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ABSTRACT

We present a method for detecting and segmenting yeast cells

in bright field microscopy images from which cells are of-

ten almost transparent. A classifier is firstly trained to detect

edges of cells of interest. A label cost model with cardinality

constraints then simultaneously detects cell centers and clus-

ters cell edge points, using Integer Linear Programming. For

a noisy or partial edge clustering, an additional step of con-

tour fitting or seeded watershed is applied for segmentation.

Results demonstrate that our method can consistently detect

and segment yeast cells from a variety of datasets, and its per-

formance is close to that of manual segmentation.

Index Terms— bright field microscopy, cell detection,

segmentation

1. INTRODUCTION

The purpose of this study is to find a generic and robust way of

segmenting yeast cells for a high-throughput imaging study.

Bright field microscopy is the simplest optical microscopy

technique but is the best to assess morphology, health, and fo-

cus of cells. Analysis of cells based on bright field rather than

fluorescence microscopy images is attractive for biological

reasons, but rises hard segmentation problems: Cells in these

images are almost only distinguishable by their outer mem-

brane. Displacements of cells relative to the focus plane result

in missing boundaries and varying contrast patterns. Cells are

often densely packed and may overlap with each other. They

are also often imaged with uneven illumination and may be

contaminated by other particles or dirt. In summary, chal-

lenging issues include broken boundaries, poor contrast, par-

tial or changing halo, overlap with out-of-focus cells, and

imaging artifacts. Fig. 1 shows examples from a variety of

datasets. This problem has attracted much attention in the

past decade [?, 1, 2, 3, 4], with proposed solutions ranging

from intensity based thresholds to graphical models, water-

shed transform, active contours, circular Hough transform,

etc. Some publicly available software packages also include

methods to address this [6, 7, 8]. However, as also commented

in [5], most of these methods and tools work on “clean” im-

ages such as those with clear, consistent boundary patterns
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Fig. 1: Dataset 1-4 (a-d) examples. In-focus cells (arrow

heads) are overlap with out-of-focus ones (arrows) in images

with low contrast (b), uneven illumination (d), other particles

or dirts contamination (long arrow), and artifacts (c, d).

and well separated cells. For example, the approach in [9] de-

tects cell centers first and then uses a polar plot to find the best

cell contours. But this method works on images that exhibit a

relatively low degree of cell crowding and density, and it also

relies on a consistent diffraction fringe pattern to locate cell

contours. Additionally, some need images taken slightly out

of focus [7] or combined use with fluorescent images. To deal

with a general scenario as aforementioned, a good algorithm

should allow segmenting images with either dense or sparse

cells. It should also generalize well such that a generic pa-

rameter setting can be used for similar images. Furthermore,

it should be able to detect “good” cells useful for further bio-

logical measurements (e.g. whole cell morphology and size)

and discard “bad” ones, e.g. the out-of-focus ones. Our ap-

proach satisfies these criteria. It augments a label cost model

(e.g. [10]) with cardinality constraints to simultaneously de-

tect good cell centers using a Hough transform and cluster

cell edge points obtained from an edge classifier. The model

is optimized using Integer Linear Programming (ILP). Sub-

sequently, individual cells are described either by a smooth

closed curve fit to the clustered edge points or a watershed

based segmentation. We build on ideas from [11] (which

however does not cluster edge points) and [12] (which how-

ever does not allow for label costs). An illustration of the

framework is shown in Fig. 2.

2. METHOD

2.1. Detecting edge candidates

To ensure detecting “good” yeast cell boundaries in bright

field microscropy with varying patterns, a trainable classifier

seems to be the right choice. We choose to train a pixel based



original image
“good” edge probability 

from the classifier

votes cast along

edge normal directions

approximated Hough 

transform image

cell level 

measurements

“good” cell detection, edge

points clustering

cell center (+), edge

point (yellow dots) candidates 
local maxima regions

edge voting candidates

cell segmentation

(a) (b) (c) (d) (e)

(f)(g)(h)(i)(j)

Fig. 2: Illustration of the cell detection and segmentation procedure. The original image (a) is first applied with a good cell

edge classifier and the prediction (b) is binarized (c) to determine edge voting candidates. After a Hough transform (d, e) to

determine cell center candidates (f, g), a label cost model is built and optimized (h) to both discard false cell centers (white

arrow) and cluster edge points belonging to the same cell (color labeled edge points). Finally individual cells are segmented

(i), either by fitting a closed spline curve each cell contour or a seeded watershed method, for further measurements (j).

classifier, ilastik [13], to discriminate: (1) boundaries of in-

focus cells; (2) in-focus cells; (3) out-of-focus cells; and (4)

background. The posterior probabilities for class (1) are bina-

rized and assumed to be the edge point candidates domain. A

subset may be used, compromising computational effeciency

and sufficient edge candidates. Sampling rate may vary ac-

cording to the size of object of interest in the images.

2.2. Detecting cell center candidates

Cell center candidates are detected through a Hough trans-

form by casting votes from the edge point candidates. For

each candidate, votes are discretely cast and counted along a

single voting line segment on the edge normal direction (e.g.

approximated by image gradient direction). The line segment

has a length of 2l (in pixels), similar to cell size in images,

and centered at the edge point. This discrete voting scheme

gives discontinuous vote distribution in the Hough transform

image, thus a Gaussian lowpass filter is applied to approxi-

mate the continuous voting, with filter size l and standard de-

viation 1

6
l. In order to avoid unnecessary computation, some

preprocessing can be performed to eliminate the most obvi-

ous wrong candidates, such as a H-maxima transform to sup-

press maximas with too low height, or a size filter to eliminate

too small and too large local vote regions. Similarly, an edge

point candidate can be discarded if it is too far from all the

center candidates (e.g. distance larger than 2l). Note that all

parameters are specified as constant multiples of the approx-

imate cell diameter 2l, which can be either specified by the

user or inferred from the imaging settings of each dataset.

2.3. Label cost model: selecting cell centers, clustering

edge points

Each local maximum corresponds to a hypothesis about the

presence of a cell approximately centered at this particular

location. Typically, a greedy non-maxima suppression is ap-

plied to first find the true cell centers, subsequently each edge

point is assigned to its highest voted center or even to its clos-

est voted center using e.g. k-nearest neighbors method. In-

stead, a label cost model is introduced, which simultaneously

optimizes the labels of all edge points, i.e. which cell center

an edge is assigned to as well as the set of “active” cell cen-

ters while maintaining cardinality. By doing so, it offers a

global optimal taking into account both the cost for assigning

an edge to a cell center candidate and the estimated probabil-

ity that a cell center candidate is a true positive. The penalty

for assigning the ith edge element (i∈1, . . ., N) to the jth

cell center candidate (j∈1, . . .,M) is given by the shortest

Euclidean distance from its Li sampled votes to the center:

sij=min{djki
}, ki∈1, . . ., Li. We set Li=2, i.e. only two

end points of the cast line. To allow discarding false center

candidates, each center candidate is given a unary potential

that measures how well it is surrounded and thus supported

by edge points. A cell candidate j with larger value ρj is pre-

ferred to be an active cell center, e.g. ρ takes the votes density.

This model is formulated as an ILP to find the subset of

local maxima corresponding to true cells. Let {aj} be the bi-

nary indicator variables associated with the M maxima that

persist after the filtering steps. A variable is set to 1 if the

hypothesis actually corresponds to an active cell, or to 0 oth-

erwise. Similarly, binary indicator variables{cij}N×M takes

1 when edge element i belongs to cell j and 0 otherwise.

Three constraints are introduced to specify the relation-

ship between an active cell center and the edge points as-

signed to it. First, each edge element is assigned to exactly

one cell:
∑M

j=1
cij=1. Second, an edge element can only be

assigned to a center point that is active. To avoid treating inac-

tive points as a special case, the constraint can be expressed as

cij≤aj , ∀i or equivalently
∑N

i=1
cij≤Naj . Finally, the cardi-

nality constraint specifies that each cluster has a lower limit ℓ



Table 1: Experimental settings for datasets 1-4 (from top to bottom).

Strain background Mean cell area Microscope Camera Magnification NA Pixel size Artifacts

Diploid yeast 18 µm
2 DeltaVision CoolSnap HQ2 60x 1.42 107 nm -

Diploid yeast 18 µm
2 DeltaVision EDGE 60x 1.42 215 nm -

Haploid yeast 10 µm
2 Nikon Eclipse Ti Andor Neo 150x 1.40 43 nm ring like

Haploid yeast 10 µm
2 Nikon Eclipse Ti Andor Neo 100x 1.40 43 nm ring like

on the number of voting elements it must contain. Altogether,

our model results in the following optimization problem:

min
{cij},{aj}

N∑

i=1

M∑

j=1

cijsij + w
M∑

j=1

aj
ρj

,

s.t. aj ∈ {0, 1}, ∀i ∈ 1, . . . , N

cij ∈ {0, 1}, ∀i ∈ 1, . . . , N, ∀j ∈ 1, . . . ,M

M∑

j=1

cij = 1, ∀i ∈ {1, . . . , N},

N∑

i=1

cij ≤ Naj , ∀j ∈ {1, . . . ,M},

N∑

i=1

cij ≥ ℓaj , ∀j ∈ {1, . . . ,M},

where w is a constant to balance the penalties associated with

activating cell centers and assigning edge candidates. In this

study, w∈[0.05, 0.2] was a good choice.

The objective function was minimized using Gurobi [14].

The optimization process can be sped up by making the clus-

tering matrix {cij} sparse using a spatial proximity criterion.

Instead of optimizing the whole image at once, which con-

tains thousands of edge points and hundreds of center points,

splitting small blocks of subimages with certain overlap on

the boundaries can also be considered.This is similar to mak-

ing the clustering matrix sparse.

2.4. Segmentation

The optimized binary indicator variables {cij} specify which

active cell center an edge point is assigned to. Ideally, those

sharing the same cell label delineate this cell’s contour. How-

ever, the resultant clustered edge points can be noisy and often

reveal only partial cell boundaries. Thus, an additional con-

tour post-processing or segmentation step is mostly desirable.

We evaluated two options: 1) A smooth spline (with a pe-

riodic boundary condition) fit to a sparse subset of the edge

points, using a least squares method. Additionally, noisy clus-

tered edge points can be pre-filtered by setting a range for the

radius, i.e. the distance between the cell center and the edge

point. For example, wrongly clustered edge points, such as

those belonging to other cells or to the nuclear membrane in-

side the cell can be discarded. In our case, the range was set

to [0.3l, 1.1l]. 2) A seeded watershed segmentation. Only the

detected cell centers were used as the seeds, while the infor-

mation from clustered edge points were not used. Standard

procedure would apply seeded watershed directly on the orig-

inal images, but this did not work for bright field images. In-

stead, it was applied to the distance transform map calculated

on the combined edge and background probability maps from

the trained classifier.

3. EXPERIMENTS AND RESULTS

In order to evaluate the generality and robustness of our ap-

proach, we tested it on four datasets (47 images in total) that

differ in sample preparation and imaging equipment and con-

ditions, such as strain background, instrumentation settings,

artifacts, etc. Therefore, the resultant bright field images ex-

hibit yeast cells with distinctive appearances (see Fig. 1). The

detailed experimental settings are listed in Table 1. Visual in-

spection of the results can be found in Fig. 3. In general, con-

tour curve fitting provided smoother cell delineation and was

able to segment more cells. And watershed usually gave more

noisy cell contours, which is often not biologically mean-

ingful in terms of cell morphology. Note that although seg-

mented cells all appear red, each cell is fit independently thus

having a distinct identity.

The area overlap was used as the quantitative accuracy

measure MAO. It is calculated based on the computer seg-

mented (CS) region RCS and the manually segmented (MS)

region RMS : MAO=(RCS∪RMS)/(RCS∩RMS)×100.
Due to the high cell density, we randomly selected 10−20%
of cells from each image and manually segmented them to

provide the ground truth. Cells with missing contours (e.g.

overlapping with out-of-focus cells) were not considered, in

order to avoid ground truth uncertainty. In this subset, MAO

was calculated on the cells that were also segmented by the

computer. Results are summarized in Fig. 4, including a

comparison with those obtained using CellX [5], which is

dedicated to dealing with crowded cells and various types of

microscopy data. In the top plot, similar MAO values were

obtained, except for dataset 2 and 4 when using CellX. This is

probably due to the less image contrast and smaller cell size

in image. However when looking at the lower plot, watershed

failed to segment a large number of cells. This is much more

noticeable in more challenging datasets like 3 and 4. This

suggests that it is helpful to make use of clustered edge points

from our model. CellX was not able to segment most of the

cells, especially for dataset 2. This is probably because these

images have small cell size in image, or with strongly varying

cell boundary patterns and low contrasts.

Finally, the MAO of the manual segmentation from a dif-

ferent expert than the one who provided the ground truth were



Dataset 1 Dataset 2 Dataset 3 Dataset 4

SPF WS SPF WS SPF WS SPF WS

Fig. 3: Example results from the four datasets. (top) Segmentation (red with transparency) overlaid on original images using

spline fitting (SPF) and watershed (WS) based methods. (bottom) Zoom-in views of: original image, SPF, and WS images.
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Fig. 4: Quantitative evaluation in datasets 1-4.

calculated. On average, the area overlap ratio is slightly over

90%, resulting in 5-7% higher than those of the computer seg-

mentation in Fig. 4. This not only suggests that our method

can almost compete with manual segmentation, but also that

identifying individual cell regions is very challenging due to

the relatively large inter-variability among human labels.

4. DISCUSSION

This paper presents an approach to extract cells from im-

ages with low contrast and with densely crowded cells. Our

method is both robust across diverse imaging conditions and

able to discriminate out-of-focus cells. Most of the param-

eter settings are associated with one parameter, comparable

to mean cell size in pixels, thus easy to determine and use.

This single parameter proved capable of handling most yeast

cells in the images, except exceptionally large or small divid-

ing cells. But if these cells are of interest, then probably an-

other step with different value should be performed. The fact

that an initial edge classifier is used makes our approach ro-

bust to large varieties of yeast cells in bright field microscopy.

Since there was no explicit assumptions of special character-

istics from bright field images, we expect that the method is

general and should be applicable to other modalities such as

phase contrast microscopy, and also to other type of cells with

different convex shapes.
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