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Abstract. Algebraic Reconstruction Techniques (ART), on their both succes-
sive or simultaneous formulation, have been developed since early 70’s as efficient
”row action methods” for solving the image reconstruction problem in Comput-
erized Tomography. In this respect, two important development directions were
concerned with, firstly their extension to the inconsistent case of the reconstruc-
tion problem, and secondly with their combination with constraining strategies,
imposed by the particularities of the reconstructed image. In the first part of our
paper we introduce extending and constraining procedures for a general iterative
method of ART type and we propose a set of sufficient assumptions that ensure
the convergence of the corresponding algorithms. As an application of this ap-
proach, we prove that Cimmino’s simultaneous reflections method satisfies this set
of assumptions, and we derive extended and constrained versions for it. Numer-
ical experiments with all these versions are presented on a head phantom widely
used in the image reconstruction literature. We also considered hard thresholding
constraining used in sparse approximation problems and applied it successfully to
a 3D particle image reconstruction problem.
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1 Introduction

Many classes of ”real world problems” give rise, after appropriate discretiza-
tions to big, sparse and ill-conditioned linear systems of equations of the
form Ax = b, where the m × n matrix A contains information concerning
the problem, whereas b ∈ IRm represents measured ”effects” produced by the
unknown ”cause” x ∈ IRn. But, due to inevitable measurements errors, the
”effect” b may go out of the ”range of action” of the problem information
matrix A, such that the above system of equations becomes inconsistent and
must be reformulated in the least squares sense: find x ∈ IRn such that

‖ Ax− b ‖= min{‖ Az − b ‖, z ∈ IRn}, (1)

where ‖ · ‖ is the Euclidean norm (〈·, ·〉 will be the corresponding scalar
product) on some space IRq.

Remark 1 Concerning the matrix involved in (1) we shall suppose for the
whole paper that it has nonzero rows Ai and columns Aj, i.e.

Ai 6= 0, i = 1, . . . ,m, Aj 6= 0, j = 1, . . . , n. (2)

These assumptions are not essential restrictions of the generality of the prob-
lem (1) because, if A has null rows and/or columns, it can be easily proved
that they can be eliminated without affecting its set of classical (S(A; b), in
the consistent case) or least squares (LSS(A; b), in the inconsistent case)
solutions.

As a very important example of such problems (to which also refer the numer-
ical experiments in the last section of our paper) is the Image Reconstruction
from Projections in Computerized Tomography. Its algebraic mathematical
model, although essentially based on an integral equation formulation gives
rise after the ”rays × pixels” discretization procedure (see for details [16],
[6]) to least squares problems of the form (1). For numerical solution of these
problems the class of Algebraic Reconstruction Techniques (ART) were very
much developed in the last 40 years (see [6] and references therein). These
methods are iterative ”row-action” algorithms (i.e. they use rows or blocks
of rows of the system matrix A in each iteration, without changing the values
of its entries or its structure; see [6]) and are ”classified” according to the
way in which the rows/blocks of rows are ”visited” in each iteration:
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(I) successive ART, having as standard method Kaczmarz’s algorithm [19]

(II) simultaneous ART, having as standard method Cimmino’s algorithm
[10]

According to these standard algorithms, we shall consider in our paper ART-
like methods of the following general form.
Algorithm General ART (GenART). Initialization: x0 ∈ IRn

Iterative step:
xk+1 = Txk +Rb, (3)

where T : n× n and R : n×m are real matrices.

Remark 2 We introduce the following assumption on the matrices T and R:
they have an explicit expression in terms of the rows of A and components
of the right hand side of (1), i.e. if we change A and b to Ā and b̄ we can
define in a similar way as in (3) an iterative process of the form xk+1 =
T̄ xk + R̄b̄. Examples in this sense are given by the projection algorithms
appearing in image reconstruction from projections: Kaczmarz, Cimmino,
Landweber, DW, SART, etc (see e.g. [6, 7, 8, 16, 13, 18, 20, 21, 31] and
references therein).

Almost all of these algorithms generate sequences convergent to a solution
of the problem (1) in the consistent case, whereas in the inconsistent one the
sequence (xk)k≥0 still converges, but the limit is not any more an element of
LSS(A; b). In this respect have been designed extensions of the algorithm
(3) for the inconsistent case of (1) which are based on relaxation parameters,
column relaxations or supplementary steps introduced in the iteration (see
[21, 11, 23, 26, 2, 30] and references therein). Moreover, for problems related
to image reconstruction in computerized tomography the iteration step (3)
was combined with a constraining strategy, usually acting on the components
of the successive approximations xk = (xk1, . . . , x

k
n)T (see [20, 23, 28]).

In this paper we will analyse from these points of view the General ART
algorithm (3). The paper is organised as follows: in section 2 we present
the essential assumptions on the matrices T and R from (3) which ensure
both the possibility to extend it to inconsistent problems and to combine it
with a class of constraining strategies. Moreover, we prove that these as-
sumptions are sufficient for obtaining convergence results for the extended
and constrained versions of the General ART method. As an application of
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these main results of the paper, in section 3 we prove that Cimmino’s re-
flections algorithm ([10]) satisfies all the above assumptions and we derive
its extended and constrained versions. Even though Cimmino’s method was
created many years ago, it can be now view as a special case of Landweber
method, such that the Constrained Cimmino algorithm can be retrieved as
a particular” projected Landweber method” (see e.g. [1]) or as a ”gradient
projection” algorithm (see [15]). The fact that it was used in this section as
an application for our considerations in section 2 is only an historical poin
of view.
Regarding the extension procedure proposed in (35)-(37), it differs from the
older ”multi-steps” methods (see [30, 2]) or methods that uses in the incon-
sistent case for (1), the associated augmented system (which is always consis-
tent) by the following two aspects: firstly, the modification of the right-hand
side in (36) is included in the iteration of the extended algorithm, thus in
the global convergence of the algorithm (so do no more appear accumulation
of errors due to approximate solutions in the different steps of ”multi-steps”
methods), and the second one, the fact that, acting on the initial problem,
the extended method (35)-(37) is influenced by its condition number and not
by the squared one, as in the case of augmented system or normal equa-
tion (see [3] and the numerical experiments in [22]). Moreover, we want to
point out that the extending and constraining approach developed under the
assumptions (8)-(12) is quite general and can include other algorithms, in
image reconstruction or elsewhere (e.g. DW or SART algorithms; see e.g.
[18]), for which it will be possible to prove these assumptions. Moreover,
once these assumptions are verified, we get already three new algorithms:
extended, constrained and constrained extended.
The last section of the paper is devoted to experiments with all these ver-
sions on a phantom widely used in the literature. Moreover, we considered
different constraining strategies, including hard thresholding, and compared
these in the context of particle image reconstruction.

2 The general extending and constraining

procedures

We shall first introduce some notations. The spectrum and spectral radius
of a square matrix will be denoted by σ(B) and ρ(B), respectively. By
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AT , N (A),R(A) we shall denote the transpose, null space and range of A.
PS(x) will be the orthogonal (Euclidean) projection onto a vector subspace
S of some IRq. S(A; b), LSS(A; b) will stand for the set of classical or least-
squares solutions of (1), respectively. By xLS we will denote the (unique)
solution with minimal Euclidean norm (in both cases). In the general case
for (1) the following properties are known:

b = PR(A)(b) + PN (AT )(b), (4)

LSS(A; b) = xLS +N (A) and x ∈ LSS(A; b) ⇔ Ax = PR(A)(b), (5)

S(A; b) = xLS +N (A) and x ∈ S(A; b) ⇔ Ax = b. (6)

Moreover, xLS is the unique element of LSS(A; b) (or S(A; b)) which belongs
to the subspace R(AT ). The spectral norm of A will be defined by

‖ A ‖= sup
x 6=0

‖ Ax ‖
‖ x ‖

= sup
‖x‖=1

‖ Ax ‖. (7)

Now, we introduce the following basic assumptions on the above considered
matrices T and R.

I − T = RA. (8)

if x ∈ N (A) then Tx = x ∈ N (A). (9)

if x ∈ R(AT ) then Tx ∈ R(AT ). (10)

∀y ∈ IRm, Ry ∈ R(AT ). (11)

if T̃ = TPR(AT ) then ‖ T̃ ‖ < 1. (12)

Proposition 1 If (8) - (12) hold then the following are true.
(i) I − T̃ is invertible and the n×m matrix G defined by

G = (I − T̃ )−1R (13)

satisfies
AGA = A and GPR(A)(b) = xLS. (14)

(ii) The matrix T has the properties

‖ Tx ‖=‖ x ‖ if and only if x ∈ N (A) (15)
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and
‖ T ‖ ≤ 1. (16)

(iii) For the approximations xk, k ≥ 0 generated with the algorithm (3) we
have

PN (A)(x
k) = PN (A)(x

0), ∀k ≥ 0. (17)

Proof. (i) From (12) (see e.g. [3]) it results that the matrix I − T̃ is
invertible and

(I − T̃ )−1 =
∑
i≥0

T̃ i. (18)

From the definition of T̃ in (12) and (9) (see also [31]) we get

T = PN (A) + T̃ , T̃PN (A) = PN (A)T̃ = 0. (19)

Then, from (8), (13), (19) and (18) we successively obtain

AGA = A
(
I − T̃

)−1

RA=A
(
I − T̃

)−1

(I − T ) =

A
(
I − T̃

)−1 (
(I − T̃ )− PN (A)

)
= A− A

(
I − T̃

)−1

PN (A) = A,

i.e. the first equality in (14). Then, because PR(A)(b) ∈ R(A) we get from
the first equality in (14) AGPR(A)(b) = PR(A)(b), which means that x∗ =
GPR(A)(b) ∈ LSS(A; b) (see e.g. [3]). But, from (11), (18) the definition of

T̃ it results that x∗ ∈ R(AT ), i.e. x∗ = xLS, thus by the unicity of xLS which
proves the second equality in (14).
(ii) The ”if” part results directly from (9). For the ”only if” one, let x ∈ IRn

be such that ‖ Tx ‖=‖ x ‖ holds. Then, if x = x′+x′′ = PN (A)(x)+PR(AT )(x),
and x′′ 6= 0, from (9) and (10) we get Tx′ ∈ N (A) and Tx′′ ∈ R(AT ). Thus,
by also using (12) we successively obtain

‖ Tx ‖2=‖ Tx′ ‖2 + ‖ Tx′′ ‖2≤‖ x′ ‖2 + ‖ T̃ ‖2 ‖ x′′ ‖2

< ‖ x′ ‖2 + ‖ x′′ ‖2=‖ x ‖2, (20)

which contradicts our initial assumption about the vector x. It follows that
x′′ = 0, i.e. x ∈ N (A). The inequality (16) results from (20) for an arbitrary
x ∈ IR (in which case the last inequality is not any more strict).
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(iii) We will use the mathematical induction. Let us suppose that k ≥ 0 is
such that (17) holds. For k + 1 we have, by also using (3) and (19)

xk+1 = Txk +Rb = PN (A)(x
k) + T̃ xk +Rb.

But, from (10) and (11) we obtain that T̃ xk+Rb ∈ R(AT ), i.e. PN (A)(x
k+1) =

PN (A)(x
k) = PN (A)(x

0) which completes the proof. �

The convergence properties of the algorithm GenART (3) are given in the
following result.

Theorem 1 Let us suppose that the matrices T and R satisfy the assump-
tions (8)-(12). Then, for any x0 ∈ IRn the sequence (xk)k≥0 generated with
the algorithm (3) converges and

lim
k→∞

xk = PN (A)(x
0) +Gb. (21)

If the problem (1) is consistent, then

Gb = xLS and lim
k→∞

xk = PN (A)(x
0) + xLS ∈ S(A; b). (22)

Proof. Let ek = xk − (PN (A)(x
0) + Gb) be the error vector at iteration k

(see (21)). Using (3), (13), (19) and (17) we successively obtain

ek = xk−(PN (A)(x
0)+Gb) = Txk−1+Rb−

[
PN (A)(x

0) + [(I − T̃ ) + T̃ ](I − T̃ )−1Rb
]

=

T̃ xk−1 − T̃ (I − T̃ )−1Rb = T̃ (xk−1 − PN (A)(x
0)−Gb) = T̃ ek−1,

i.e., by a recursive argument

ek = T̃ ke0, ∀k ≥ 0. (23)

But, according to (12) we get that limk→∞ e
k = 0, from which we get (21).

The second part of the theorem (22) results from Proposition 1 (i). �

Theorem 2 Let x∗ be the limit point in (21). Then we have the a priori
estimate

‖xk − x∗‖ ≤ κk

1− κ
‖x0 − x1‖ (24)

7



and the a posteriori estimate

‖xk+1 − x∗‖ ≤ κ

1− κ
‖xk+1 − xk‖ , (25)

where κ = ‖T̃‖. In particular, the convergence rate of sequence {xk}k is
linear.

Proof. Let {xk}k be the sequence generated by GenART for an arbitrary
initial approximation x0 ∈ IRn and suppose that the matrices T and R satisfy
the assumptions (8)-(12). Then using (17) we can rewrite equation (3) as

xk+1 = T̃ xk + PN (A)(x
0) +Rb =: F (xk) , (26)

since we can decompose T according to (19). The mapping F is a contraction

with Lipschitz constant κ := ‖T̃‖. Banach’s fixed-point theorem asserts
additionally to the convergence of sequence {xk}k to a fixed point of F , the
estimates in (24) and (25).

�

Remark 3 We claim that the above set of sufficient assumptions (8)-(12)
are also necessary to obtain the results in proposition 1 and Theorem 1, but
we don’t have yet a rigorous proof of this statement.

According to Remark 2 let U and S be the m × m, respectively m × n
matrices, similar to T and R from (3) , respectively but for the (always
consistent) system

ATy = 0. (27)

Then, the corresponding algorithm of the form (3) with U and S will be
written as

yk+1 = Uyk + S · 0 = Uyk,∀k ≥ 0, (28)

with y0 ∈ IRm the initial approximation. Our general assumptions (8) - (12)
and Proposition 1 will assign the following properties to the matrix U

U(N (AT )) ⊂ N (AT ), U(R(A)) ⊂ R(A), (29)

if Ũ = UPR(A) then U = PN (AT ) ⊕ Ũ and PN (AT )Ũ = ŨPN (AT ) = 0, (30)

Uk = PN (AT ) ⊕ Ũk, ‖ Ũ ‖< 1 and PN (AT )(y
k) = PN (AT )(y

0), ∀k ≥ 0. (31)

Moreover, according to the above Theorem 1 the following convergence result
will hold for the algorithm (28).
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Theorem 3 For any y0 ∈ IRm, the sequence (yk)k≥0 generated with the al-
gorithm (28) converges and

lim
k→∞

yk = PN (AT )(y
0). (32)

Proof. Let
εk = yk − PN (AT )(y

0) (33)

be the error vector at iteration k (see (32)). Using (28), (30), (31) and (33)
we successively obtain

εk = Uyk−1 − PN (AT )(y
0) = Ũyk−1 + PN (AT )(y

k−1)− PN (AT )(y
0) = Ũyk−1 =

Ũ
(
yk−1 − PN (AT )(y

0)
)

= Ũek−1. (34)

But, from (31) we get limk→∞ ε
k = 0 from which (32) holds and completes

the proof. �

If y0 = b, from (32) we would get limk→∞ y
k = PN (AT )(b), thus limk→∞(b −

yk) = PR(A)(b). This simple observation allows us to consider the following
extension of the general algorithm GenART.
Algorithm Extended General ART (EGenART).
Initialization: x0 ∈ IRn, y0 = b
Iterative step:

yk+1 = Uyk, (35)

bk+1 = b− yk+1, (36)

xk+1 = Txk +Rbk+1. (37)

Theorem 4 Let us suppose that the matrices T and R satisfy (8)-(12) and
the assumption from Remark 2. Then, for any x0 ∈ IRn, the sequence (xk)k≥0

generated with the algorithm (35) - (37) converges and

lim
k→∞

xk = PN (A)(x
0) + xLS ∈ LSS(A; b). (38)

Proof. Let ek = xk − (PN (A)(x
0) + xLS) be the error vector at iteration k

(see (38)). Using (37), (13), (14), (19) and (17) we successively obtain

ek = xk − (PN (A)(x
0) + xLS) = Txk−1 +Rbk−[

PN (A)(x
0) + [(I − T̃ ) + T̃ ](I − T̃ )−1RPR(A)(b)

]
=

9



T̃ xk−1 +Rbk −RPR(A)(b)−GPR(A)(b) =

T̃ (xk−1 − PN (A)(x
0)− xLS +R(b− yk − PR(A)(b)). (39)

Because y0 = b, from (28) and (4) we get

yk = Uyk−1 = Ũyk−1 + PN (AT )(b), ∀k ≥ 0. (40)

From (40) we obtain for the second term in (39)

R(b− yk − PR(A)(b)) = −RŨyk−1,

which gives us by a recursive argument

R(b− yk − PR(A)(b)) = −RŨky0 = −RŨkb. (41)

From (39), (41) and again a recursive argument we get

ek = T̃ ek−1 −RŨkb = T̃ kx0 −RŨkb. (42)

From (42), (12) and (31) we obtain that limk→∞ e
k = 0, from which (38)

holds and completes the proof. �

Remark 4 A different extension procedure has been proposed in [12]. It uses
similar ideas in the convergence proof, but under different initial assumptions.

By using the decomposition (4) and the second equality in (14) we obtain
that the limit (21) of the sequence (xk)k≥0 generated by (3) can be written
as

lim
k→∞

xk = PN (A)(x
0) + xLS + ∆, with ∆ = (I − Q̃)−1RPN (AT )(b). (43)

In the paper [20] the authors consider a constraining function, C : IRn −→
IRn with a closed image Im(C) ⊂ IRn and the properties

‖ Cx− Cy ‖≤‖ x− y ‖, (44)

if ‖ Cx− Cy ‖=‖ x− y ‖ then Cx− Cy = x− y, (45)

if y ∈ Im(C) then y = Cy. (46)
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Example 1 ”Box constraining” function

(Cx)i =


xi, xi ∈ [αi, βi]
0, xi < αi
1, xi > βi

, (47)

i.e. C is the orthogonal projection onto the closed convex set V = [α1, β1]×
· · · × [αn, βn] ⊂ IRn, for which it is well known that (44)-(46) hold (see e.g.
[17]) and its image is closed (Im(C) = V ).

Example 2 The hard thresholding operator from [4], which has the following
general form (α ≥ 0)

Hα(y) = (hα(y1), . . . , hα(yn)) , y = (y1, . . . , yn) ∈ IRn (48)

with

hα(yi) =

{
0, |yi| < α
yi, yi ∈ (−∞,−α] ∪ [α,∞)

, i = 1, . . . , n. (49)

From the definition (48)-(49) it results that Im(Hα) ⊂ IRn is closed. More-
over, it satisfies (44)-(46). Indeed, we firstly have to observe that, by direct
computations and using (48)-(49) we obtain

|hα(xi)− hα(yi)| ≤ |xi − yi| and hα (hα(xi)) = hα(xi),∀xi, yi ∈ IR. (50)

Then (44) and (46) hold directly from (50). For (45) we observe that if we
have the equality of norms in (44) then

∑n
i=1(hα(xi)− hα(yi))

2 =
∑n

i=1(xi−
yi)

2 which combined with (50) gives us (hα(xi) − hα(yi))
2 = (xi − yi)2,∀i =

1, . . . , n, i.e. (45).

Algorithm Constrained General ART (CGenART).
Initialization: x0 ∈ IRn

Iterative step:
xk+1 = C

[
Txk +Rb

]
. (51)

Theorem 5 Let us suppose that the the matrices T and R satisfy (8)-(12),
the constraining function C satisfies (44)− (46) and the set V∗, defined by

V∗ = {y ∈ Im(C), y −∆ ∈ LSS(A; b)} (52)

is nonempty. Then, for any x0 ∈ Im(C) the sequence (xk)k≥0 generated by
the algorithm CGenART converges and its limit belongs to the set V∗.
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Proof. We follow exactly the proof in [20] . In this respect, the proof of
Lemma 6[20] holds from (43), (9), (3), (21), (46), (95)[20], (44), (16), (45),
(9) and (12). The proof of Theorem 7 then holds from (3) and the above
Lemma 6[20]. �

Remark 5 If the problem (1) is consistent then

∆ = 0 and V∗ = S(A; b) ∩ Im(C), (53)

i.e., the algorithm CGenART generates a ”constrained” solution of (1).

Remark 6 We have to observe that all the assumptions (44) − (46) are
necessary in the proof of the above Theorem 5.

Algorithm Constrained Extended General ART (CEGenART).
Initialization: x0 ∈ Im(C), y0 = b;
Iterative step:

yk+1 = U(yk), (54)

bk+1 = b− yk+1, (55)

xk+1 = C[Txk +Rbk+1], (56)

with U, T,R from (28), (3) and C as in (44)-(46). We shall suppose that
at least one least squares solution exists in Im(C) (see the hypothesis of
Theorem 5), i.e. the set V defined below is nonempty

V = LSS(A; b) ∩ Im(C) 6= ∅. (57)

Theorem 6 Let us suppose that the the matrices T and R satisfy (8)-(12),
the constraining function C satisfies (44) and (46) and the set V satisfies
(57). Then, for any x0 ∈ Im(C), the sequence (xk)k≥0 generated with the
algorithm CEGenART (54)− (56) converges to an element of V.

Proof. We follow exactly the proof in [28] . In this respect we have: for
the proof of Lemma 1 we need (54) and (30); for the proof of Lemma 2 we
need (12), (16), (32) and (19); for the proof of Lemma 3 we need (55), the
above Lemma 1, (32), (56), the above Lemma 2, (44), (46), (16), (12), (9)
and (15); for the proof of Lemma 4 we need the above Lemma 3, (57), (44),
(55), (32), (16) and the already mentioned lemmas. Finally, Lemma 5 holds
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from the above mentioned results. �

Remark 7 The assumption that the set V from (57) is nonempty is directly
connected with the (level of) perturbation of b in (1), which makes it incon-
sistent. It requests that we still have least squares solutions in Im(C).

A projection method that fits into the above considerations is Kaczmarz’s
successive projection algorithm from [19]. The properties (8)-(12) were proved
in the paper [31]. But, independently on the general approach presented in
this section, a theorem of the form Theorem 1 was proved in [31], the exten-
sion of the form (35)-(37) was first proposed in [25], a constrained version of
Kaczmarz method in [20] and a constrained version of Kaczmarz Extended
method in [28]. In the next section of the paper we shall obtain all these ver-
sions for Cimmino’s algorithm, by simply proving that it satisfies assumptions
(8)-(12) and then applying the above constructions.

3 Application - Cimmino’s reflections

algorithm

In the paper [10], Cimmino considers a consistent problem of the form (1)
where A is an m×n real matrix and b ∈ IRn. A solution point will lie in the
intersection of the m hyperplanes described by

Hi := {x | ATi x = bi}, i = 1, . . . ,m. (58)

Given a current approximation xk, the next one xk+1 is constructed as

xk+1 =
m∑
i=1

ωi
ω
yk,i (59)

where yk,i are the reflections of xk with respect to the hyperplane (58), defined
by

yk,i = xk + 2
bi − ATi xk

‖Ai‖2
Ai and ωi > 0, ω =

m∑
i=1

ωi. (60)

From (59) and (60) we derive for T,R in (3) the following expressions

T =
m∑
i=1

ωi
ω
Si, Si := I − 2

AiA
T
i

‖Ai‖2
, R =

m∑
i=1

ωi
ω

bi
‖Ai‖2

Ai. (61)
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Then, Cimmino’s algorithm (59) can be written as follows.
Algorithm Cimmino (Cmm). Initialization: ωi > 0, i = 1, . . . ,m;x0 ∈
IRn

Iterative step:
xk+1 = Txk +Rb. (62)

Proposition 2 If
rank(A) ≥ 2, (63)

then the matrices T and R from (61) satisfies the assumptions (8)-(12).

Proof. The statements in (8) - (11) follow directly from (61) and the fact
that R(AT ) = sp{A1, . . . , Am}. For (12) we first observe that the orthogonal
reflectors Si from (61) are also isometric transformations, thus

‖Six‖ = ‖x‖,∀x ∈ IRn and ‖Si‖ = 1, ∀i = 1, . . . ,m. (64)

Then, for an arbitrary x ∈ IRn we get from (60) and (64)

‖Tx‖ = ‖
m∑
i=1

ωi
ω
Six‖ ≤

m∑
i=1

ωi
ω
‖Six‖=‖x‖, (65)

which together with (9) give us ‖T‖ = 1, thus

‖T̃‖ ≤ 1. (66)

Let us now suppose that we have equality in (66) and let x ∈ R(AT ), x 6= 0
be such that (see also (65))

‖T̃ (x)‖ = ‖T (x)‖ = ‖
m∑
i=1

ωi
ω
Six‖ =

m∑
i=1

ωi
ω
‖Six‖ =‖ x ‖ . (67)

By the nonsingularity of Si we have Six 6= 0 for all i = 1, . . . ,m. Since the
Euclidean norm is strictly convex, ωi > 0 and

∑m
i=1

ωi

ω
= 1 the equality from

(67) only holds if S1x = · · · = Smx. Let us suppose that S1x = Six for all
i = 2, . . . ,m. This is equivalent to

AT1 x

‖A1‖2
A1 −

ATi x

‖Ai‖2
Ai = 0 for all i = 2, . . . ,m.

Since we have the assumption (63) on A, the equalities above imply that
ATi x = 0,∀i = 1, . . . ,m, i.e. x ∈ N (A) thus x = 0 which contradicts the

14



initial assumption on it. Thus (12) holds and the proof is complete. �

According to the results from section 2 we can now first design the Extended
Cimmino algorithm following the general formulation (35)-(37). According
to (61) and (27), the matrix U from (28) will be given by

U =
n∑
i=1

αj
α
Fj, with Fj = I − 2

AjAj
T

‖Aj‖2
, and α =

n∑
j=1

αj, (68)

and αj > 0 arbitrary weights.
Algorithm Extended Cimmino (ECmm).
Initialization: ωi > 0, i = 1, . . . ,m; αj > 0, j = 1, . . . , n, x0 ∈ IRn, y0 = b
Iterative step:

yk+1 = Uyk , (69)

bk+1 = b− yk+1 , (70)

xk+1 = Txk +Rbk+1 . (71)

The corresponding constrained versions, CCmm and CECmm are directly
derived from (62) and (69)-(71) following the general formulations (51) and
(54)-(56), respectively.

4 Numerical experiments

The experiments from this first part of the section do not intend to compare
Cimmino-like algorithms designed in section 3 with others more efficient ones
(see also the comments on section 1). We wanted only to show by some
examples the importance of such kind of developments: extension and con-
straining. In our first set of experiments we used the head phantom from the
paper [9] (63× 63 pixels resolution with the scanning matrix with 1376 rays
- i.e. m, the number of rows in A). A consistent and an inconsistent right
hand side b was used in our reconstruction experiments, together with the
following measures for the approximation errors (see also [16]).

• xex = head phantom ; n = 632 = 3969

• xex = (xex1 , . . . , x
ex
n )T ;xk = (xk1, . . . , x

k
n)T ; x̄ex =

Pn
i=1 x

ex
i

n
; x̄k =

Pn
i=1 x

k
i

n

• Distance =
√ Pn

i=1(xex
i −xk

i )2Pn
i=1(xex

i −x̄ex)2
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• Relative error =
Pn

i=1 |xex
i −xk

i |Pn
i=1 xex

i

• Standard deviation = 1√
n

√∑n
i=1(xki − x̄k)2

• Residual error = ‖ Axk − b ‖ in the consistent case of (1) and ‖
AT (Axk − b) ‖ in the inconsistent one

In the tests we used the box constraining function C from (47) with αi =
0, βi = 1, ∀i = 1, . . . ,m, and unitary weights ωi, αj in (60) and (68), i.e.
ωi = 1,∀i = 1, . . . ,m;αj = 1,∀j = 1, . . . , n.
Test 1: Consistent case, classical algorithms, x0 = 0
We applied for the consistent problems associated to the head phantom the
algorithms Cimmino (62) together with its constrained version (according to
(62) and (51)) with the initial approximation x0 = 0 and 500 iterations. The
results presented in figures 1 - 2 indicate that, in this case the constraining
strategy used improve somehow the quality of the reconstructed image (1).
According to the fact that the graphics in Figure 2 are almost identical, an
explanation would be related to the small changes (in the positive sense) in
the components of the approximations xk, such that, also by starting with
x0 = 0, in 500 iterations Cimmino’s algorithm together with its constrained
version act almost identical.
Test 2: Consistent case, classical algorithms, x0

i = (−1)i, i = 1, . . . , n

Figure 1: Consistent case, x0 = 0, 500 iterations; left: exact, middle: Cmm,
right: CCmm.

We performed similar tests as in the above Test 1, but with the initial ap-
proximation x0

i = (−1)i, i = 1, . . . , n. Figure 3 indicates that the constraining
strategy used, much improved in this case the quality of the reconstructed
image. This aspect can be also seen in the graphics from Figure 4.
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Figure 2: Consistent case, x0 = 0, 500 iterations; errors

Remark 8 In real reconstruction problems we will never use an initial ap-
proximation as in the above Test 2. The idea in those experiments was to
show that the constraining strategy can be a very powerful tool in improving
the quality of the reconstruction. The real solution for Test 1 would be an
adaptive constraining strategy. Work is in progress on this subject.

Figure 3: Consistent case, x0
i = (−1)i, i = 1, . . . , n, 500 iterations; left: exact,

middle: Cmm, right: CCmm.

Test 3: Inconsistent case, combined algorithms
We applied for the inconsistent problems associated to both phantoms, the
algorithm Cimmino (62) together with Extended Cimmino (69)-(71), 500 it-
erations and x0 = 0. The results presented in figures 5 - 6 indicate better
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Figure 4: Consistent case, x0
i = (−1)i, i = 1, . . . , n, 500 iterations; errors

results for the classical version (62). Although it can be strange, this be-
haviour can be explained by the fact that the better theoretical properties
of Extended Cimmino algorithm (69)-(71), as derived in Theorem 4, have an
”asymptotic” nature, i.e. they become ”visible” after an enough big number
of iterations (see in this sense the similar experiments presented in Figures 7
- 8, for which 2000 iterations were used). A solution of this problem would
be to improve the ”right-hand side correction part” (69). Work is also in
progress in this direction (see e.g. [29]).

Figure 5: Inconsistent case, x0 = 0, 500 iterations; left: exact, middle: Cmm,
right: ECmm.
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Figure 6: Inconsistent case, x0 = 0, 500 iterations; errors

m
In our second set of experiments we considered the problem of 3D par-

ticle image reconstruction, which is the main step of a new technique for
imaging turbulent fluids, called TomoPIV [14]. This technique is based on
the instantaneous reconstruction of particle volume functions from few and
simultaneous projections (2D images) of the tracer particles within the fluid.
TomoPIV adopts a simple discretized model for an image-reconstruction
problem, which assumes that the image consists of an array of unknowns
(voxels), and sets up algebraic equations for the unknowns in terms of mea-

Figure 7: Inconsistent case, x0 = 0, 2000 iterations; left: exact, middle:
Cmm, right: ECmm.
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Figure 8: Inconsistent case, x0 = 0, 2000 iterations; errors

sured projection data. The latter are the pixel entries in the recorded 2D
images. TomoPIV employs undersampling, due to the cost and complexity
of the measurement apparatus, resulting in an underdetermined system of
equations and thus in an ill-posed image reconstruction problem. However,
this reconstruction problem can be modeled as finding the sparsest solution
of an underdetermined linear system of equations. i.e.

min ‖x‖0 s.t. Ax = b , (72)

since the original particle distribution can be well approximated with only a
very small number of active voxels relative to the number of possible particle
positions in a 3D domain, see e.g. [24] for details. If the original particle
distribution is sparse enough and the coefficient matrix satisfies certain prop-
erties, then the indicator vector (corresponding to the active voxels) is also
the unique nonnegative vector which satisfies the measurements Ax = b and
coincides with the solution of (72).

Here, we will concentrate on a simple geometry for sampling the original
particle distribution within a 64 × 64 × 64 3D domain from 3 orthogonal
directions, compare Fig. 9. The sampling matrix A will correspond to a
perturbed adjacency matrix of a bipartite graph [24] were the left nodes
correspond to the 643 voxels within the volume and the right nodes to the
3 · 642 pixels within the three sampled 2D images, see Fig. 9 (right).
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If the number of nonzero elements in the original indicator vector x∗, i.e.
‖x∗‖0 := |{i|x∗i 6= 0}|, is small enough, more precisely

k := ‖x∗‖0 ≤
3d2

4 log d
3

≈ 1003 ,

then x∗ is (most probably) the unique nonnegative solution of the linear sys-
tem and CGenART will converge to x∗ for the constraining function C from
(47). The same will hold for CGenART combined with the hard thresholding
operator from (48)-(49), for carefully chosen α. In fact, Cimmino combined
with this constraining strategy is closely related to the hard thresholded
Landweber iteration from [4], where this method is shown to converge to a
local optimum of (72). Due to this attribute the method was only applied
[4] as an prepossessing step for solution refinement obtained by other sparse
approximation algorithms. However, for a carefully chosen threshold α the
method will converge to solution of (72) provided this sparsest solution is
unique. But choosing the proper α is an art by itself. We decided to use
α = 0.1 but only after the first 0.5k iterations. A combination of two con-
straining operators is also legitimate and turns out to be more effective in
reducing the error within the same number of iterations, see Fig. 11. In fact,
hard thresholding combined with box constraining has an acceleration ef-
fect reflected in a reduced number of iterations, see Fig. 10. Hence, a proper
constraining strategy is an indispensable tool not only for regularization pur-
poses (box constraining) but also for achieving computational efficiency. This
issue will be addressed in further work.

Acknowledgments. We express our gratitude to Prof. Dr. Tommy
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[19] Kaczmarz S. Angenäherte Auflösung von Systemen linearer Gleichun-
gen, Bull. Acad. Polonaise Sci. et Lettres A (1937), 355 - 357.

[20] Koltracht I. and Lancaster P., Constraining strategies for linear iterative
processes, IMA Journal of Numerical Analysis, 10(1990), 555 - 567.

[21] Natterer F., The Mathematics of Computerized Tomography, John Wiley
and Sons, New York, 1986.

[22] Nicola A., Popa C., Kaczmarz Extended ver-
sus Augmented System solution in image reconstruc-
tion, Preprint CSAM 02-2009 ( http://www.univ-
ovidius.ro/math/default.aspx?cat=Cercetare&subcat=Preprint&lang=uk).
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Figure 11: Reconstruction experiment for 602 particles in a 64×64×64 cube
from 3 orthogonal projections. In 1000 iterations of Cimmino with box con-
straining (47) the reconstruction (top left) contains 1246 particles exceeding
a threshold 0.5. Combining box constraining with the hard thresholding op-
erator from (48)-(49) the reconstruction improves. After 1000 iterations the
reconstruction (top left) contains 827 particles – containing the original ones.
The reconstruction after convergence is exact, i.e. identical with the original
from Fig. 9 within the tolerance – box constraining: 18029 iterations, box
constraining combined with hard thresholding: 30787 iterations (bottom).
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