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Physically Consistent and Efficient Variational
Denoising of Image Fluid Flow Estimates

Andrey Vlasenko and Christoph Schnörr

Abstract—Imaging plays an important role in experimental fluid
dynamics. It is equally important both for scientific research and
a range of industrial applications. It is known, however, that es-
timated velocity fields of fluids often suffer from various types of
corruptions like missing data, for instance, that make their phys-
ical interpretation questionable. We present an algorithm that ac-
cepts a wide variety of corrupted 2-D vector fields as input data
and allows to recover missing data fragments and to remove noise
in a physically plausible way. Our approach essentially exploits the
physical properties of incompressible fluid flows and does not rely
upon any particular model of noise. As a result, the developed algo-
rithm performs well and robust for different types of noise and es-
timation errors. The computational algorithm is sufficiently simple
to scale up to large 3-D problems.

Index Terms—Experimental fluid mechanics, image sequence
processing, incompressible flows, particle image velocimetry,
variational motion estimation.

I. INTRODUCTION

E XPERIMENTAL fluid mechanics is a challenging field
of research of imaging science with important industrial

applications [1]. During the last two decades, the prevailing
technique for investigating turbulent flows through imaging
has been Particle image velocimetry (PIV) in 2-D [3], [4],
whereas various 3-D measurement techniques, while being
attractive from the physical viewpoint of applications, have
been suffering from various drawbacks including noisy mea-
surements, complexity and costs of the set-up, and limited
resolution [6], [8]–[12]. Remarkable progress has been recently
achieved through a novel technique, Tomographic Particle
Image Velocimetry (TomoPIV) [13] that, in principle, provides
3-D estimates with higher spatial resolution.

As a result of this previous research, there is a range of
methods for computing vector field estimates of incompressible
viscous flows from image data, that exhibit diverse artifacts de-
pending on the particular technique used, and on the particular
physical scenario considered. For example, too low local den-
sities of particles in PIV experiments may lead to local regions
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with missing vector field estimates. Very high local particle
densities, on the other hand, hampers correspondence analysis
and may result in erroneous local vector field estimates. This
motivates to investigate a method that denoises a given vector
field in a physically plausible way, and independently of the
method that was used to estimate the velocity field from image
data. Therefore, rather than to model noise explicitly which
is difficult and too specific due to the diversity of estimation
errors that can occur, the method should return a vector field
that is close to the input data and approximately satisfies the
basic physical equations governing the flow. At the same time,
the method should be robust to various types of estimation
errors and computationally simple, so as to be applicable
to large-scale 3-D problems that the next generation of 3-D
measurement techniques will raise in the near future.

Our approach presented below is motivated by recent work
on variational methods applied to fluid estimation and PIV
[14]–[16], in particular those employing physically motivated
regularization. Ruhnau and Schnörr [19] showed how to es-
timate physically consistent flow from PIV image sequences
utilizing a distributed-parameter control approach. This idea
has been extended in [20] to a dynamic setting based on the
vorticity transport equation formulation of the Navier-Stokes
equation.

The task studied in this paper is more involved, however, be-
cause we wish to process corrupted vector fields as input data,
and, therefore, cannot resort to image data in order to deter-
mine additional control variables as in [19], for example. Rather,
we wish to devise a method that accepts vector field estimates
produced by any algorithm [1], [4], and returns a denoised ver-
sion just by preserving and enforcing physically consistent flow
structure.

The paper is organized as follows. The approach comprises
several stages that will be presented and discussed in Section II.
The applicability of the developed methodology is demonstrated
by a range of experiments and discussed in Section III. The basic
findings are summarized in Section V.

II. APPROACH

Notation: denotes a 2-D velocity
field. All vectors will hereafter appear in bold font.

denotes the nabla operator
and the divergence of . The curl operator
is used in this paper in two ways. For any vector field

(image domain),
we define its vorticity field as , which is
a scalar field. In particular, the vorticity of the velocity field is
denoted with . For any scalar field , taking
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the curl returns the vector field .
Applying the curl operator twice results in the Laplacian

(1)

The Euclidean inner product and a norm are denoted by
and , respectively, whereas denote

the inner product and norm of . In addition, fluid flows
are assumed to be incompressible, i.e.,

(2)

It is known that the dynamics of incompressible fluid is gov-
erned by the vorticity-transport equation (VTE)

(3)

where denotes the viscosity coefficient. It will be convenient
to use a shorthand for the left hand side of the VTE

(4)

Finally, the identity

(5)

is valid for smooth functions with compact support.

A. Overview Over the Approach

Suppose we have given a corrupted velocity field . It is
convenient to consider as comprising two components,

. The first component satisfies the continuum me-
chanics (2)–(3) and is hereafter referred to as true fluid flow es-
timate. The second component does not satisfy the hydrody-
namics equations and is considered as noise. Note that “noise”
is not explicitly defined but rather in a broad way as nonphysical
flows. The problem is to estimate from in a computational
efficient way. Our approach comprises the following four steps
that will be detailed in subsequent sections.

1) Remove the divergence from by projection onto
the linear subspace of incompressible vector fields

.
2) Remove noise by Gaussian low-pass filtering.
3) Compute the vorticity and enforce physically

plausible flow structure in terms of a vorticity field satisi-
fying the VTE (4).

4) Recover an imcompressible velocity field from the vor-
ticity field .

This algorithm is a modified and computationally more effi-
cient version of the procedure announced in [2]. The modifi-
cation consists in replacing iterative application of a linear dif-
fusion operator at Step 2 by Gaussian filtering with a carefully
selected scale, resulting in much more efficient computations
without loss of accuracy. In addition, incompressibility is not
only considered in step 1, but in step 4 as well. As a conse-
quence, it turned out that satisfying restorations can be obtained
by a single pass, that is by applying these steps only once. This
is a significant advantage not only for 2-D applications but also
in view of large 3-D data sets to be expected in the near future,
cf. [13]. We consider next each of the above steps in turn.

B. Solenoidal Projection

Let the image domain be simply-connected. Then
the following orthogonal decomposition of vector fields holds
[17]

(6)

where denotes the subspace of of functions with
square-integrable first-order derivatives and vanishing boundary
values, and denotes the subspace of divergence-free
vector fields. Given a divergent vector field , we
compute the decomposition according to (6) as
follows. Applying the divergence operator to gives

(7)

and, hence, a Dirichlet problem for

(8a)

(8b)

Substituting into results in the divergence-free
flow .

Having computed , we continue removing noise by lowpass
filtering in a subsequent step.

C. Lowpass Filtering

An incompressible turbulent fluid flow can be considered as
a superposition of eddies at various scales (see Fig. 3). Let
be the size of a vortex, the average dissipation energy, and

the corresponding wave number. Theory [18] suggests
that the energy spectrum of homogeneous turbulence obeys the
law with the most significant part of energy con-
centrated at small wavenumbers . If the data set is corrupted
by some noise, produced either by measurements or data pro-
cessing, the spectral characteristics differ, especially at larger
wavenumbers . Fig. 1 depicts such a typical spectrum. For
comparison, the spectrum of a flow corrupted by “white”
noise is also shown.

Fig. 1 suggests that a considerable amount of noise can be
simply removed by lowpass filtering. While sophisticated fil-
tering schemes employing a multiscale expansion of the flow
[7] are conceivable, we will show below that simple Gaussian
low-pass filtering in conjunction with the other three steps of our
overall approach (cf. Section II-B), works fine. We only have to
choose a conservative cutoff-frequency that is large enough so
as not to damage physically significant structures of the flow.

Denoting the impulse response and its Fourier transform by

(9a)

(9b)

the scale parameter is chosen as follows: The smallest vortex
size that can be resolved on the computational grid has a size of
about 3 pixels, corresponding to the angular wavenumber .
We empirically choose in (9b) so as to lower the
amplitude spectrum at this point by the factor 1/50.
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Fig. 1. Velocity spectra of an original turbulent fluid flow (thick solid line), the
flow corrupted by noise (fine solid line), and the flow after solenoidal projection
(8), (7) and Gaussian lowpass filtering (10) (dashed line). Although noise has
been effectively removed, a significant nonphysical component of the fluid flow
estimate remains—cf. Fig. 2, bottom, and Fig. 3, top.

Fig. 2. Top panel: Noisy input field. The original data field without noise is
shown in the upper right quadrant to illustrate the signal-to-noise ratio. Bottom
panel: The data field after filtering using the Gaussian filter. Although noise has
been effectively removed, a significant nonphysical component of the fluid flow
estimate remains—cf. Fig. 3, top.

Fig. 1 shows the amplitude spectrum of the smoothed flow (
denotes convolution)

(10)

as a dashed line. This result indicates that our choice
is conservative in that it does not affect the “true” spectrum. On

Fig. 3. Top panel: Restored flow corresponding to Fig. 2 but after the complete
cycle of four computational steps of the overall approach. Bottom panel: Ground
truth vector field.

the other hand, despite having effectively removed noise (see
Fig. 2), it is also obvious that a significant nonphysical noise
component remains – compare Fig. 2, bottom, and Fig. 3, top.

It is important note at this point that up to the boundary ,
low-pass filtering will not affect the result of the preceding step
1 (solenoidal projection) because
as the representation in the Fourier domain shows:

. The way for further improving
the velocity estimate becomes clear if we take into account that

in (10) does not satisfy the equations governing incompress-
ible fluids. The consequences will be considered in two subse-
quent computational steps, to be described next, that will com-
plement the overall approach.

D. Vorticity Rectification

In order to enforce physical consistency of the flow (10) com-
puted in the previous step, we compute its vorticity

(11)

and enforce consistency with the VTE (4) by minimizing the
functional

(12)

Notice that and are evaluated using the flow (10) com-
puted at the previous step.
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The rational behind the approach (12) becomes apparent
when inspecting the corresponding Euler-Lagrange equation

(13)

This is just a linear diffusion equation to be solved for the re-
stored vorticity field . The parameter is acting here as a nat-
ural smoothing process. Rearranging terms

(14)

shows that corresponds to the corrected by the residual of
the VTE (4).

We point out that for setting up the functional (12), we de-
liberately omitted the partial derivative in (3). This cor-
responds to the assumption that this term is negligible relative
to the other terms which holds for quasi-stationary flow and
flows with large-scale vortices. As a result, we just need a single
fluid flow estimate at a single point of time. Experiments in Sec-
tion II-F below will illustrate that this simplification appears to
be reasonable.

Another important issue concerns boundary conditions. In
general, there are two types of boundary conditions corre-
sponding to ”liquid” and ”rigid” boundaries. In the simple case
of solid wall or any other rigid contour, all velocity components
are equal to zero on the boundary. The situation is less evident
for the case of liquid boundaries when there is no obstacle
preventing penetration of the fluid through the boundary. If
the liquid boundary of the calculational domain coincides with
the streamline (e.g., at borders of a convective cell), however,
one can set to zero the normal velocity component (so-called
slip conditions). The problem is more involved in case of
”transparent” fluid boundaries that do not coincide with any
streamline so that the flow characteristics on this contour is
unknown. For simplicity, we then adopt the natural boundary
conditions ( is the unit outer normal at the boundary )

(15)

corresponding to the variational problem (12). This, of course,
may be only a crude approximation for some real scenarios and
lead to the loss of some small-scale flow details.

E. Velocity Restoration

The final step is to convert the restored vorticity field back
to a velocity field . This is accomplished by minimizing

(16a)

(16b)

with and computed at the previous steps (10) and (12),
respectively.

The result is a velocity field that is physically plausible due
to the consistency with the vorticity transport equation enforced
in the previous step in terms of , and due to the incompress-
ibility constraint (16b).

Using (5), system (16) leads to the constrained variational
system

(17a)

(17b)

in terms of and a Lagrange multiplier function , that are dis-
cretized using mixed finite elements, as detailed in [5], [19].
A consequence of this discretization is that the resulting dis-
cretized saddle-point problem

(18)

is numerically stable [5]. Specifically, we can eliminate

(19)

and solve the resulting system

(20)

numerically stable for , yielding by backsubstitution of
into (19).

III. DISCUSSION OF NUMERICAL EXPERIMENTS

A. Data and Error Measurements

In this section, we demonstrate the performance of the devel-
oped procedure by considering a range of practically relevant
scenarios. The experiments were designed to provide both a vi-
sual impression of quality and a quantitative evaluation the re-
sults computed with the algorithm described in Sections II-C –
II-F.

All experiments were carried out according to the following
scheme.

• A simulated vector field, obtained as numerical solution to
the Navier-Stokes equations, was taken as a ground truth.

• Then noise was added in terms of white Gaussian noise
with both high and low signal-to-noise ratio, as well as in
terms of rectangular regions with missing or corrupted data
without assuming these regions to be known.

• The obtained noisy vector field was used as an input data
set for the algorithm, and a restored vector fields was
computed.

• Finally, the result was quantitatively compared with ground
truth.

The quantitative characteristics of the denoising performance
were estimated with the following measures:
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The first measure, , is a ratio of error deviations before
and after denoising. It gives an overall information about the
error reduction. The second measure, , shows the reduc-
tion of average angle deviation of the restored vector field rela-
tive to ground truth. The two last measures are the ratios of an
average length noisy vector and restored vector, respectively, to
ground truth. Comparing them gives some additional informa-
tion about the level of noise in the considered data set before
and after applying our approach.

The described procedure is illustrated below in Figs. 4–7 rep-
resenting three typical situations which can occur in practice:
the vector field is contaminated by noise, contains regions where
data are missing or has a coarse spatial resolution only. Ground
truth vector fields are presented in the bottom panels of Figs.
4–7. The noisy input data are shown in the top panels whereas
the denoised vector fields are shown in the middle panels.

B. White Gaussian Noise

Fig. 4 illustrates the application of our approach to the case of
white Gaussian noise. A corrupted input vector field as shown
in the top panel can be obtained, for instance, in the laboratory
or in-situ experiments when using very sensitive sensors or an
inaccurate data processing method. A high level of noise was,
therefore, chosen for this experiment. To illustrate this, the orig-
inal signal is shown in a rectangular region in the upper right
corner of the noisy input field in Fig. 4.

Comparison of the denoised output vector field (middle
panel) with the ground truth (bottom panel) shows that the
algorithm recovers the large-scale structures of the flow very
well. So, we conclude that the default boundary conditions ap-
plied here give a reasonable approximation for such structures
near the boundaries of the domain. The result demonstrates
that quantitative and robust denoising is possible even for high
noise-to-signal ratios.

C. Uniform Noise and Missing Data

A significant property of the presented method is that the class
of physically admissible signals are modeled rather than noise
explicitly. As a result, it also allows to consider as “noise” re-
gions with missing data as Fig. 5 illustrates. This figure shows
the application of our approach to a vector field recorded in the
laboratory by a PIV method. It is assumed that some regions of
the field do not provide any information during the experiment.
These regions are shown in the middle panel as black rectan-
gles. The positions of the regions were randomly set and are
assumed to be unknown. In addition, uniform noise was added
to these data.

Comparison of the middle and bottom panels shows that the
algorithm successfully recovered most details of the vector field.
This concerns not only the originally recorded data but also re-
gions with missing data.

Fig. 6 depicts as grayvalues the absolute deviation from
ground truth before and after denoising. The quantitative
meaning of the grayvalues is plotted on the right. Note that
two different scales are used according to the high- and low
noise level, respectively. It is interesting to note that even in
problematic regions corresponding to the black rectangles with
missing data (Fig. 5, middle panel), the deviation drops from

Fig. 4. Top: Noisy input �. Noise has been cut out within a rectangular region
to illustrate the signal-to-noise ratio. Middle: Denoised data �. Bottom: Ground
truth flow �. Performance measures: ��� � ����, ��� � ����	, 
�� �

����, ��� � ���.

about 0.7 (Fig. 6, top panel) to less than 0.2 (Fig. 6, bottom
panel).
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Fig. 5. Top: Ground truth flow �. Middle: Corrupted data � by missing values
or outliers within rectangular regions. The locations of these regions are as-
sumed to be unknown. Bottom: Restored vector field �. Performance measures:
��� � ����, ��� � ��	, 
�� � ���, ��� � ��.

Fig. 6. Deviation from ground truth before denoising (top) and after denoising
(bottom). Note the different scales on the right used for each panels.

D. Data With Low Spatial Resolution

Experimental conditions of PIV experiments may lead to flow
estimates with low spatial resolution Fig. 7 shows the applica-
tion of our approach to such a scenario.

Our approach plausibly fills in the gaps and returns a flow
estimate with higher spatial resolution. We point out that the
algorithm treats the input data set like any ”noisy” vector field
without specification of any prior knowledge.

E. Comparison With TV-Denoising

We compared our approach with a state-of-the-art variational
denoising method [21], [22] employing total variation (TV)
minimization. The ground truth vector field depicted in
Fig. 5 was chosen as test data. TV-denoising was separately
applied to both components of the input data.
At first glance, the result depicted in Fig. 8 looks similar to
both the input and the vector field obtained with our approach
(see Fig. 5). Closer inspection, however, reveals that slight
TV-denoising creates significant nonphysical flow structures
even in this case where the input vector field does not contain
noise at all. Fig. 9 shows close-up views of the results for the
section of the input field that is marked in the top panel of
Fig. 5. The results illustrates that about 30% of TV-denoised
vectors have directions opposite to the ground truth flow, while
the result returned by our method nearly matches ground truth.
Our result does not exactly reproduce ground truth due to the
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Fig. 7. Top: The data with losses in density. Middle: Restored data.
Bottom: Ground truth. Performance measures: ��� � ����, ��� � ����,
	�� � 
���, ��� � ���.

unknown true boundary conditions and due to omitting the
time derivative of the vorticity [cf. the discussion in the two

Fig. 8. Vector field resulting from TV-denoising. The corresponding error mea-
surements are ��� � 
��,��� � ���� ��� � ��� 	�� � ����.

Fig. 9. Left: Close-up view of the result shown in Fig. 8 for the section marked
in Fig. 5, top, together with the ground truth vectors (gray vectors with circled
heads). Right: The corresponding result of the approach introduced in this paper.
TV-denoising (left) cannot preserve physically significant flow structure.

paragraphs following (14)]. Fig. 9, right panel, however, shows
that these errors are small.

F. Experiment With Real Data

We applied our approach to real data obtained from PIV mea-
surements of a turbulent boundary layer flow [23]. Fig. 10 shows
a velocity field estimate and the corresponding vorticity (repre-
sented in gray values; the quantitative meaning of these gray-
values in units of is plotted on the right), computed with
commercial software. Though the flow’s general structure can
be visually recognized, details are perturbed by noise.

The restored velocity vector and vorticity fields are depicted
in Fig. 11. Comparing Figs. 10 and 11 reveals that vortices,
which are hardly recognized in the input data (see regions

,
) become clearly visible after restoration. For example, the

group of outliers in region
is effectively denoised. Note that the input vector field exhibits
abrupt changes and discontinuities, violating the incompress-
ibility constraint (2). Our approaches smoothes such flows so as
to yield a physically plausible approximation of the input data.
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Fig. 10. Measured data.Left: Velocity vector field. Right: Vorticity field.

Fig. 11. VTE-based data restoration. Left: Velocity vector field. Right: Vor-
ticity field.

We also applied TV denoising to these real data. The result is
shown in Fig. 12. Although it looks smooth, it bears only little
resemblance to the input vorticity and velocity vector fields.
While the large scale parts exhibit similar structures, the vor-
ticity field looks completely different.

Fig. 12. TV-based data reconstruction. Left: Velocity vector field. Right: Vor-
ticity field.

IV. CHOICE OF PARAMETER VALUES

A. Parameter in (12)

This parameter has a physical interpretation. It corresponds
to the laminar viscosity of the flow under consideration. De-
pending on the application, its value can be increased, leading
to an increased smoothing by linear diffusion of the vorticity
field minimizing (12).

B. Parameters and

Parameter determines the influence of the residual in the
correction step (14). Empirically, turned out to
be a reasonable choice in (16). These values were used in all
experiments.

C. Parameter

Parameter describes the cutoff-frequency of the lowpass
filtering step, as described in Section II-D. Although “the best”
value depends on the particular data at hand, a broad range of
reasonable, save values exist that lead to good performance of
the overall algorithm.

To illustrate this point, we repeated the experiment discussed
along with Fig. 5 using two extreme values of parameter .
Fig. 13, top panel, shows the result for the very large value

. Obviously, essential parts of the flow pattern shown
in the middle panel (ground truth) have been blurred. The result
for an opposite extreme value is shown in the bottom
panel in Fig. 13. Noise significantly affects the solution, yet all
flow structures are visible.

As a consequence, our default choice explained
in Section II-D effectively filters out noise—cf. Fig. 5, bottom
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Fig. 13. Top: Output field obtained with � � ��. Middle: Ground truth.
Bottom: Vector field denoised with � � ���.

panel—and appears to be a reasonable and robust choice for a
broad range of applications.

V. CONCLUSION

We presented an approach for denoising fluid flow esti-
mates obtained from images sequences in experimental fluid
dynamics. Prominent features of the approach include (i) that
prior knowledge about the physical structure of admissible
vector fields is used for restoration, rather than modeling noise
explictly, and (ii) that four computationally simple steps are
involved.

A consequence of (i) is broad applicability to scenarios where
fluid flow estimates are corrupted in various ways. This was
confirmed and demonstrated by numerical experiments using
ground truth data and various error types. A consequence of (ii)
is a fast processing speed in 2-D, and the applicability to large
3-D problems.

Our future work concerns an evaluation of the method for 2-D
problems in collaboration with groups working directly in the
field of experimental fluid dynamics, and the application to 3-D
tomographic fluid flow measurement [13].
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