
74 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 36, NO. 1, JANUARY 2017

Edge Preserving and Noise Reducing
Reconstruction for Magnetic

Particle Imaging
Martin Storath∗, Christina Brandt, Martin Hofmann, Tobias Knopp, Johannes Salamon,

Alexander Weber, and Andreas Weinmann

Abstract— Magnetic particle imaging (MPI) is an
emerging medical imaging modality which is based on the
non-linear response of magnetic nanoparticles to an applied
magnetic field. It is an important feature of MPI that even fast
dynamic processes can be captured for 3D volumes. The
high temporal resolution in turn leads to large amounts of
data which have to be handled efficiently. But as the system
matrix of MPI is non-sparse, the image reconstruction
gets computationally demanding. Therefore, currently only
basic image reconstruction methods such as Tikhonov
regularization are used. However, Tikhonov regularization
is known to oversmooth edges in the reconstructed image
and to have only a limited noise reducing effect. In this work,
we develop an efficient edge preserving and noise reducing
reconstruction method for MPI. As regularization model,
we propose to use the nonnegative fused lasso model, and
we devise a discretization that is adapted to the acquisition
geometry of the preclinical MPI scanner considered in
this work. We develop a customized solver based on a
generalized forward-backward scheme which is particularly
suitable for the dense and not well-structured system matri-
ces in MPI. Already a non-optimized prototype implemen-
tation processes a 3D volume within a few seconds so that
processing several frames per second seems amenable.
We demonstrate the improvement in reconstruction quality
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over the state-of-the-art method in an experimental medical
setup for an in-vitro angioplasty of a stenosis.

Index Terms— Angioplasty, edge preserving regulariza-
tion, forward backward splitting, fused lasso, magnetic
particle imaging.

I. INTRODUCTION

MAGNETIC particle imaging (MPI) is an emerging
imaging modality that determines the concentration of

magnetic nanoparticles by measuring their non-linear mag-
netization response to an applied magnetic field [1], [2].
MPI offers a high spatial and temporal resolution and, in
contrast to other tomographic methods, it does not employ any
ionizing radiation. One of the main benefits is that it is able
to capture fast dynamic processes in-vivo and in 3D [3]. This
makes MPI a very promising imaging modality for biomedical
applications, for example visualization of instruments for
cardiovascular intervention [4], [5].

In MPI, the desired particle concentration is measured
indirectly via an induced current in the receive coils; the
relation between the density and the current is described by
the system function. The reconstruction of the concentration
from the acquired data is an ill-posed inverse problem [6]:
even small noise in the data can lead to large errors in the
reconstruction. Therefore, the reconstruction requires regu-
larization. Currently, the state-of-the-art method is based on
Tikhonov regularization [3], [7]. As Tikhonov regularization
can be carried out by solving a linear system of equations,
it is fast, particularly simple to implement, and many solvers
are available such as the conjugate gradients method and the
Kaczmarz method. On the downside, the Tikhonov model
has only limited noise suppression capabilities, it severely
diminishes the contrast, and it smoothes out the edges. This
directly hampers possible medical applications like vessel
visualization, bolus tracking, and the guidance of medical
devices. These drawbacks can be overcome by using priors
based on the �1-norm. In particular, total variation (TV) [8], [9]
and lasso regularization [10], [11] have been used for various
imaging modalities [12]–[14]. These models match with the
typical statistical properties of images significantly better than
Tikhonov regularization. On the flipside, these regularization
methods are computationally more demanding making their
implementation for MPI a challenging task.

We note that the present paper deals with rapid 1D-3D MPI
sequences, where the sampling trajectory is a Lissajous curve
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leading to a complex structure of the system matrix which
is challenging to model and therefore usually measured [15].
For Cartesian sequences as used in [16]–[18], the MPI signal
chain can be formulated by a simple coordinate transformation
in combination with a spatial convolution. The state-of-of-the
art reconstruction methods [19] for these types of sequences
usually do not formulate the reconstruction problem in an
inverse setting.

A. Contributions

In this work, we propose an new image reconstruction
method particularly suitable for magnetic particle imaging.
We address the following three objectives: (i) to find a
regularization model that gives better reconstructions of the
particle densities than the state-of-the-art method; (ii) to derive
a solver for that model which is efficient for the dense and
not well-structured system matrices appearing in MPI; (iii)
to demonstrate the advantages for an experimental in-vitro
angioplasty imaged by MPI.

Towards the first goal (i), we propose to utilize mixed
�1/lasso and total variation (TV) regularizing terms for the
reconstruction process, which is known as fused lasso model in
statistics [20]. The priors promote sparsity for both the recon-
structed image and its gradient, and they better match with
the typical statistical properties of MPI images. To account
for the physical properties of a particle density, we utilize
additionally a non-negativity constraint. In a series of synthetic
experiments with known ground truth, we demonstrate that the
non-negative fused lasso model yields higher reconstruction
quality than the state-of-the-art method with respect to signal-
to-noise ratio and visual inspection.

Towards the second goal (ii), we first propose to adopt
a near-isotropic discretization, originally developed by the
authors for Potts priors [21], [22], which takes into account
the usually non-isotropic spatial resolution of MPI. This is
due to the gradient strength of the applied magnetic gradient
field being twice as high in a particular direction (up-down
for the preclinical system considered in this work). Based
on that discretization, we propose a novel splitting of the
functional into a data term, a non-negativity term, and a set
of pathwise fused lasso terms. We utilize the generalized
forward backward scheme of Raguet et al. [23] to minimize
the resulting split functional. In contrast to other popular
optimization schemes [24], [25], it employs a gradient descent
step with respect to the data term instead of a proximal
mapping. Since the gradient step is much cheaper to compute
than the proximal mapping (matrix-vector multiplication vs.
solving a linear system of equations) it is particularly suitable
for the dense system matrices appearing in MPI. On the other
hand, our specific splitting requires evaluation of proximal
mappings with respect to pathwise fused lasso terms. But
these can be solved efficiently in linear complexity [26], [27].
Furthermore, the method is highly parallelizable. For time-
lapse data, we utilize a warmstarting strategy; to this end, we
use the previous result as initial guess for the next frame. Due
to the high temporal resolution of MPI, and thus little changes
between two consecutive frames, we obtain high quality within
only a few iterations.

For the last goal (iii), we evaluate our method in an
experimental medical setup for MPI, an in-vitro angioplasty of
a stenosis. To this end, we took measurements of an inflating
balloon catheter in a vessel phantom with induced stenosis
using a preclinical MPI scanner. The resulting images have
better reconstruction quality (both with respect to signal-to-
noise ratio and visual inspection) than the state-of-the-art
method. The computation time is only moderately higher than
that of the state-of-the-art method.

B. Organization of the Paper
The paper is organized as follows. We first describe the

mathematical model for the measurement process and the
state-of-the-art regularization in Section II. In Section III,
we motivate the proposed regularization model for MPI.
In Section IV we derive our new splitting algorithm. To this
end, we introduce a near-isotropic discretization of the TV
semi-norm in Section IV-A and propose a generalized for-
ward backward splitting approach for the computation of the
minimizer of our regularization model in Subsection IV-B.
We then explain how to efficiently solve the subprob-
lems in Subsection IV-C and present our complete algorithm
in Subsection IV-D. In Section V, we drive a simulation study
on synthetic data. In Section VI, we demonstrate the practical
performance of our approach for in-vitro angioplasty of a
stenosis.

II. MEASUREMENT PROCESS OF MAGNETIC PARTICLE

IMAGING AND STATE-OF-THE-ART

IMAGE RECONSTRUCTION

A. Measurement Process in MPI

The goal of MPI is to reconstruct the density ν of iron
oxide particles contained in an object of interest, e.g., in
a blood vessel or in a catheter. We briefly describe the
basic principle of a field-free point (FFP) scanner; for a
comprehensive treatment we refer to the book [28]. A specific
magnetic field is set up which saturates the nanoparticles in
all the field of view except in the neighborhood of a single
point, called the FFP. During the imaging process, the FFP
is moved over the object. This changes the magnetization of
the nanoparticles and induces a current in a set of receive
coils. The relation between the particle concentration ν and
the measurements f can be described by a linear mapping
A called the system function. The system function has been
analyzed in [29], [30]. Although first models exists for the
system function currently the best results are obtained by the
measurement based approach [15], [19], [31]. That is, the
system function is obtained by measuring the system response
of a delta probe at every voxel.

We will consider MPI reconstruction in the 1D, the 2D, and
the 3D space domains, i.e. a reconstructed signal/image u#

lives in the space X = R
n1 , X = R

n1×n2 or X = R
n1×n2×n3 .

We denote the number of measurements by M and the total
number of pixels/voxels by N; that is, N = n1, N = n1n2,
or N = n1n2n3, respectively. In the 1D case, we can directly
identify the system function with a matrix A ∈ R

M×n1 and
so the measured data f ∈ R

M is given by f = Aν + η,
where ν denotes the true density and η is the noise on the
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measurements. In order to avoid cumbersome notations, we
will use the following convention for the 2D case. We denote
by ũ ∈ R

n1n2 the (columnwise) vectorization of the image
u ∈ R

n1×n2 . We associate A with matrix Ã ∈ R
M×N such

that Ãũ = Au for all u ∈ R
n1×n2 . Further, we denote the

adjoint operator of A by A∗. In matrix notation, A∗ is defined
by A∗g = reshape( ÃT g) for g ∈ R

M , where reshape is the
inverse of the vectorization operation. We use an analogous
notation for 3D images.

B. State-of-the-Art Reconstruction
As mentioned before, the reconstruction in MPI is an ill-

posed inverse problem which is reflected in the rapid decay
of the singular values of the system matrix [6]. Therefore, the
image reconstruction requires regularization. Current recon-
struction methods are based on Tikhonov-type regulariza-
tion [3], [7], [29], [32]–[34]; that is, the reconstructed image
uρ is the minimizer of an energy functional

uρ = arg min
u

ρ‖u‖2
2 + ‖Au − f ‖2

2, (1)

where ‖u‖2
2 = ∑

i j k |ui jk |2 (in the 3D setup). The optimization
problem can be solved directly using QR decomposition
or singular value decomposition. However, these methods
are computationally too expensive for large system matrices,
therefore in practice the corresponding normal equation is
solved by an iterative method. To this end, most published
papers that consider Lissajous type MPI sequences use the
regularized Kaczmarz method (also called algebraic recon-
struction technique) [3], [7], [29], [32]–[34]. The popularity
of the Kaczmarz method can be explained by the following
reasons. First, since the rows of the matrix A are known to be
close to orthogonal, the Kaczmarz method converges rapidly,
in most cases in less than ten iterations. Second, it easily
allows to include non-negative constraints which typically
improves the reconstruction result [3].

A refinement of the Tikhonov model (1) that is used in some
publications [7], [33] is to introduce a diagonal weighting
matrix W that weights the individual rows of the system matrix
A and the measurement vector f . To this end the model (1)
is adapted to include the system matrix Ã′ = W

1
2 Ã and the

data f̃ ′ = W
1
2 f̃ where W is the diagonal matrix consisting

of the squared reciprocal of the row energy of Ã, i.e., W =
diag(1/w1, . . . , 1/wM ) with wi = ‖ Ãi,:‖2

2. The weighting has
two effects. First it can improve the reconstruction quality [7].
Second it can considerably improve the convergence rate of
iterative solvers that apply multiplications with A during the
reconstruction process. The idea is that frequency weight-
ing has a similar effect as preconditioning and considerably
improves the conditioning of the linear system [7]. Note that
the Kaczmarz method does not necessarily require a weighting
since the rows are inherently normalized within the algorithm.

III. NON-NEGATIVE FUSED LASSO FOR

REGULARIZATION IN MPI
As mentioned in the introduction, the main advantage of

Tikhonov regularization is its simplicity as it boils down
a linear system of equations (possibly with non-negativity
constraints). However, this simplicity comes at the cost of

reconstruction quality. Loosely speaking, the penalty ρ‖u‖2
2

in (1) which penalizes the total energy of the signal, primarily
prevents the result from “blowing up” but it does not take into
account any prior knowledge on the structure of the underlying
image. In particular, spatial neighborhood structures are not
reflected in the prior. The shortcomings of the regularization
model become even more clear from a statistical perspective:
Tikhonov regularization – known as ridge regression in sta-
tistics – is the maximum a posteriori (MAP) estimator for a
Gaussian noise model and Gaussian prior. While the Gaussian
model is a reasonable assumption for the measurement noise,
the Gaussian prior is not well matched to the typical statistics
of real images. The latter means that the reconstructed particle
concentration is assumed to be independent and normally
distributed with expectation zero. This, in particular, implies
that neighboring pixel/voxel intensities are assumed to be
uncorrelated. It has been observed that priors which take
neighborhood structure into account are much better suited.
A prominent example is the total variation (TV) prior [8].
In addition, this prior promotes the sparsity of the edge set.
For these reasons we propose to use the TV prior. Another
observation specific to MPI is that the particles concentrate
often in a few spots within the field of view. In consequence,
the number of non-zero voxels is often much smaller than the
total number of voxels. This motivates to additionally employ
a sparsity promoting prior. Furthermore, as the reconstructed
image physically reflects a particle density, we impose non-
negativity constraints. Note that non-negativity is a common
assumption in MPI which typically leads to improved recon-
struction quality, see e.g. [3], [15], [33]. Gathering these
quantities, we propose the following variational model for
regularization in MPI:

u# = arg min
u≥0

αTV(u) + β‖u‖1 + 1

2
‖Au − f ‖2

2. (2)

Here, TV(u) denotes the total variation of u (which promotes
sparse edge sets) and ‖u‖1 denotes the �1 norm of u (which
penalizes non-zero intensities). The parameters α, β > 0
control the relative weight of the regularizing terms. Model (2)
without the non-negativity is known as fused lasso in the
statistical literature [20]. Henceforth, we will refer to the
model (2) as non-negative fused lasso.

Let us briefly discuss the gain of the model in the partic-
ularly simple 1D situation. In 1D, the discretization of the
non-negative fused lasso has the explicit expression

u# = arg min
u∈(R+

0 )n
α

∑

i

|ui+1 − ui | + β
∑

i

|ui |

+ 1

2

∑

i

|(Au)i − fi |2. (3)

We compare the non-negative fused lasso reconstruction
u# ∈ R

N for data f ∈ R
M to the state-of-the-art reconstruction

for synthetic and for real 1D data in Fig. 1. (We note that we
already use the 1D variant of the proposed algorithm here.
We do this to give the reader an initial impression on the
effects in the simple 1D setup. Details on the minimization
scheme and the measurement setup will be given later on
in Section V.) While Tikhonov regularization smoothes out
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Fig. 1. Comparison of the proposed method to the state-of-the-art regularization. The top row shows simulated data with known ground truth. The
bottom row displays reconstructions from measured data of a physical phantom. The phantom consists of two rods of diameter 4 mm in a 5 mm
distance to each other, and the right rod has half of the concentration of the left one. The ordinate indicates the particle concentration in linear and
arbitrary scale. In both cases Tikhonov regularization captures the two desired peaks but does not restore their homogeneous concentration (first
column). Furthermore, for higher regularization parameters an extra spot appears. The total variation penalty produces sharply localized peaks with
homogeneous interior (second column). The lasso/�1 term can improve the results further in particular at regions with zero concentration (third
column, top). The last column shows direct comparisons.

the sharp transition between the zero particle density and the
homogeneously positive density, the proposed non-negative
fused lasso regularization recovers the sharp edges and homo-
geneous particle densities.

IV. PROPOSED ALGORITHM FOR NON-NEGATIVE FUSED

LASSO REGULARIZATION IN TIME-LAPSE MPI DATA

The non-negative fused lasso model (2) consists of a convex
optimization problem; hence, finding a global minimizer is,
in principle, a tractable problem. For small system matrices
A – as they appear for example in the 1D MPI setup –
we can use generic solvers for example the Chambolle-Pock
algorithm [25]. For large system matrices – in particular, for
3D MPI – the generic solvers have a serious bottleneck: they
require the evaluation of the proximal mapping of the data
term in each iteration. Recall that the proximal mapping of an
extended real-valued functional H is defined by

proxH (v) = arg min
u

H (u) + 1

2
‖u − v‖2

2. (4)

In MPI, H (u) = Au for the non-sparse and non-well struc-
tured system matrix A. Hence, evaluation of proxA(v) for the
system matrix A amounts to the time-consuming solution of
a non-sparse linear system of dimension N M . To circumvent
this bottleneck, we propose a new minimization method: we
utilize a specific finite difference discretization of the TV
penalty along with a specific use of a generalized forward
backward splitting.

A. Near-Isotropic Discretization Adapted to
the Acquisition Geometry

While the explicit formulation of the TV penalty is straight-
forward in 1D as shown in equation (3) it is more involved
in higher dimensions. In 2D, the simplest discretization of the
TV term consists of finite differences with respect to both
coordinate axes, i.e.,

TV2D,aniso(u) =
∑

i j

|ui j − ui, j+1| +
∑

i j

|ui j − ui+1, j |. (5)

Unfortunately, this discretization is anisotropic which may
lead to undesired block artifacts (geometric staircasing) in
the reconstruction [35]. To prevent such effects, we utilize
discretizations yielding near-isotropy. The following scheme
has been proposed by the authors in the context of Potts
priors [21], [36]. We start with a system of finite differences
N = {a1, . . . , aS} ∈ Z

2 \ {0} and a set of corresponding
positive weights ω1, . . . , ωS . Using these systems, we consider
the discretization of the TV prior

TV2D(u) =
S∑

s=1

ωs‖∇as u‖1 =
S∑

s=1

∑

i j

ωs |ui j − u(i, j )+as |, (6)

consisting of a weighted sum of oriented finite differences.
Note that the simplest case TV2D,aniso in (5) corresponds to
a1 = (1, 0), a2 = (0, 1) and ω1 = ω2 = 1. A reasonable,
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more isotropic, finite difference system is given by

N2D = {(1, 0), (0, 1), (1, 1), (1,−1),

(2, 1), (2,−1), (1, 2), (1,−2)}, (7)

see [35]. It contains finite differences in axial, diagonal, and
“knight-move” directions (referring to the moves of a knight
in chess). In [21], the following weights have been derived

ωs =

⎧
⎪⎪⎨

⎪⎪⎩

√
5 − 2, fors = 1, 2,

√
5 − 3

2

√
2, fors = 3, 4,

1
2 (1 + √

2 − √
5), fors = 5, ..., 8.

(8)

We briefly discuss the gain of this discretization over the
anisotropic one (5). First note that a neighborhood system
along with the weights gives rise to a norm ‖a‖N given for
a ∈ R

2 by ‖a‖N = ∑S
s=1 ωs |〈a, as〉|. The above weights

are constructed such that ‖as‖N coincides with the Euclidean
norm ‖as‖2 for all vectors as in the neighborhood system [21].
With these weights, the ratio of the longest and the shortest
unit vector is only about 1.03. Thus, this discretization can be
considered as almost isotropic. For comparison, the ratio is as
high as

√
2 ≈ 1.41 for the anisotropic discretization.

In 3D, we have to deal with the additional challenge that
the sampling rate along the third dimension, 	z, is typically
different from that of the other two dimensions, 	x and 	y.
Concretely, the acquisition setup of the utilized MPI scanner
senses the object in steps of 	x = 2 mm in x-direction,
	y = 2 mm in y direction, and 	z = 1 mm in z-direction.
Hence the size of a voxel is 2 × 2 × 1 mm3. To account for
this, we adopt a discretization developed in our work [22] for
Potts priors. Here, we briefly recall the approach. As in 2D,
we use a discretization of the form

TV3D(u) =
S∑

s=1

ωs‖∇as u‖1 =
S∑

s=1

∑

i j k

ωs |ui jk − u(i, j,k)+as |.

(9)

A reasonable finite difference system for 3D is given by

N3D = {(1, 0, 0), (0, 1, 0), (0, 0, 1),

(1, 1, 0), (1,−1, 0), (1, 0, 1),

(1, 0,−1), (0, 1, 1), (0, 1,−1),

(1, 1, 1), (1, 1,−1), (1,−1,−1), (−1, 1,−1)} (10)

which corresponds to the 26-connected neighborhood. Let δ
be the vector consisting of the three face areas of a voxel,
i.e., δ = (	y	z,	x	z,	x	y). We have proposed to con-
struct the weights ωi as minimizers of the constrained least
squares problem

min
ω

‖T ω − q‖2
2, s.t. ω ≥ 0. (11)

Here, T is the S × S matrix given by Tst = |〈as, at 〉|,
and qs = (

∑3
i=1(δi · (as)i )

2)1/2. The problem (11) can, for
example, be solved by using an active set method [37].

As the �1-penalty does not depend on neighborhood rela-
tions we use the standard discretization ‖u‖1 = ∑

i j |ui j | for

2D and ‖u‖1 = ∑
i j k |ui jk | for 3D. To summarize, we propose

to discretize the fused lasso as

u# = arg min
u≥0

α

S∑

s=1

ωs‖∇as u‖1 + β‖u‖1 + 1

2
‖Au − f ‖2

2,

(12)

with the neighborhood systems in (7), (10) and the weights in
(8), (11), for 2D and 3D, respectively.

We have described the weight design for nonequal voxel
side lengths in the 3D setup. Nonequal pixel side lengths
may also occur in a 2D setup if the gradients of the selection
field are not approximately equal. The proposed weight design
can be adapted to 2D by simply solving (11) using the
neighborhood system (7), the design matrix Tst = |〈as, at 〉|,
and the length vector qs = (

∑2
i=1(δi · (as)i )

2)1/2.

B. Minimization Using Generalized
Forward Backward Scheme

Our next goal is to compute the minimizer of the discrete
non-negative fused lasso problem (12). To this end, we first
rewrite (12) as

u# = arg min
u

S∑

s=1

(

αωs‖∇as u‖1 + β

S
‖u‖1

)

+ I+(u) + 1

2
‖Au − f ‖2

2, (13)

where we use the penalty I+(u) to incorporate the constraints
into the objective function: I+(u) is equal to 0 if ui j ≥ 0 for
all i, j , and equal to ∞ otherwise. Note that omitting I+ is
equivalent to dropping the non-negativity assumption. Using
the short-hand notation

Gs(u) = αωs‖∇as u‖1 + β

S
‖u‖1 and F(u) = 1

2
‖Au − f ‖2

2,

our optimization problem (13) has the form

arg min
u

S∑

s=1

Gs(u) + I+(u) + F(u). (14)

We now apply the generalized forward backward scheme
of Raguet et al. [23] to our splitting (14): concretely, we
apply a gradient descent with respect to the data fitting
functional F (forward step) and proximal mappings with
respect to the directional fused lasso type functionals Gs and
the positivity term I+ (backward steps). Then, the generalized
forward backward scheme for the present image formation
model (14) reads

z(k+1)
1 = z(k)

1 + λk

(

prox γ G1
r1

(
2u(k) − z(k)

1 − γ∇F(u(k))
)

−u(k)

)

,

...

z(k+1)
S = z(k)

S + λk

(

prox γ GS
rS

(
2u(k) − z(k)

S − γ∇F(u(k))
)

−u(k)

)

,
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z(k+1)
S+1 = z(k)

S+1 + λk

(

prox γI+
rS+1

(
2u(k) − z(k)

S+1 − γ∇F(u(k))
)

−u(k)

)

,

u(k+1) =
S+1∑

s=1

rs z(k+1)
s .

Here, the positive numbers rs , s = 1, . . . , S + 1, are weights
summing up to one, i.e.,

∑S+1
s=1 rs = 1. Raguet et al. [23]

have shown that the generalized forward backward scheme
converges to a minimizer if δ = 1/L, γ ∈ (0, 2δ), and
λk ∈ (0, min( 3

2 , 1
2 + δ/γ )) for all k ∈ N. Here, L is

the smallest Lipschitz constant of ∇F . In our case, L =
‖A∗ A‖op = √|ρmax| where ρmax is the maximum eigenvalue
(in absolute value) of ÃT Ã. The particular choice of the above
weights rs and the other algorithmic parameters δ, γ , and λk

are discussed in Section IV-D.

C. Efficient Computation of the Subproblems

As a first step, we have to compute the gradient with respect
to the data term F . A straightforward calculation yields

∇F(u) = A∗(Au − f ). (15)

Hence, the gradient step has the computational complexity of
a matrix vector multiplication; precisely, it is in O(N M).

Next, we consider the proximal mapping of the non-
negativity enforcing functional I+. We note that the minimiza-
tion problem is separable with respect to the voxels. Hence,
we get the expression

(proxγI+/rS+1
(u))i j = arg min

r∈R

γ
I+(r)

rS+1
+ 1

2
‖r − ui j ‖2

2

= max(0, ui j ). (16)

The computational complexity of this step is O(N).
It remains to calculate the proximal mappings for the Gs :

z#
s = proxγ Gs/rs

(v)

= arg min
u

γαωs

rs
‖∇as u‖1 + γβ

rs S
‖u‖1 + 1

2
‖u − v‖2

2.

The crucial observation is that the optimization problem can be
decomposed into one-dimensional subproblems with respect to
the path defined by the finite difference vector as . For instance,
for the direction a1 = (1, 0) we have

(z#
1):, j = arg min

u∈Rm

γαω1

r1
‖∇a1u‖1 + γβ

r1S
‖u‖1

+ 1

2
‖u − v:, j ‖2

2, (17)

where v:,i = (v1,i , . . . , vm,i ). Hence, we have to solve prob-
lems of the form

v# = arg min
v∈Rn

α′
n−1∑

i=1

|vi+1 − vi | + β ′
n∑

i=1

|vi |

+ 1

2

n∑

i=1

(vi − f ′
i )

2. (18)

Algorithm 1 Proposed Algorithm for Edge Preserving Regu-
larization in Time-Lapse MPI

To do so, we first consider the special case β ′ = 0. Then, (18)
can be solved exactly using the taut string algorithm which has
linear complexity [38], [39]. We use the fast implementation of
L. Condat [27].1 Remarkably, the case β ′ > 0 can be derived
easily from a solution for the case β ′ = 0 : if a solution u0

for β ′ = 0 is known then the solution for u# for (18) is given
by the soft thresholding operation

u#
i = STβ ′(ui ) = sign(u0

i ) max(|u0
i | − β ′, 0), i = 1, . . . , N,

(19)

see [26, Proposition 1]. As the soft thresholding has linear
complexity as well, we get the total complexity O(N) for the
proximal mappings of G1, . . . , GS .

To summarize, the complexity of each iteration is governed
by the gradient descend step which is O(N M).

D. Complete Algorithm

The complete procedure described above is outlined
in Algorithm 1. Next we discuss the parameter choice, a
warmstarting strategy, and the potential for parallelization.

1Implementation available at http://www.gipsa-lab.grenoble-inp.fr/
laurent.condat/software.html.
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TABLE I
REGULARIZATION PARAMETERS AND NRMSE AS WELL AS SSIM OF THE RECONSTRUCTED IMAGES

1) Parameter choice: As algorithmic parameters, we
utilize γ = δ, λk = 1, and the weights r1 = . . . = rS+1 =
1/(S + 1), which guarantee convergence [23]. The model
parameters α, β are adjusted empirically. To do so, it is
easier to adjust one parameter after the other than both
simultaneously. In our experiments, we observed that the α-
parameter has a bigger influence on the visual appearance
than β. Therefore, we first determined a reasonable value for
α, and then adjusted β in a fine-tuning step. The choice of a
stopping criterion mainly depends on the desired application.
Here, we stop if the relative change between two iterates,
‖uk − uk+1‖2/(‖uk‖2 + 10−3), falls below a tolerance, or if a
maximum number of iterations is reached.

2) Warmstarting for time-lapse data: Initializing the
algorithm with a rather arbitrary guess such as the zero vector
may lead to a larger number of iterations. To reduce the
number of iterations, we take advantage of the high temporal
resolution of MPI. This implies that there is typically only
little difference between two consecutive frames which led us
to initialize our iterative method with the result of the previous
frame.

3) Parallelizability: Algorithm 1 is highly parallelizable.
At the level of a single iteration, the part with the highest com-
putational complexity is the gradient step. The involved matrix
vector multiplication can be rowwise distributed to multiple
processors. We note that, despite its higher complexity, the
gradient step (15) needs less time than the evaluation of the
proximal mappings (17) for the problem sizes considered in
this work. Regarding the proximal mappings, there are two
possibilities for parallelization: first, the S = 13 iterations of
the s-loop in Algorithm 1 as well as the pointwise maximum
can be evaluated all in parallel. Second, if more than 14 proces-
sors are available (e.g. on the CPU or GPU), we can distribute
the univariate fused lasso solvers as well because they consists
only of independent rowwise, columnwise and diagonalwise
operations.

V. NUMERICAL EXPERIMENTS

We have implemented our algorithm in Matlab. The exper-
iments were conducted on a desktop computer (Intel Xeon
E5, 3.5 GHz, 32 GB RAM). In all experiments, A is the
system function corresponding to the specific imaging setup
(1D, 2D, or 3D). We compare our results with the state-of-
the-art method based on the non-negative Tikhonov model,
i.e., model (1) with additional non-negativity constraints.
As solver we utilize the Kaczmarz method which has been

Fig. 2. Phantoms used for the simulation study.

analyzed in the MPI context in [7]. The choice of the
regularization parameters will be explained within the para-
graph related to specific experiments. Here, we simulated data
according to f = Aν+η, where ν denotes the ground truth of
size N = 40×40, M = 6532 is the number of measurements,
A is a simulated system matrix of dimension M × N , and η is
a vector of Gaussian white noise.

We first evaluate the reconstruction quality of non-negative
fused lasso regularization in comparison to that of non-
negative Tikhonov regularization for several different phan-
toms: a simulated stenosis, overlapping ellipses and a vas-
cular tree, see Fig. 2. The data are corrupted with one
percent Gaussian noise. We first determined the optimal
model parameters in the sense that best normalized root
mean square error (NRMSE) with respect to the ground truth
is obtained when iterating until convergence. We note that
the model parameters of Tikhonov regularization and fused
lasso regularization typically live on different scales. The
reconstruction results are shown in Fig. 3, and the corre-
sponding parameters and the errors are given in Table I.
For further quantitative comparison, we use the structural
similarity index (SSIM) [40]. The SSIM is better suited to
perceive visual quality than measures based on the L2 error
as it takes the similarity of local structures into account. The
SSIM is bounded from above by 1 and a higher SSIM means a
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Fig. 3. Comparison between non-negative fused lasso reconstruction
(left column, proposed method) and Tikhonov reconstruction with non-
negativity constraint (right column) for noisy data corrupted with 1 percent
Gaussian noise. (See Table I for the regularization parameters, the
normalized root mean square error and structural similarity index.)

better reconstruction quality. Here, we use Matlab’s function
ssim with standard parameters for the computation of the
SSIM. In all three cases, the non-negative fused lasso solution
provides better results than the baseline method, both with
respect to visual inspection, to the NRMSE, and to the SSIM.

Next we compare the robustness regarding higher noise
levels. To this end, we corrupted the data with 5, 10, and
15 percent Gaussian noise. As before, we determined the
optimal parameters with respect to the NRMSE. The recon-
struction results are shown in Fig. 4. We observe that even
in the case of 15 percent noise, the fused lasso reconstruction
retains the homogeneity and the sharp boundaries of the object.

We further compare the sensitivity to the regularization
parameters. In Fig. 1, we can qualitatively observe in the
onedimensional setup that fused lasso provides satisfactory
reconstructions for a broad parameter range of α and β.
Next we perform a quantitative comparison in the twodi-
mensional setup. As mentioned earlier, the α-parameter has
largest influence on the result; hence we focus on sensitivity
for this parameter. In Fig. 5, we plot the NRMSE over the
regularization parameters for the fused lasso and the Tikhonov
method for two different noise levels. In comparison with the
non-negative Tikhonov solution, a wide range of α permits

Fig. 4. Non-negative fused lasso reconstruction (left column, proposed
method) and non-negative Tikhonov reconstruction (right column) from
noisy data corrupted with 5, 10, and 15 percent noise (from top to
bottom). We observe that the fused lasso method recovers the sharp
boundaries and the spatial homogeneity even for high noise levels.
(See Table I for the regularization parameters, the NRMSE and SSIM.)

Fig. 5. Illustration of the optimal NRMSE in dependence of the
regularization parameter α in the case of non-negative fused lasso
regularization (with β = 0) and non-negative Tikhonov regularization
with non-negativity constraint for the data from Fig. 3 a (left) and
Fig. 4 a (right).

to obtain better image quality in the case of low noise. For
stronger noise, almost any choice of α would perform better
than Tikhonov regularization.

Eventually, we give a more detailed description of the
experimental setup of the Fig. 1. A 1D measurement sequence
directed in y direction was applied using a drive-field strength
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of 14 mTμ−1
0 and a gradient strength of 0.75 Tm−1μ−1

0 in
y direction. The phantom consists of two homogeneously filled
rods of diameter 4 mm and 10 mm length in a 5 mm distance
to each other. The excitation with the FFP along a 1D line
intersecting the long axis of both rods perpendicularly projects
the phantom to two homogeneous spots of diameter 4 mm in a
5 mm distance to each other. One rod was filled with undiluted
Resovist, while the other had two-fold dilution. Thus, an ideal
reconstruction consists of one plateau of diameter 4 mm, and,
in 5 mm distance, another plateau of diameter 4 mm with
half of the particle concentration. The system matrix has been
measured for a “pixel” resolution of 1 mm, and it has the
dimension M = 38 and N = 49. For computation of the
fused lasso solution, we have used Algorithm 1 for the one-
dimensional case, where in particular S = 1 and the only
weight ω1 = 1.

VI. IN-VITRO ANGIOPLASTY OF A STENOSIS

It is a promising application of MPI to visualize instruments
for cardiovascular intervention [4], [5]. Here, we demonstrate
the advantages of our method in an experimental medical
setup, the tracking of a balloon catheter during an in-vitro
angioplasty. A stenosis is a narrowing of a blood vessel
which can lead to stroke or cardiovascular diseases such as
angina or myocardial infarction [41]. It can be treated by
introducing a balloon catheter into the affected blood vessel
and widening the narrowed or obstructed parts. Here, we
use our reconstruction method for immediate verification of
a successful intervention.

A. Materials and Methods

Experiments are carried out using a preclinical MPI scanner
from Philips/Bruker (Ettlingen, Germany). A 3D measurement
sequence is used (selection field gradient: 1.5 Tm−1μ−1 in
z direction and 0.75 Tm−1μ−1 in x and y direction, drive
field amplitude 14 mTμ−1

0 in all three directions) to capture
the in-vitro angioplasty. The repetition time of 21.542 ms
is determined by the density of the trajectory, which is not
adjustable for the scanner used. In total the scanner measured
20000 successive frames without averaging, which amounts to
a total measuring time of 7 min and 10 s. For reconstruction
a system matrix A ∈ R

M,N with M = 13104 and N =
25 × 25 × 25 is used. It was measured with a 2 × 2 × 1 mm3

ferucarbotran (Resovist ®, FUJIFILM RI Pharma Co., Ltd.,
Japan) filled delta sample averaged over 30 drive field cycles
at each position. A vessel phantom was build from a polyvinyl
chloride tube with an inner diameter of 4 mm. A partial
ligature of the tube using a silk suture material realized the
stenosis. During the MPI measurement a balloon catheter
(Armada 35, 6/20 mm, Abbott Vascular, Santa Clara, USA)
was moved to the position of the stenosis. The balloon was
then inflated with ferudextran (MM4, TOPASS GmbH, Berlin,
Germany) with an iron concentration of 50 mmol(Fe)/l. Since
the physical behavior of Resovist and MM4 is highly similar,
it is feasible to use a Resovist system matrix for reconstructing
MM4 data. This has the advantage that the SNR within the
system matrix is better due to the higher base concentration

of Resovist compared to MM4. At first, we inflated with a
pressure of 4.5 bar to visualize the shape of the stenosis and
then to a pressure of 20 bar to dilate the stenosis, which
can be seen in Fig. 6. At the end of the measurement, the
catheter is deflated. As before, the baseline method is the
Tikhonov/Kaczmarz method with non-negativity constraints
where we used the regularization parameter ρ = 3.14·108. For
the proposed method, we found empirically that the parameters
α = 0.001 and β = α/4 yield a reasonable tradeoff between
noise suppression and preservation of relevant structures.
We utilize row normalization weights since it improved the
image quality and greatly reduced the number of necessary
iterations. We have set the stopping tolerance to 5 · 10−3, and
the maximum number of iterations to 50, where typically the
first criterion applies.

B. Results

In Fig. 6, we show selected frames of the recorded sequence.
More precisely, we show a section of 651 consecutive frames
(frames 350– 1000) which contain the relevant phases, i.e. the
inflation phase starting around frame 380, and the deflation
phase starting around frame 940. The stenosis vanishes near
frame 660. The complete sequence is provided in the sup-
plementary material. In the figure, we visually compare the
reconstructions obtained by the baseline method and by the
proposed method w.r.t. to the maximum intensity projections
in z-direction, 3D surface renderings, and the time evolution
of the central axial section of the catheter. Quantitatively, we
compare the signal-to-noise ratio which is given by the ratio
of the mean intensity over a signal region and the standard
deviation of the noise, i.e., SNR = μsignal/σnoise where we use
decibel as unit. We compute the mean of the signal μsignal as
the mean intensity over the catheter, and the standard deviation
of the signal-free region. We utilize here frame number 800
where the catheter is fully inflated. The baseline reconstruction
gives a signal-to-noise ratio SNRbaseline = 14.1dB. Using the
proposed method, we obtain the significantly higher ratio of
SNRproposed = 30.0 dB. We also observe that the catheter is
more homogeneous: the variance on the catheter is 0.007 for
the reference reconstruction and only 0.001 for the proposed
method. The higher regularity of the proposed reconstruction
leads to a smoother 3D rendering than the baseline approach.
For the rendering, we use the Matlab function isosurface.
Seen over time, the proposed method allows for easier identi-
fication of the time point when the stenosis is vanishing.

The higher quality comes at the cost of higher computational
effort. Our implementation needs in average 5.0 seconds for
one frame which is around seven times slower than the state-
of-the-art reconstruction (0.7 seconds per frame). We note
that the proposed method and the baseline method have been
implemented in Matlab without any explicit parallelization.
Thus the reconstruction times are directly comparable.

VII. DISCUSSION

The conducted simulation study showed that the proposed
method based on the non-negative fused lasso yields signifi-
cantly higher reconstruction quality for MPI than the currently
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Fig. 6. Tracking of an in-vitro angioplasty using MPI: A balloon catheter is placed within a vessel phantom with a stenosis and dilated using an
MPI tracer. The phantom consists of a tube with a narrowing in the center. We observe the disappearance of the narrowing between frame 650 and
700 indicating successful intervention. The 3D images have 253 voxels with a size of 2× 2× 1 mm each. Compared to the baseline approach, our
method has significantly less noise while all relevant structures are preserved. Also, the proposed reconstruction better reflects the homogeneous
particle concentration within the balloon. In the new approach edges are displayed sharply (a,b,d). Therefore, the 3D rendering gives a smoother,
more realistic shape and captures the real extend of the stenosis (c). As a consequence, when expanding the balloon the narrowing can be seen
clearer allowing a more accurate visual estimation of its extend (images 5 to 7 in subfigures a and b).

used reconstruction method based on non-negative Tikhonov
regularization. In particular, more noise is suppressed while
the relevant structures, in particular the edges, are preserved.

The edge preserving aspect could be seen most notably at
higher noise levels. Also in the medical application, the angio-
plasty, our method gives higher reconstruction quality. This has
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two important advantages. First, for volume visualization of
3D vessel trees using isosurfaces it is highly important that the
background noise is low and that the edges are sharp. Since
MPI provides volume data with high temporal resolution this
will be an important advantage compared to the currently used
digital subtraction angiography (DSA), which only provides
projections for navigation. Second, sharp edges are crucial for
the quantification of stenosis degree and distance measure-
ments in general. Overall, the higher image quality leads to a
higher level of confidence for the clinician for detecting the
stenosis, placing the catheter and eventually performing the
angioplasty.

Next we discuss current limitations. It is well-known that
TV regularization may lead to so called staircasing effects
which refers to the phenomenon that linear trends in the
underlying image are reconstruced in a blocky fashion; see
e.g. [42], [43]. If the underlying signal consists of regions
which are of approximately homogeneous density, the negative
effects of staircasing are relatively low. If staircasing gets an
issue in practice, it can be mildened by using higher order
TV-type regularization techniques such as total generalized
variation (TGV) [43], [44] or by Mumford-Shah regular-
ization [45]–[47]. Another issue to discuss is the iteration
reduction by warmstarting. Here, sudden and large intensity
changes in a pixel can cause blurry regions near that pixel.
Currently, we have to increase the number of iterations in such
a case. However, in the studied target application the intensity
changes from frame to frame are moderate so that a moderate
number of iterations leads to a satisfactory result. In particular,
the result with warmstarting is closer to the minimizer than
the result obtained by initialization with zero.

The minimization of the target functional is based on the
generalized forward backward scheme of Raguet et al. [23].
However, we use a different splitting approach which – in
contrast to [23] – leads to univariate fused lasso problems.
We further note that one could employ a Potts prior instead
of the TV prior for the target application, as the underlying
images are approximately piecewise constant. An advantage
of Potts regularization is that it provides directly a segmenta-
tion [21]. On the flipside, the Potts model is nonconvex, and
it is therefore computationally more demanding.

VIII. CONCLUSION AND FUTURE RESEARCH

In this work, we have developed an algorithmic framework
for noise reducing and edge preserving reconstruction for
magnetic particle imaging. First, we have motivated to use the
non-negative fused lasso as prior. Then, we have presented a
discretization of the prior adapted to the anisotropic gradient
of the MPI selection field. Based on this, we have proposed a
specific splitting of the functional which allowed us to invoke a
generalized forward backward scheme in a way that no linear
systems of equations has to be solved in the iteration. This
avoids inner iterations. In particular, the proposed algorithm
essentially consists of a single loop where up to 50 iterations
have turned out to be sufficient in practice. The essential
operations are two matrix-vector multiplications and thirteen
univariate pathwise fused lasso solvers which are of linear

complexity in the number of voxels. A series of numerical
experiments has demonstrated that the non-negative fused
lasso suppresses more noise, and, at the same time, better
preserves the edges than the currently used reconstruction
method based on non-negative Tikhonov regularization. The
proposed method also gives higher reconstruction quality for
the prototypical medical application of angioplasty at an only
moderately higher computational effort.

In a future work, we plan to speed-up our implementation
by the following two steps: implementation in C/C + + and
parallelization based on OpenMP for multicore CPUs and
based on CUDA for the graphics processing unit. Depending
on the utilized setup, speedups in the range of 10-100 seem
to be feasible which would result in around 2-20 frames per
second in the 3D setup.
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