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Abstract—We experiment with interactive machine learning
for mouse behavior classification, following the pioneering work
JAABA [1]. Here, we describe a simple image processing pipeline
that allows extracting individual body parts from single mouse
top view video. Our experiments show that behavior classification
accuracy increases substantially when transitioning from whole-
body descriptors to features computed from individual body
parts, their position and motion.

I. INTRODUCTION

The study of animal behavior and its pathologies provides
important cues to biologists and medical researchers alike.
Rodents exhibit complex behavior and are among the most
popular research animals. To further increase the throughput
and/or complexity of rodent behavioral experiments, there is
strong demand for automated behavior classification solutions
with as little user input as possible. Work such as JAABA [1]
is driven by the vision that users can define any behavior of
interest and train a classifier to detect it with minimal effort.
Once training is completed, large data sets can be analyzed
automatically without further supervision.

We decide to work with top (rather than side) view video
for a number of reasons: Firstly, in experiments such as the
open field test the variability of the animal’s appearance due to
location and orientation is smaller. Secondly, self-occlusions
of the animal’s body parts become less likely. And lastly, the
rotational invariance of motions and behaviors can be exploited
during feature computation.

II. RELATED WORK

Several approaches for (semi-) automated mouse behavior
classification have been published in recent years. For side
view video, [2] introduced a novel spatio-temporal interest
point detector. An approach to model the behavior by a
large set of postures detected from shape and position was
implemented in the software HomeCageScan [3], [4]. In [5],
a Hidden Markov Model (HMM) Support Vector Machine was
trained on position-based and spatio-temporal motion features.
In the domain of top view video, [6] trained different variants
of HMMs on position and silhouette features. Using the output
of their own tracking software, [7] inferred the behavior from
sequences of basic behavioral elements which they detected
with a classifier based on motion, optical flow, shape and
position features. Additionally to shape and motion features,
[8], [9] used a depth camera to extract the elevation angle of
the mouse as a feature.

All of these methods come with a fixed number of pre-
defined classes, making it impossible for the experimenter to
look for custom behavior patterns in the data. To the best of
our knowledge, the only approach published to date which
allows the experimenter to train user-defined behavior classes
with minimal guidance is JAABA [1] by Kabra et al. They
train a GentleBoost classifier on sparse user annotations and
achieve strong results on adult and larval Drosophila with up
to 15 behavior classes. For mouse behavior analysis, an animal
was represented in terms of an ellipse and all features were
extracted from this representation.

In this work, we aim at providing more expressive features
to our classifier by detecting individual body parts and de-
scribing their shape, movement and relative position.

III. BODY PART PREDICTION & SEGMENTATION

To take the first step towards a more detailed body part
representation from which we can deduce strong features, we
use the “Pixel Classification” workflow of the open source
interactive learning and segmentation toolkit ilastik [10]. This
software learns a random forest classifier [11] on sparse
user labels input via a graphical user interface to distinguish
between different user-defined pixel classes (here: body parts).
The class decision is based on a set of color, edge and
texture features computed at different scales1. After successful
training we can export a probability map Pt,cpx, yq for each
frame t which indicates the propensity for each and every
pixel px, yq to belong to one of the body part classes or to
background (c denotes the class index).

Starting from these probability maps, we propose the se-
quence of steps summarized in figure 1 to obtain exactly one
connected component per body part per frame.

A. Background Subtraction

As we deal with video from a static camera and the mouse
typically only covers a small region of every frame, we use
a standard median filter method [12], [13] to exclude the
background from further processing to reduce misdetections
and computational cost.

B. Temporal Consistency Enforcement

Given standard video frame rates and ordinary single mouse
behavior, it is valid to assume that the displacement of body

1We only select a subset of the 37 appearance features available in ilastik
for our body part prediction.
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Fig. 1. From raw video to a meaningful body part segmentation with classes “head” (red) and “body” (green) through the proposed processing pipeline. The
probability of the background class and its labeling are not shown here for cleaner visualization.

parts between successive frames is small. We exploit this
observation by shrinking the allowed region for finding a body
part based on its previous detection.

In practice, we apply a separate mask to each class probabil-
ity map, which is 1 inside the allowed region and 0 elsewhere.
For computational reasons, we set the allowed region to be
the bounding ellipse of the respective body part’s connected
component detected in the previous time step dilated by δ
pixels. These masks can be multiplied by a factor γ ą 0 to
adjust the strength of the influence of the previous detection on
the current probabilities. To allow a body part to move slightly
further than δ without sharply truncating it at the boundaries
of the constraint region, we smooth the masks with a Gaussian
kernel. The effect of the temporal consistency enforcement on
a probability map is shown exemplarily in figure 2.

x
0

1

P
t,
c
px
,y
q

x
0

1

P
1 t,
c
px
,y
q

Fig. 2. Cut through a probability map Pt,cpx, yq with classes “head” (red),
“body” (green) and “background” (blue) along the x-axis before (left) and
after (right) applying the temporal consistency enforcing masks represented
by the dashed lines (right).

C. Regularization

Since ilastik’s “Pixel Classification” workflow only provides
body part probabilities for each pixel position independently,
the probability maps typically are too noisy to directly extract
a clean segmentation with a single contiguous region for every
body part. To regularize, we recur to cost volume filtering [14]
as a computationally efficient drop-in replacement for MAP
estimation in a multilabel Markov random field.

D. Segmentation

To transform the post-processed class probabilities to a
meaningful segmentation, we use a simple winner-takes-all
strategy. We hence create a binary indicator array whose
elements Bt,cpx, yq P t0, 1u,

ř

cBt,cpx, yq “ 1, indicate to
which class c a pixel px, yq in frame t belongs. Each of the
C channels now contains one or multiple candidate connected
components for the respective body part.

To remove remaining excrescences and misdetections, we
next apply an opening operator with a small circular structur-
ing element.

Finally, we select the single largest (in terms of pixel count)
candidate in every body part channel.

IV. BEHAVIOR CLASSIFICATION

Once this representation of the mouse is found, we use it to
derive information about its pose and movement by means of a
large collection of spatio-temporal shape and motion features.
These features are then fed into a random forest classifier
which can be trained on an arbitrary number of behavior
classes defined by the experimenter.

A. Features

To cover as many aspects of any custom behavioral element
as possible, we propose to use an exhaustive set of per-frame
features which describe both shape and motion of the whole
body, every individual part and also the relation between each
pair of parts. Additionally, we use window features [1] to
encode the temporal evolution of the per-frame features in
small temporal windows around the current frame. Table 1
shows all features we use for behavior classification. Some
feature descriptions refer to properties introduced in figure 3.

B. Behavior Prediction

The classifier can rely on a high-dimensional feature vec-
tor ~ft for every frame t, which contains six features per body,
ten per body part, eight for each pair of parts and additionally



TABLE I
FEATURES FOR BEHAVIOR CLASSIFICATION

Category Feature Computed for

Shape

Volume and temporal change thereof whole body
and every
part

Major and minor radius of bounding ellipse
Radii ratio and temporal change thereof
Internal distance di,j

every pair of
parts i and j2

Motion

Axial speed v
‖
i,j and perpendicular speed

vK
i,j of part i relative to ~di,j

Change of internal distance di,j over time
Rotation velocity of ~di,j
Angular acceleration of ~di,j
Current velocity (i. e. displacement between
t´ dt3 and t)

every partDisplacement between t ´ dt and t ` dt
(leaving current position out)
Acceleration magnitude and angle (change
of velocity vector between t and t` dt)

Window
Mean every

per-frame
feature

Median
Standard deviation

~mi

~mj
~di,j

αi,j

~vK
i,j

~vi

~v
‖
i,j

Fig. 3. Schematic drawing to illustrate some important properties and features:
Center of mass ~mi, distance ~di,j between parts i and j, angle αi,j between
~di,j and the x-axis, total speed ~vi and its perpendicular and axial components
~vK
i,j and ~v‖i,j with respect to ~di,j .

three window features for each of the aforementioned per-
frame features.

To train the random forest classifier, the experimenter has
to add as many behavior patterns as necessary and annotate a
few frames for each behavior class (e. g. in the first minutes of
the video in question). Once training is finished, the classifier
can be used to predict with which probability an unseen frame
belongs to each of the behavior classes.

To finally infer the predicted behavior class, we smooth
the probabilities over time with a Gaussian kernel followed
by a winner-takes-all segmentation, resulting in a single most
probable behavior for every frame.

V. EXPERIMENTS

To quantitatively evaluate the proposed features, we have
used two grayscale videos M1 and M2 of different mice from

2Most of these features are invariant under permutation of i and j, but axial
and perpendicular speed have to be computed for both combinations.

3Computing the motion features for different values of dt might be useful
to capture even more information about the current behavior.

Fig. 4. Exemplary frames from data sets M1 (left) and M2 (right). Note the
mirroring of the mouse in M1 which is suppressed by the proposed processing
pipeline.

different labs, see figure 4. M1 was recorded in the laboratory
of Prof. Andreas Draguhn in the Institute of Physiology
and Pathophysiology of Heidelberg University, Germany, and
contains 9000 frames with a spatial resolution of 1280 ˆ 720
pixels recorded at 30 fps (five minutes of video). M2 was
recorded by Prof. Roian Egnor in her laboratory at Janelia
Farm Research Campus, Virginia, USA, and consists of 5000
frames recorded at 29 fps (about three minutes of video) with
a spatial resolution of 1024 ˆ 768 pixels.

The four behavior classes we use are “locomotion”, “mi-
cromovement”4, “immobility” and “rearing”. The numbers of
frames contained in the respective training and test sets of M1
and M2 are listed in table 2.

TABLE II
NUMBER OF TRAINING LABELS AND TEST SET FRAMES IN M1 AND M2

M1 M2
Training Testing Training Testing

Immobility 23 712 6 54
Micromovement 27 4140 19 712
Locomotion 24 1422 26 1667
Rearing 21 596 25 890
Total 95 6870 85 3323

Training the pixel classifier for body part predictions as
described in section 3 takes about 30 minutes for each data set.
Once trained, the classifier is ready to be applied to arbitrary
length video of a similar-looking mouse. As the tails are only
dragged in both data sets and thus do not add information for
behavior classification, we only operate on the two individual
parts “head” and “body”, leaving us with 34 per-frame and
102 window features.

The parameters described in section 3 have been tuned
manually until the body part segmentation looked sensible:
For the dilation δ in the temporal consistency enforcement
in 3.2, the maximum pixel distance the mouse might move
between successive frames is decisive. The standard deviation
of the Gaussian kernel used for cost volume filtering in 3.3
and the size of the opening operator used to clean up the

4The compound behavior class “micromovement” corresponds to small in-
place movements such as sniffing, grooming and the like, for the discrim-
ination of which we did not have enough training frames in the annotated
data.



TABLE III
CONFUSION MATRICES FOR BEHAVIOR CLASSIFICATION ON DATA SETS M1 AND M2. TRANSITIONING FROM REDUCED

(WHOLE-ANIMAL) TO FULL (BODY PART) FEATURES NEVER DETERIORATES, AND OFTEN IMPROVES, ACCURACY.

M1 M2
reduced feature set full feature set reduced feature set full feature set

Actual z Predicted I M L R I M L R I M L R I M L R
Immobility (I) 84 13 00 03 85 15 00 00 02 89 00 09 20 69 00 11
Micromovement (M) 10 60 03 27 08 80 03 09 01 65 10 24 01 74 11 14
Locomotion (L) 00 03 87 10 00 06 87 07 00 07 91 02 00 07 91 02
Rearing (R) 01 20 07 72 01 18 07 74 00 14 03 83 00 09 02 89

segmentation in 3.4 depend on the size of the smallest body
part to be detected.

As table 2 reveals, the behavior classifier needs only lit-
tle training: About 25 frames per behavior class have been
annotated with a user effort of around ten minutes per video.

A. Results

Table 3 shows the per-frame confusion matrices for M1
and M2 when comparing the classifier’s prediction output to
manually annotated ground truth. Creating the latter has taken
about five hours for a total of eight minutes of video (14000
frames).

With a reduced feature set, containing only shape, mo-
tion and window features of the whole body5, classification
achieves an average prediction accuracy of 75.7% on M1. For
M2, table 2 reveals that there have been too few training and
testing frames for the class “immobility” to get meaningful
results. This circumstance presumably explains the strong
confusion with “micromovement”. Disregarding “immobility”,
our method achieves an average accuracy of 79.8% which is
consistent with the result on M1.

The comparison between training the classifier on afore-
mentioned reduced feature set and training it on our full set
of features extracted from the individual body parts as listed
in table 1 highlights the main point of this contribution. As
can be seen from table 3, the average prediction accuracy is
increased by more than 5% to 81.7% and 84.8% on M1 and
M2 respectively, once the full set of features is used. Especially
the confusion of “micromovement” and “rearing” decreases
significantly by more than 10% in both data sets.

Note that the accuracy which can be reached by a classifier
trained on user input has an upper bound dictated by the
limited inter-observer agreement of humans. In [5], this inter-
observer agreement for mouse behavior classification with
eight classes is reported to be only 72%6. Hence, any classifier
reaching at least comparable accuracy could replace human
observation.

VI. CONCLUSION

We have presented an approach to improve automated
mouse behavior recognition from top view video. The key

5As we did not compute motion features for the whole body, we used those
computed for the part “body”.

6On a four class problem the inter-observer agreement will presumably be
higher due to less confusions.

ingredient of our method is the segmentation into distinct body
parts. This representation gives us access to a much richer set
of shape and motion features which we then use to classify
custom user-defined behaviors. We show that the additional
features derived from the segmentation can lead to a significant
increase in classification accuracy.
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