TP + FP )(TN + FN)

(1)

where TP (c, π(x)) is the number of pairs of pixels which are correctly (according to
the constraints c) assigned to the same component and FP (c, π(x)) is the number of
pairs of pixels which are incorrectly assigned to the same component. TN(c, π(x))
and FN(c, π(x)) are the number of true negative and false negative pairs respectively.
Equation 1 is known as Matthews correlation coefficient [24].

Thus, in the optimum x̂ = argmaxx F (c, π(x)), the binary indicator vector x̂
corresponds to a partitioning of the graph into a set of connected components π(x) that
satisfy the constraint matrix. Note that the number of connected components defined
by π(x) can be larger than the number of components defined by the constraints c: the
unconstrained pixels of the image can be partitioned in many different ways.

2.1 Overview: global optimization using decision trees

Figure 2: Illustration of our decision tree building process. Starting at the root node (1)
the edges are partitioned into two sets, one of which is assigned xij = 1 (thick, edges
stays in the graph) while the edges of the other partition are assigned xij = 0 (thin,
edges are removed from the graph). In the next steps this initial decision on the edge
states is revised by partitioning the two edge sets recursively further into an on and off
set such that the objective function F (x, c) is maximized. The value of the objective
function depends on the connected components of the graph G that are induced by the
edge state defined in the leaf nodes. The connected components are distinguished by
the node colors.

5



The objective function F (c, π(x)) defines a global objective which depends on the
structure of the graph G. Maximizing F may be a simple task when the constraint
set is very small: many different possible edge assignments x may partition the graph
correctly. But depending on the size of the constraint set and the structure of the graph
the problem can become computationally infeasible. The objective function is highly
non-smooth and non-convex: switching a single binary indicator variable xij – for
example on the boundary between two objects – may have a huge influence on the
value of F .

In contrast to existing approaches which use classifiers to learn local pixel class
probabilities or which learn pairwise boundary probabilities [25] from strong edge/no-
edge examples, our aim is to learn from weak labels: the learner will be trained only
from the constraint set c derived from sparse user scribbles and the structure of the
problem, the pixel neighborhood graph G.

We have chosen to optimize Equation 1 using a greedy method inspired by tradi-
tional decision trees. Decision trees are constructed in the following fashion: Given
a set of examples Si associated with a decision tree node i, a tree is built starting at
the root node 0 by partitioning the set of examples into two subsets SL and SR. The
decision how the set Si is partitioned depends on the parameters θi for node i and the
features of the samples. These parameters are obtained by optimizing a split crite-
rion function θ̂i = argmaxθi CFi(SL, SR, θi;Si). Examples of such split criteria CF
include the Gini-Impurity or the Information Gain. Important is the purely local de-
pendency of the split functions that are usually used – the function which is optimized
only depends on the split parameters θi of the node i that is optimized and the set of
training examples Si over which this node optimizes and their associated features.

We however propose to optimize a global function at each split node. In other
words, we condition the split criterion function CFi on the parameters θ0, ..., θi−1 of
all other split nodes of the tree. Intuitively speaking, in each node we optimize the split
parameters θi of that node, given all split decisions of all other nodes at the current
state of the tree. Formally we find the parameters of node i:

θ̂i = argmaxθi CFi(SL, SR, θi;Si, θ0, ..., θi−1)

In our case we seek to optimize the objective function F over the connected com-
ponents of a graph G obeying constraints on pairs of nodes. The samples and features
of the decision tree consist of edges and their associated features on this graph.

2.2 Decision Tree Building Algorithm
Our algorithm seeks to discriminate object boundaries by their features such that the
boundaries satisfy a set of must-link and cannot-link constraints. Tree construction
starts by trying to satisfy as many of the given constraints as possible by thresholding a
single feature and thereby splitting the edges of the graph into one set that is removed
from and another one that remains in the graph. The decision on the split parameters
θi of node i is optimized by sorting the edges Si associated with decision tree node i
on mtry different feature values. For each of the mtry features all possible split points
are evaluated by first removing all edges Si associated with the decision tree node from

6



the graph G. It is important to realize that only the edges of the currently considered
split node are removed, the presence and absence of all other edges, as defined by
the current state of the decision tree, remains unchanged. In a second step, the edges
associated with split node i are re-inserted into the graph one after the other in the order
of increasing feature weight. After each edge insertion, its effect on the connected
components of the graph is efficiently evaluated using a union find data structure. In
addition, we count how many true positive and false positive pairs are generated with
respect to the global constraint set c which specifies which nodes should be in the same
component and which nodes should be in different components. Using the TP , FP ,
TN and FN counts we compute the value of the objective function F and remember
the best split position that we encountered while inserting the edges into the graph.
The same procedure is executed in descending sort order. After determining the feature
and split position that yield the highest objective function value, two child nodes are
added to the currently considered node i and the split parameters θi of the node are set
accordingly. These two child nodes determine the new state of their associated edges
until they are further refined in a recursive fashion. The recursive partioning continues
until no further improvement in the objective function can be made.

Splitting a node and the associated edge set further thus re-optimizes the state of the
edges associated with that node: the final leaf node with which an edge is associated
defines the edge state within the tree. This process is illustrated in Figure 2.

It is important to see that during this recursive partitioning the optimization in each
leaf node involves only the edges associated with that particular node. The state of
the other edges is determined by the already existing leaf nodes and is assumed fixed.
Thus each leaf node is optimized conditioned on the graph state given by the current
complete decision tree.

While the insertion of edges and its effect on the connected components of the
graph can be computed very efficiently, handling edge removal is more difficult. Han-
dling edge removal requires either extremely intricate algorithms [27] or a linear scan
over possibly all edges in G even though the removed edge set is very small. For
this reason we compute the connected components of the graph a single time once all
edges associated with a decision tree node are removed. We then trace all changes to
the union find data structure and to the TP , FP , TN and FN pair counts caused by
inserting an edge into the graph when we test for a split position. This allows us to
unwind all changes once the objective function has been evaluated for all split points
along one feature and to efficiently begin testing for better splits using the next feature
without recomputing the connected component state from scratch.

2.3 Backtracking for greedy global decision trees
It is intuitively clear that the greedy tree building procedure that was outlined in the
previous section may get stuck in local minima: when partitioning the edge set recur-
sively, the sets assigned to the leaf nodes quickly get smaller and the edges associated
to one decision tree leaf are not necessarily close to each other in the underlying graph.
It becomes very likely that the edges in any single leaf are unable to form a linking
path between two isolated connected components regardless of their labeling – this im-
plies that it would be impossible to satisfy any constraint that would require linking

7



Figure 3: Illustration of split node insertion for backtracking. First a random subtree
of the decision tree is selected (green overlay). Then a split node is inserted above this
subtree whose split function is optimized under the assumption that the left partition
below the inserted node is passed onto the existing subtree, while the right partition is
passed to a new leaf node and is assigned either to 0 or 1. The insertion of a split at a
higher tree level effectively optimizes over a larger set of samples compared to adding
a split ad a leaf node. The insertion split takes away some samples from an existing
part of a decision tree and overrides the existing subtree partially.

those components in the current state of the decision tree. Similarily it becomes more
unlikely that the edges in small leaves are sufficient to build a cut across a connected
component – thus it can become impossible to satisfy any constraint that would require
splitting some component into two isolated parts because the edges that could form
such a cut are distributed across different leaf nodes of the decision tree. For these rea-
sons, we propose a novel backtracking scheme during decision tree building: we allow
for split nodes to be inserted at arbitrary positions in the tree, not only at the leaves of
the tree. Since we allow these nodes to be inserted at any tree level, these split nodes
can optimize over a larger set of edges compared to a node at a decision tree leaf. In the
extreme case of inserting such a node above the current root of the tree, the new node
can reoptimize over all edges of the graph. This novel insertion split partitions the edge
set arriving at an inserted node into two parts, such that the left partition is passed to the
already existing subtree below the inserted split node as before while the right partition
is either assigned to xij = 0 or xij = 1. Thus an existing learned combination of rules,
defined by the subtree below the inserted node, is partially reused and the decision for
a subset of the edges below/above a feature threshold is reconsidered.

The optimization of an inner node of the decision tree is executed in the same man-
ner as already described for a leaf node. The only difference is that when scanning
over the edges in the partition in increasing/decreasing feature weight order, not all
edges are re-inserted into the graph. Instead, the current state of the edge xij which is
determined by the subtree of the node currently under consideration is used as a mask.
In a first trial only edges with current state xij = 1 are re-inserted. This corresponds
to overriding the subtree for the edges right (increasing sort order) / left (decreasing
sort order) of the split position with a xij = 0 assignment. In a second trial, only the

8



edges with xij = 0 are removed from the graph before inserting all edges in increas-
ing/decreasing order. This corresponds to overriding the subtree for some edges with a
xij = 1 assignment left or right of the split position.

2.4 Decision tree prediction algorithm
Once a decision tree has been built in the described manner, it can be used to deter-
mine a segmentation of the graph by predicting the binary indicator xij for all edges.
Prediction proceeds as in any normal decision tree: samples (in our case edges (i, j))
are passed down the tree, starting from the root node 0 by comparing the value wijf of
edge feature f with the split value that is stored in a tree node. Edges with a smaller
(larger) feature value are passed to the left (right) child of the current node. Once a leaf
node is reached, the x label of this leaf node is assigned to the edge. Now all edges with
xij = 1 are switched on in the graph and its connected components are determined.

In an unsupervised segmentation setting, the resulting connected components of
the graph are the final output.

In a foreground/background segmentation setting as shown in Figure 6, the num-
ber and type of user labels that are located inside each component are determined and
the component is labeled with the winning label. Since not necessarily all induced
components contain user given labels, the unlabeled components are assigned a label
by determining the closest (node distance) labeled component in the adjacency graph.

3 Experiments
Unfortunately, at present there is no suitable benchmark for the sparse must-link/cannot-
link edge learning problem that we propose. To indicate the usefulness of the proposed
method we apply our method to a related benchmark dataset [31] and show that our
method is applicable to a range of typical unsupervised segmentation problems. Ex-
amples of such problems are given in Figure 1 and Figure 4.

Edge features: a range of simple local filters such as Gaussian smoothing, Hessian
eigenvalues and Gradient magnitude computed over several scales (σ = 1.0, 1.3, 1.6, 2.5)
have been used as interpixel edge features. To obtain features that can be associated
with an interpixel edge, these pixel features have been linearly interpolated from two
neighboring pixels.

Postprocessing: When our algorithm satisfies a cannot-link constraint between
nodes, it does so by introducing a closed boundary between these nodes. This boundary
often consist of many isolated 1-pixel components, as can be observed in Figure 4.
This thick boundary is a result of the ambiguity in the data. A simple way to obtain
a visually more pleasing segmentation as in Figure 1 is to perform a seeded region
growing from all large regions, and to reassign the 1-pixel components to the nearest
larger component.

Analysis of training and test error is given in Figure 5. The scores were obtained
by sparsely labeling all objects in the images of Figure 1 and Figure 4 and splitting the
individual images into two parts. Training was done on the left half and testing on the
right half and vice versa. The two examples with inhomogenous boundary appearance

9



Figure 4: Segmentation examples of different characteristics, all segmented with the
same parameter settings. The last two rows show yeast cells in light microscopy, and
dendrites in electron microscopy [6, 7], respectively. Individual objects do not differ
in appearance and can be discriminated via their boundaries only. These are learned in
a weakly supervised fashion from the connectivity constraints that are implicit in the
seeds. In contrast to seeded segmentation only a subset of objects need to be marked
and the learned classifier can be applied to similar images. Region types that are not
represented in the training set (no labels) receive an incoherent prediction (bottom ex-
ample, arrows).

10



Figure 5: The plots show the training and testing score over the decision tree depth.
The two examples with inhomogenous boundary appearance (apples, kiwis) profit from
deeper trees, as can be seen from the test score which increases until a depth of 4. The
examples with homogenous boundary appearance (cells, neural tissue) do not profit
from more decision tree levels - the tree starts to overfit after the first level.

11



Bai et al. [3] 0.50
Gradi [10] 0.56

Couprie et al.[8] 0.58
our algorithm w/o. insertion splits 0.68

Boykov et al. [5] 0.69
our algorithm 0.71
Unger et al. [29] 0.73
Zhao et al.[33] 0.79

Table 1: Quantitative Evaluation on the LHI interactive segmentation dataset [31]. The
dataset consist of several foreground-background segmentation tasks with varying seed
quality (see Figure 6 for examples). Results for other algorithms were taken from [33].

(apples, kiwis) profit from deeper trees, as can be seen from the test score which in-
creases until a depth of 4. The examples with homogenous boundary appearance (cells,
neural tissue) do not profit from more decision tree levels - the tree starts to overfit after
the first level. This ovefitting behaviour of single decision trees is well known. In the
future we intend to remedy this problem by training an ensemble of randomized trees
which are trained on different subsets of the training data.

Quantitative evaluation: In addition to the qualitative examples, we test our algo-
rithm on the LHI [31] interactive segmentation benchmark. The Benchmark consists
of several natural images and provides ground truth and three different types of fore-
ground/background user scribbles with varying difficulty. We adapt the problem to
our algorithm by introducing must-link constraints for all foreground-foreground label
pairs and all background-background label pairs. In addition we introduce cannot-link
constraints for all mixed foreground-background label pairs. We ran the benchmark on
all three kinds of user scribbles and calculated the average foreground object precision
(S+
gt

⋂
S+
res/S

+
gt

⋃
S+
res) over all images.

The results show that our purely edge based decision tree achieves a segmentation
quality that surpasses many established methods, without learning local class proba-
bilities (unary potentials describing region appearance) from the user labels. These
local class probabilities usually work very well on the benchmark images. In addition
the other methods rely on a hand-crafted edge probability. We show experimentally
that it is possible to achieve the same segmentation quality without relying on local
class probabilities and without hand-crafting binary potentials for edges. Our method
exclusively relies on the edge probabilities learned from sparse user scribbles.

4 Conclusion
We propose “link-or-cut edge learning”, i.e. to learn an edge model from sparse region
scribbles interpreted as must-link and cannot-link constraints. To solve this problem,
a novel global structured learning scheme based on decision trees is introduced. We
explain how decision trees can be trained using a global structured loss criterion and
show how they can be used to learn an edge model on an image graph. In addition,

12



Figure 6: Supervised segmentation example. The images shown are two examples
from the LHI interactive segmentation benchmark, also displayed are the benchmark
provided scribbles. Our decision tree iteratively partitions the image graph into con-
nected components (indicated by same color). In each tree level (1,2,3) the decisions
are refined such that a global objective function over the image graph is optimized that
enforces the pairwise connectivity and exclusion constraints that are implicitly defined
by the labels.

we show how local minima during tree construction can be overcome by a split node
insertion that reuses the already learned decision structure. When applied to interactive
foreground/background segmentation problems on natural images, the proposed algo-
rithm produces results comparable to other methods which do rely on local appearance
models. The real strength of the proposed method, however, does not lie in the fore-
ground/background segmentation, but in the discrimination of multiple, and possibly
similarly-looking foreground objects. Unfortunately the presented approach does have
some limitations which we want to discuss. A current limitation is the reliance on axis-
orthogonal splits. If there is no single feature that can discriminate the edges around
an object relatively well, the algorithm cannot construct a closed cut around this object
and cannot escape from this situation – the objective function only improves, if an ob-
ject is completely separated from its cannot-link partners. The same problem holds for
the must-link constraint: if there is no single feature that can be used to build a linking
path between two must-link partners, the objective function cannot be improved.

In future work we hope to remedy some of these problems, either by using a relaxed
version of the objective function that allows to increase the objective value also by
partially separating a node. In addition one could introduce oblique splits that may
prevent some of the problems since the algorithm could construct a suitable linear
combination of existing features. Another promising avenue is to extend the supervised
segmentation learning algorithm using region homogeneity priors.

References
[1] B. Andres, J. H. Kappes, T. Beier, U. Köthe, and F. A. Hamprecht. Probabilistic image

segmentation with closedness constraints. In ICCV, 2011. 4

13



[2] S. Bagon. Boundary driven interactive segmentation. In Information Science and Applica-
tions (ICISA), 2012. 4

[3] X. Bai and G. Sapiro. Geodesic matting: A framework for fast interactive image and video
segmentation and matting. IJCV, 2009. 12

[4] W. A. Barrett and E. N. Mortensen. Interactive live-wire boundary extraction. Medical
Image Analysis, 1997. 4

[5] Y. Boykov and M. Jolly. Interactive graph cuts for optimal boundary & region segmentation
of objects in nd images. In ICCV, 2001. 12

[6] A. Cardona, S. Saalfeld, S. Preibisch, B. Schmid, A. Cheng, J. Pulokas, P. Tomancak, and
V. Hartenstein. An integrated micro-and macroarchitectural analysis of the drosophila brain
by computer-assisted serial section electron microscopy. PLoS biology, 2010. 10

[7] A. Cardona, S. Saalfeld, J. Schindelin, I. Arganda-Carreras, S. Preibisch, M. Longair,
P. Tomancak, V. Hartenstein, and R. J. Douglas. Trakem2 software for neural circuit re-
construction. PLoS One, 2012. 10

[8] C. Couprie, L. Grady, L. Najman, and H. Talbot. Power watersheds: A new image seg-
mentation framework extending graph cuts, random walker and optimal spanning forest.
In ICCV, 2009. 12

[9] P. Dollar, Z. Tu, and S. Belongie. Supervised learning of edges and object boundaries. In
CVPR, 2006. 4

[10] L. Grady. Random walks for image segmentation. PAMI, 2006. 12
[11] P. He, X. Xu, and L. Chen. Constrained clustering with local constraint propagation. In

ECCV. Workshops and Demonstrations, 2012. 4
[12] M. Heiler, J. Keuchel, and C. Schnörr. Semidefinite clustering for image segmentation with

a-priori knowledge. In DAGM, 2005. 4
[13] V. Jain, B. Bollmann, M. Richardson, D. R. Berger, M. N. Helmstaedter, K. L. Briggman,

W. Denk, J. B. Bowden, J. M. Mendenhall, W. C. Abraham, et al. Boundary learning by
optimization with topological constraints. In CVPR, 2010. 3, 4

[14] J. Jancsary, S. Nowozin, and C. Rother. Loss-specific training of non-parametric image
restoration models: A new state of the art. In ICCV, 2012. 4

[15] J. Jancsary, S. Nowozin, T. Sharp, and C. Rother. Regression tree fieldsan efficient, non-
parametric approach to image labeling problems. In CVPR, 2012. 4

[16] S. Kim, S. Nowozin, P. Kohli, and C. Yoo. Higher-order correlation clustering for image
segmentation. NIPS, 2011. 4

[17] S. Kim, S. Nowozin, P. Kohli, and C. Yoo. Task-specific image partitioning. Image Pro-
cessing, IEEE Transactions on, 22(2):488–500, 2013. 4

[18] I. Kokkinos, R. Deriche, O. Faugeras, and P. Maragos. Computational analysis and learning
for a biologically motivated model of boundary detection. Neurocomputing, 2008. 4

[19] S. Konishi, A. L. Yuille, J. M. Coughlan, and S. C. Zhu. Statistical edge detection: Learning
and evaluating edge cues. PAMI, 2003. 4

[20] P. Kontschieder, S. Buló, H. Bischof, and M. Pelillo. Structured class-labels in random
forests for semantic image labelling. In ICCV, 2011. 4

[21] P. Kontschieder, S. Rota, A. Criminisi, H. Bischof, P. Kohli, and Pelillo. Context-sensitive
decision forests for object detection. In NIPS, 2012. 4

[22] F. Malmberg, R. Strand, and I. Nyström. Generalized hard constraints for graph segmenta-
tion. In Image Analysis. 2011. 4

[23] D. R. Martin, C. C. Fowlkes, and J. Malik. Learning to detect natural image boundaries
using local brightness, color, and texture cues. PAMI, 2004. 4

[24] B. W. Matthews. Comparison of the predicted and observed secondary structure of t4 phage
lysozyme. Biochimica et Biophysica Acta (BBA)-Protein Structure, 1975. 5

14



[25] S. Nowozin, C. Rother, S. Bagon, T. Sharp, B. Yao, and P. Kohli. Decision tree fields. In
ICCV, 2011. 4, 6

[26] N. Payet and S. Todorovic. Sledge: Sequential labeling of image edges for boundary
detection. International Journal of Computer Vision, 104(1):15–37, 2013. 4

[27] M. Thorup. Near-optimal fully-dynamic graph connectivity. In Proceedings of the thirty-
second annual ACM symposium on Theory of computing, 2000. 7

[28] S. Turaga, K. Briggman, M. Helmstaedter, W. Denk, and H. Seung. Maximin affinity
learning of image segmentation. arXiv preprint arXiv:0911.5372, 2009. 4

[29] M. Unger, T. Pock, W. Trobin, D. Cremers, and H. Bischof. Tvseg-interactive total varia-
tion based image segmentation. In BMVC, 2008. 12

[30] R. Unnikrishnan, C. Pantofaru, and M. Hebert. A measure for objective evaluation of image
segmentation algorithms. In CVPR Workshops, 2005. 3

[31] B. Yao, X. Yang, and S. Zhu. Introduction to a large-scale general purpose ground truth
database: methodology, annotation tool and benchmarks. In Energy Minimization Methods
in Computer Vision and Pattern Recognition, 2007. 9, 12

[32] S. Yu and J. Shi. Segmentation given partial grouping constraints. PAMI, 2004. 4
[33] Y. Zhao, S. Zhu, and S. Luo. Co3 for ultra-fast and accurate interactive segmentation. In

Proceedings of the international conference on Multimedia, 2010. 12
[34] S. Zheng, A. Yuille, and Z. Tu. Detecting object boundaries using low-, mid-, and high-

level information. Computer Vision and Image Understanding, 2010. 4

15


