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Summary. This chapter presents a new framework for the detection and accurate
quantification of motion, orientation, and symmetry in images and image sequences.
It focuses on those aspects of motion and orientation that previously could not be
handled successfully and reliably by existing methods, for example motion superpo-
sition (due to transparency, reflection or occlusion), illumination changes, temporal
and/or spatial motion discontinuities, and dispersive non-rigid motion. The solu-
tions to these problems significantly advance the applicability of image sequence
processing techniques in technical, medical, and scientific application areas. The
novel algorithms presented here result from the combination of modern statistical
signal processing, differential geometric analysis, novel estimation techniques, and
nonlinear adaptive filtering and regularization techniques. The performance of these
algorithms is characterized and their applicability is demonstrated by several key
application areas including environmental physics, geology, botany, medical imaging,
and technical applications such as microfluidics and quality control.
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7.1 Introduction

We consider the general task of accurately detecting and quantifying ori-
entations in n-dimensional signals s. The main emphasis will be placed on
the estimation of motion, which can be thought of as orientation in spatio-
temporal signals. Associated problems such as the optimization of matched
kernels for deriving isotropic and highly accurate gradients from the signals,
optimal integration of local models, and local model selection will also be
addressed.

Many apparently different approaches to get a quantitative hold on motion
have been proposed and explored, e.g. using the brightness constancy con-
straint [48, 89], the structure tensor [42, 49], blockwise matching or correlation
[9, 10], quadrature filters [22, 45, 51], steerable filters and other filter-based
approaches [18, 111], projection on polynomial subspaces [20], autocovariance
based analysis [66], and many variants of these approaches. As mentioned
previously, the estimation of motion is closely related to the estimation of
orientation or linear symmetry in 2D images [11, 39] and the computation of
curvature [126, 133] in 2D or higher dimensional spaces.

It is relatively well understood, how these various approaches can be employed
in the case of simple motion patterns, which can – at least on a local scale
– be approximated by a single rigid translational motion. This applies also
to moderate amounts of noise, especially if the noise process is stationary,
additive, and its amplitude distribution is unimodal.

However, most of the aforementioned approaches show severe limitations in
case of complex motion patterns or strong disturbances, which are character-
istic for real-life image data. Problematic situations occur for instance in case
of motion superposition (due to transparency or specular reflection), temporal
and/or spatial motion discontinuities, and spatio-temporal flow effects (relax-
ation, diffusion, etc.). It is this area, where the current challenges in motion
analysis are found, in which significant contributions will be made throughout
this chapter. Improved algorithms will necessarily be locally adaptive, nonlin-
ear and based on modern signal processing tools, such as Total Least Squares,
anisotropic diffusion, and Markov Random fields, or extend classical signal
theory such as those presented by [22, 123].

An overview of the problem of multiple motions has been given in [12] and
robust methods for multiple motions have been proposed. The problem of two
motions has been first solved by Shizawa and Mase [109, 110]. Their approach
is based on Fourier methods and on solving a six-dimensional eigensystem
that limits the method to only two motions. Here we will show how to avoid
such an eigensystem in case of one motion resulting in a simpler and faster
solution for multiple motions. Important contributions in characterizing the
spectral properties of multiple motions have been made [134]. In dealing with
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the problem of multiple motions, the useful and intuitive notions of ’nulling
filters’ and ’layers’ have been introduced [16, 127]. Their approach is more
general in that it treats the separation of motions into layers, but is also
limited to the use of a discrete set of possible motions and a probabilistic
procedure for finding the most likely motions out of the set.

The problems mentioned before are dealing with characteristics of the signal
itself; but additionally we find several kinds of disturbances in real life image
data. For instance: rain, snow or low illumination conditions cause different
types of noise. Besides that, outdoor scenes often are afflicted by illumination
changes, or specular reflections. Additionally, many scientific or medical appli-
cations acquire images at the limit of what is physically and technically feasi-
ble. This often introduces strong disturbances such as heavy signal-dependent
noise.

As will be outlined, the estimation of complex orientation from image data re-
presents an inverse problem. Paramount to solving this problem are adequate
models. In section 7.2 a number of such extended models will be presented,
ranging from those incorporating brightness changes along given orientations
over those incorporating multiple orientations to those deducing scene depth
in motion models. The models constrain orientation to image intensities. Still,
generally more unknowns are sought than can be fully recovered from these
presented constraint equations. In section 7.3 a number of approaches will be
presented that make it feasible to derive the sought parameters by introducing
additional constraints. Refined estimators will be presented that take statis-
tics into account to perform maximum likelihood estimates. The presented
algorithms are based on differential orientation models, relying on an accu-
rate extraction of gradients from image intensities. In section 7.4 schemes for
computing these gradients from optimized filters will be presented. Closely
related to estimating the orientation parameter of the introduced models is
the task of selecting the correct model, given a noise level by which the image
data is corrupted. Two such approaches are presented in Section 7.5. The cor-
rect model that can be retrieved from the image data will also depend on the
signal structures. These structures can be categorized by their intrinsic dimen-
sion, a concept which is also introduced in this section. The inverse problem
of estimating model parameters is performed by an optimal regularization.
In section 7.6 different regularization schemes are presented, that preserve
anisotropies in the image signal. These approaches are also used for suppress-
ing noise prior to performing the estimation, leading to optimum results. The
problem of orientation estimation in multiple subspaces is a prominent one,
that has significant impact, both on modeling and estimation, but for ap-
plications as well. Algorithms tackling this problem are detailed in Section
7.7. The developed algorithms make novel applications feasible. In section
7.8 some exemplary applications are presented stemming from different fields
such as environmental-, geo-, and life sciences. This chapter closes with some
concluding remarks in section 7.9.
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7.2 Modeling multi-dimensional signals

7.2.1 Motion and subspace models

We regard n-dimensional signals s(x) defined over a region Ω, e.g. images and
image sequences. Motions (translations) and orientations correspond to linear
d-dimensional subspaces E of Ω with 1 ≤ d < n, such that

s(x) = s(x+ ku) ∀k ∈ R and ∀x,x+ ku ∈ Ω and u ∈ E. (7.1)

Often one needs to (i) detect the existence of such a subspace E and (ii) esti-
mate the parameter vector ku, which corresponds (not always, see Sec. 7.3.2)
to the direction of motion in the regarded volume. The values of s can be
scalar as in gray-level images or vector valued (denoted s) as in color or mul-
tispectral images. The estimation is often based on the fact that constancy
of the signal in a certain direction in Ω, such as it is reflected in Eq. (7.1)
implies linear differential constraints such as the classical brightness constancy
constraint equation (BCCE)

∂s

∂u
= 0 for all u ∈ E . (7.2)

This is the simplest special case of general partial differential equations which
result from applying a suitable differential operator α(u) on the signal:

α(u) ◦ s = 0 (7.3)

and we will learn about more sophisticated operators α(u) later in this contri-
bution. Assuming the constancy of a moving brightness pattern, motions can
be interpreted as local orientations in spatio-temporal signals (n = 3, d = 1).
Many motion models are based on Taylor expansions of Eq. (7.1) (cf. e.g. [23]).
Writing Eq. (7.1) with time t as individual parameter, we obtain

s(x(t), t) = s(x+ u(x, t)∆t, t+∆t) (7.4)

where s is interpreted as the constant brightness signal produced by a spatial
point x(t) moving in time t. First order approximation of Eq. (7.4) yields

ds
dt

= 0 ⇔ ∇T(x)s · u+
∂s

∂t
= 0 ⇔ ∇T(x,t)s · (u

T , 1)T = 0 (7.5)

where ∇ is the gradient operator with respect to parameters given as in-
dices and the general differential operator α(u) from Eq. (7.3) takes the form
α(u) := ∇T(x)u + ∂

∂t . Being based on derivatives, such models are called dif-
ferential models. One may further model the motion field u(x, t) locally by
applying a Taylor expansion
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∇Txs(u+A∆x) +
∂s

∂t
= 0 (7.6)

where the matrix A = ∇xuT contains the spatial derivatives of u, and ∆x =
x0−x are local coordinates. This is called an affine motion model. These and
other motion models, i.e. parametrizations of u, can be found e.g. in [23].

7.2.2 Multiple motions and orientations

In case of multiple motions and orientations, we are dealing with a (linear,
multiplicative, or occluding) superposition of subspaces as defined in Eq. (7.1).
In case of two subspaces, and additive superposition, one has

s(x) = s1(x+ ku1) + s2(x+ ku2). (7.7)

The model for multiplicative superposition is simply

s(x) = s1(x+ ku1) · s2(x+ ku2), (7.8)

which can be transformed into Eq. (7.7) by taking the logarithm. The model
for occluded superposition is

s(x) = χs1(x+ ku1) + (1− χ)s2(x+ ku2), (7.9)

where χ(x) is the characteristic function that defines the occlusion. As we
shall see in Sec. 7.7, the constraint in Eq. (7.2), and some novel mathematical
tricks, can be used to detect and estimate multiple motions and orientations.

7.2.3 Dynamic 3D reconstruction

Since the early work of [47] optical flow has been used for disparity and there-
fore 3D structure estimation. For disparity estimation time t in Eq. (7.4) is
replaced by camera displacement r. Therefore time and camera displacement
may be considered equivalent as ”time-like” parameters in a data set acquired
by a multiple camera setup . Combining equations with N time-like parame-
ters sets the dimension d of subspace E to d = N because brightness constancy
applies for each of these parameters. We therefore get a 3-dimensional solu-
tion space when using time t and 2 camera displacement directions r1 and
r2. Following Eq. (7.2) we achieve 3D position and 3D motion depending on
the motion field either of the object or the camera. Using Eq. (7.4) we can
determine motion of an object whereas replacing time t in this equation with
camera position r, called structure from motion, yields disparity. Combining
these estimations yields a higher dimensional solution space and the problem
of determining the parameters in this space (see [96] and [99]). Still assuming
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constant brightness now in time and in camera displacement direction we get
according to Eq. (7.5)

∂s

∂u
= 0 ⇔ ∇T su = 0 with u = (dx, dy,dr1,dr2,dt)

T (7.10)

Parameters like optical flow (u1, u2) or disparity ν are then obtained by com-
bination of subspace solutions, e.g.

u1 =
dx
dt

∣∣∣∣
dr1,dr2=0

, u2 =
dy
dt

∣∣∣∣
dr1,dr2=0

, ν1 =
dx
dr1

∣∣∣∣
dt,dr2=0

, ν2 =
dy
dr2

∣∣∣∣
dt,dr1=0

(7.11)
where ν1 and ν2 are dependent estimates of ν which can be transformed
into 2 independent estimates of ν (see Sec. 7.3.5). Further modeling the data
by applying a surface patch model extends the above orientation model of
Eq. (7.10). In the same way, standard optical flow can be extended to affine
optical flow (cf. Eqs. (7.5) and (7.6)).

∇Txs(u+A∆x) +
2∑
i=1

∂s

∂ri
dri +

∂s

∂t
dt = 0 (7.12)

where u contains parameters for motion and disparity, matrix A parameters
for depth motion and surface slopes, and ∆x = x0 − x are local coordinates.
A detailed derivation of the model is proposed in [96] for special cases and in
[99] for the general model.

Comparison of 3D reconstruction models

In [96] a detailed error analysis of special cases of the model, i.e. 1D camera
grid without normals with and without z-motion, 2D camera grid without any
motion with and without normals, is presented. The analysis shows that with
higher z-motion the errors due to linearization increase and that estimating
the surface normals within this framework reduces systematic errors. Further
an error analysis was done for the full model in [99]. There comparisons be-
tween (i) 1D camera grid with and without normals and (ii) 1D camera grid
with the 2D camera grid are shown. The full model performed well or better
for all parameters and the additional parameters do not lead to instabilities.
Also the 2D model is more robust with respect to the aperture problem. All
these analyses are performed using the estimation framework presented below
(Secs. 7.3.1 and 7.3.5)

7.2.4 Brightness changes

The basic approach of motion estimation requires brightness constancy along
motion trajectories, as in the model equations (7.5), (7.6), (7.10) and (7.12) for
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single motions and in Eq. (7.7) for multiple motions. In gradient based optical
flow techniques, brightness changes can be modeled by partial differential
equations in a similar manner as in [41]

α(u) ◦ s =
d
dt
h(s0, t,β) , (7.13)

where the brightness change may depend on the initial gray value s0, the
time t and a parameter vector β. It is modeled by the function h(s0, t, β).
Physically motivated brightness changes include exponential (h(t) ∝ exp(βt))
and diffusive (h(t) ∝ β∆s with the spatial Laplacian ∆s) processes. Also, the
simple linear brightness change (h(t) ∝ βt) can be used quite advantageously
if an accurate model of the actual brightness change model is unknown. In
these standard cases, β is a term independent of time t.

In the next sections, specialized application driven brightness change model,
as well as incorporations of these brightness changes to dynamic 3D scene
reconstruction and multiple motions will be introduced.

Brightness changes for fluid flows

The measurement of fluid flows is an emerging field for optical flow compu-
tation. In a number of such applications, a tracer is visualized with modern
digital cameras. Due to the projective nature of the imaging process, the tracer
is integrated across a velocity profile. For a number of fluid flow configuration,
the velocity profile can be approximated to leading order by

u(x3) = A · xn3 , (7.14)

where A is a term independent of the coordinate direction of integration x3

and time t. Integration across such a profile leads to an intensity change,
modeled by the differential equation [27]

ds

dt
= u1

∂s

∂x
+ u2

∂s

∂y
+
∂s

∂t
= − 1

n · t
s. (7.15)

This equation presents a generalization of the results obtained for Couette
flow (shear driven flow, n = 1) and Poiseuille flow (pressure driven flow,
n = 2). These brightness change models take into account effects such as
Taylor dispersion and have been applied successfully to microfluidics [32] or
in shear driven flows at the air-water interface [30].

Brightness changes in dynamic 3D reconstruction

Brightness changes can be incorporated into dynamic 3D scene reconstruction
suitably applying Eq. (7.13). One obtains the following constraint equation
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∂s

∂x
dx+

∂s

∂y
dy +

∂s

∂r
dr +

∂s

∂t
dt = s

∂h

∂t
dt. (7.16)

Brightness changes due to changing viewing direction and bidirectional re-
flectance distribution function(BRDF, see e.g. [40]) may be modeled only
temporally, but changes due to inhomogeneous illumination need additional
spatial modeling. A suitable brightness change function h(∆X,∆Y, t) has been
derived by Taylor expansion of changing BRDF influence and illumination in-
tensity [106].

h(∆X,∆Y, t) ≈ h(t,a) :=
2∑
i=1

(ai + ai,x∆X + ai,y∆Y ) ti (7.17)

with illumination parameter vector a.

Comparison of physics based brightness variation models for 3D
reconstruction model

A systematic error analysis using sinusoidal patterns in [106] demonstrates,
that modeling spatial variations of the BRDF, as shown in equation Eq. (7.17),
improves estimation results. Fig. 7.2.4 presents the improvement of the estima-
tions on a reconstructed cube moving with UZ=2mm/frame while illuminated
by a rotating spot light. Fig. 7.2.4 a and e show the first and the last image
of the cube sequence. In Fig. 7.2.4b-d the numerical error, i.e. the largest of
the three eigenvalues of the structure tensor is depicted as color overlay on
the central input image. Finally Fig. 7.2.4f-h highlight the estimation of the
3D scene flow for the three different models, i.e. constant, spatially constant
but changing in time and both spatially and temporally changing BRDF.

Brightness changes in multiple motions and orientations

The multiple-motions model can be extended to account for brightness
changes [102]. As with the operator α(u) for brightness constancy, one may
define operators for additive, multiplicative or diffusive brightness changes.
E.g. for multiplicative brightness changes Eq. (7.7) becomes

s(x, t) = s1(x− u1t)k1(t) + s2(x− u2t)k2(t) (7.18)

where k1 and k2 are scalar functions. It can be nullified via β(u1, c1) ◦
β(u2, c2) ◦ s = 0 using

β(u, c) := ux∂x + uy∂y + ∂t − c (7.19)



7 Nonlinear analysis of multi-dimensional signals 239

a b c d

e f g h

Fig. 7.1. Motion estimation of cube moving towards camera with spot light moving
around cube center. (a, e): first and last image taken with central camera. (b–d):
color coded model errors (projected on contrast reduced cube) for models with-
out (b), constant temporal (c), and spatially varying temporal brightness change
(d). Below the model errors, scaled motion estimates for the models are depicted,
respectively (f–h).

if k1(t) ∝ exp(c1t) and k2(t) ∝ exp(c2t). As in the constant brightness case
(see Sec. 7.2.2) the constraint equation is linear in mixed and therefore non-
linear parameters. A detailed analysis reveals that parameter estimation and
disentangling motion parameters can be done as in the constant brightness
case, but disentangling brightness parameters is done by solving a real instead
of a complex polynomial [102].

7.3 Estimation of local orientation and motion

7.3.1 The structure tensor approach

All of the motion models presented in Sec. 7.2 linearly relate optical flow
parameters, brightness changes and image signals. These constraints can be
formulated generally as an inner product of a data vector d and a parameter
vector p, resulting in

d>p = α(u) ◦ s− d
dt
h(s0, t,β) = 0, (7.20)

where d contains image spatio-temporal derivatives and depending on the ac-
tual constraint, the gray values s themselves. The parameter vector p consists
of the image velocities u as well as additional parameters such as those of
brightness change β or those of higher order motion [8, 24, 25].

Eq. (7.20) provides one constraint for several unknowns we seek to estimate.
An additional constraint is that of local constancy of parameters. To this
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end, the constraints of type Eq. (7.20) can be constructed for each pixel in a
spatio-temporal neighborhood, leading to a linear system of equations

D · p = 0, (7.21)

where D = [d1, . . . ,d]>. Assuming identical isotropic Gaussian noise (iid) in
all measurements, the maximum likelihood estimate for the unknown param-
eter vector is given by the total least squares (TLS) solution [25, 91, 92, 124,
128]. The total least squares (TLS) method seeks to minimize ||D · p||2, sub-
ject to the constraint that p>p = 1 to avoid the trivial solution. Usually the
rows of D are weighted according to their distance from the central pixel by
Gaussian weights w with standard deviation ρ. The structure tensor Jρ then
results from ||D · p||2

||D · p||2 = pTDTW ρDp =: pTJρp (7.22)

where W ρ is a diagonal matrix containing the Gaussian weights w. This for-
mulation yields a solution, p̂, given by the right singular direction associated
with the smallest singular value of row weighted D [74, 124] or the respective
eigenvectors of Jρ. The sought parameter vector p is found by normalizing the
last component of p̂ to unity [124]. The algorithmic aspects of TLS parameter
estimation have been explored in some detail [73, 74, 124].

7.3.2 Beyond the differential approach: the generalized structure
tensor

The attempt to express brightness constancy along the motion trajectory
by a first-order partial differential equation, that is: by using the BCCE of
Eq. (7.2) is not the unique and not the most expressive way of specifying
a relation between the entity that is sought (the motion vector u) and the
signal that can be observed. The BCCE describes the situation for a con-
tinuous signal, and it does not explicitly consider the different error terms
that are caused by observation noise, spatio-temporal pixel aperture, and by
the necessary discretization of the problem. Beyond that, the formulation in
terms of derivatives or gradients does not lend itself so much for the devel-
opment of motion estimation procedures that take into account the spectral
characteristics of the image signal and the spectral characteristics of the noise.

Assuming brightness constancy along the motion trajectory, all higher order
directional derivatives vanish in the motion direction:

∂s

∂u
=
!

0
⋂ ∂2s

∂u2
=
!

0
⋂

. . . (7.23)

A condition which is less stringent than Eq. (7.23), but nevertheless comprises
as much as possible from these multitude of conditions in a single linear equa-
tion can be obtained by summing up the constraints:
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α(u) ◦ s = α1
∂s

∂u
+ α2

∂2s

∂u2
+ α3

∂3s

∂u3
=
!

0 (7.24)

The middle part of this equation is a generator for a very rich class of filter
operators, parameterized by direction vector u:

h(x | u) ∗ s(x) =
!

0

This means that all linear operators that do not let an ideal oriented signal
s(x) pass7, have the structure of Eq. (7.24). Since all oriented signals have
power spectra that are concentrated on lines or planes in the Fourier domain,
we can denote these filters as oriented nulling filters.

Like in the case of the normal BCCE, this equation will be satisfied almost
never for a real image signal. Thus, we end up with optimization criteria like∫

x

w(x) · |h(x | u) ∗ s(x)|2 dx −→ min (7.25)

where h(x | u) comprises the combination of directional derivatives of different
order, and an optional pre-filter p(x). This means: the frequency-weighted and
localized directional variation of the signal is minimized in the direction of
motion.

In standard differential motion estimation schemes, so-called pre-filters are
used to compensate for the varying precision of the (discrete) derivative filters
for different frequencies, and in particular to obtain isotropic performance of

gradient estimates. Standard pre-filter design assumes that the Fourier spectra
of the input signal and the noise are both white. For real signals, this is clearly
not the case, as can be seen by inspecting the spatio-temporal autocovariance
function of video signals. Furthermore, the possibly scenario-dependent distri-
bution of motion vectors significantly controls the temporal part of the auto-
covariance function of the signal (cf. [53, 67]). This means that such pre-filters
should be designed in consideration of the actual autocovariance function.

We will now generalize the concept of the structure tensor in consideration of
Eq. (7.24), building upon a wider interpretation of the directional derivative
operator.

We proceed by restating the relation between directional derivatives and steer-
able filters, which have been explored e.g. in [19, 26, 111]. The partial deriva-
tive in a direction specified by a unit vector er ∈ IR3 parameterized via
spherical angles θ = (θ1, θ2) as

7 Multiple motions: The constraint equation (7.71) generalized to

h(x | u1) ∗ h(x | u2) ∗ s(x) =
!

0
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er = (a1(θ), a2(θ), a3(θ))

is given by

∂

∂er
s(x) = eTr · g(x) = eTr · ∇s(x) =

3∑
i=1

ai(θ) ·
∂s(x)
∂xi

(7.26)

Following the reasoning on pre-filters presented in Sec. 7.3.2, we may insert a
prefilter p(x) (see e.g. [95, 111])

∂

∂er
(s(x) ∗ p(x)) = =

(
3∑
i=1

ai(θ1, θ2) ·
(

∂

∂xi
p(x)

))
∗ s(x) (7.27)

For p(x) there are therefore many more functions under consideration than
only a simple Gaussian kernel8. We can design p(x) in a way that opti-
mizes the signal/noise ratio at the output of the prefilter; this is (again) the
Wiener-type prefilter approach [53, 69].On the other hand, we may generalize
the structure of the analysis scheme described by Eq. (7.27) and arrive at a
generalized class of structure tensors, as will be shown in the following.

Steerable oriented signal energy determination

We abstract now from derivative filters and regard a family of steerable filter
operators which can be written in the form [26]

h(x | θ) =
N∑
i=1

ai(θ) · bi(x)

Since the original signal is sheared instead of being rotated by motion, it is
appropriate to design h(x | θ) accordingly; however, we will not deal here with
details of such shearable filters. The symbol θ stands for a general parameter
(or parameter vector) that controls the direction in which the filter operator
is being steered. The bi(x) are basis functions;ai(θ) and bi(x) are subject to
certain conditions discussed in [26]. This operator will now be applied to an
input signal s(x):

h(x | θ) ∗ s(x) =
N∑
i=1

ai(θ) · (bi(x) ∗ s(x))

As before, the local energy of the resulting signal will be computed. The
localization of the computation is again ensured by the weight function w(x):
8 In general, a binomial filter does much better than a sampled (and truncated)

Gaussian.
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Q(θ) =
∫
x

w(x) · (h(x | θ) ∗ s(x))2 dx

A closer look reveals (using gi(x) ≡ s(x) ∗ bi(x)):

(h(x | θ) ∗ s(x))2 =

(
N∑
i=1

ai(θ) · (bi(x) ∗ s(x))

)2

=

(
N∑
i=1

ai(θ) · gi(x)

)2

=
N∑
i=1

N∑
k=1

ai(θ) · ak(θ) · gi(x) · gk(x)

If now a local integration is performed across this squared signal we obtain:

Q(θ) =
N∑
i=1

N∑
k=1

ai(θ) · ak(θ)
∫
x

w(x) · gi(x) · gk(x) dx (7.28)

With the shorthand notation

Jik
def
=
∫
x

w(x) · gi(x) · gk(x) dx (7.29)

we obtain Q(θ) =
N∑
i=1

N∑
k=1

ai(θ) · ak(θ) · Jik (7.30)

This is a quadratic form

Q(θ) =


a1(θ)

...
aN (θ)


T 

J11 · · · J1N

...
. . .

...
JN1 · · · JNN



a1(θ)

...
aN (θ)

 = aT (θ) · J · a(θ) (7.31)

with a(θ)
def
=


a1(θ)

...
aN (θ)

 and J
def
=


J11 · · · J1N

...
. . .

...
JN1 · · · JNN


In the standard structure tensor approach, N = 3, and h(x | θ) is the first
order directional derivative which can be represented by a steerable set of
N = 3 filters (each of them representing the directional derivative in one of
the principal directions of space-time). It is not very surprising that in this
case a(θ) is a unit vector in IR3, and the determination of the argument θ
which minimizes Q(θ) boils down to a simple eigensystem problem, as given
already in Sec. 7.3.1.

For synthesizing and steering a more general filter operator h(x | θ), we
know that the basis functions bi(x) should be polar-separable harmonic func-
tions.The coefficient functions ai(θ) will then be trigonometric functions of
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different (harmonic) frequencies [135], and the optimization problem will not
be so simple to solve, though well-behaved. The design of the localization func-
tion w(x) and the generalization of the directional derivative can be adapted
to the signal and noise power spectra, respectively [53, 69]. Within this frame-
work, a wide class of orientation selective steerable filters can be used to find
principal orientations; if necessary they can equipped with a much more pro-
nounced selectivity, offering the potential for higher accuracy.

7.3.3 A mixed OLS-TLS estimator

Local estimators of motion pool a constraint equation in a local neighborhood
constructing an overdetermined system of equations. The parameters of the
motion model can then be solved by ordinary least squares (OLS) [62] or by
total least squares (TLS), resulting in the structure tensor approach. Using
(OLS) techniques, the temporal derivatives are treated as erroneous observa-
tions and the spatial gradients as error free. This approach will lead to biases
in the estimates, as all gradients are generally obscured by noise [43]. Under
these circumstances the use of a total least squares (TLS) method [125] is the
estimator of choice [72]. A number of physically induced brightness changes
as well as those caused by inhomogeneous illumination can be modeled quite
accurately by a source term in the constraint equation. Additionally does
the computation of surface motion from range data lead to the same type of
constraints [113]. The equation of motion is given by

α(u) ◦ s− 1 · c = 0 , (7.32)

where c is a constant, modeling the local brightness change linearly.

The data matrix of such a model for the TLS estimator contains a column of
exactly known elements (the elements Di,1 = −1 for i ∈ {1, . . . , n} where n
is the number of pixel in the local neighborhood) thus inducing a strong bias
in the estimation. This bias can be efficiently eliminated by mixing the OLS
and TLS estimator as presented by [33].

The data matrix D can be split into two submatrices D = [D1,D2], where
D1 contains the p1 exactly known observations. A QR factorization of D is
performed, leading to

(D1,D2) = Q

(
R11 R12

0 R22

)
, (7.33)

with Q being orthogonal and R11 upper triangular. The QR factorization is
justified because the singular vectors and singular values of a matrix are not
changed by multiplying it by an orthogonal matrix [38].
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The solution for the sub system of equations R22p2 = 0 is computed in a TLS
sense, which boils down to a singular value analysis of the data matrix R22

[125].

With the known estimate of p2 the system of equations R11p1 +R12p2 = 0
is solved for p1 by back-substitution. A comparative analysis has shown, that
the error in the mixed OLS-TLS estimates can be reduced by a factor of three
as compared to standard TLS [33].

7.3.4 Simultaneous estimation of local and global parameters

Local estimation schemes, like all estimation schemes presented so far, e.g. the
structure tensor method (cf. Sec. 7.3.1) or mixed OLS-TLS scheme (cf.
Sec. 7.3.3), can be implemented efficiently in terms of storage needed and CPU
time used. This is due to local formulation of the models and their parameters,
because then all estimations can be done separately for each pixel neighbor-
hood. In other words the model equation matrix is a block diagonal matrix
with one block per pixel and one block after the other is processed. This is no
longer true if global parameters have to be estimated as well. They introduce
additional full rows in the model matrix, thus coupling all blocks. Thus the
optimization problem occurring in the estimation process has to be treated as
a large scale problem and can only be solved for practical applications if the
problem structure is carefully exploited. In [17] an OLS estimation method is
presented for simultaneous estimation of local and global parameters which
full exploits the structure of the estimation matrix. It has comparable com-
plexity and memory requirements as pure local methods. The numerical so-
lution method makes use of the so called Sherman-Morrison-Formula [37],
which allows to efficiently obtain the inverse of an easily invertible matrix
(the block diagonal matrix) when it is modified by a low rank matrix (the few
full rows).

Ordinary least squares (OLS) means the minimization problem is posed as

min
x
‖Ax− b‖22 ⇒ x̄ = (ATA)−1AT b (7.34)

where x are the sought for parameters, A and b are defined by the model. The
solution vector x̄ is given by the Moore-Penrose pseudo-inverse (ATA)−1AT ,
if ATA is invertible. The matrix A has the following block structure

A =


B1 V1

. . .
...

BN VN

 =
[
B V

]
and thus ATA =

[
BTB BTV

V TB V TV

]
.

(7.35)
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with nΩ ×Nlp-blocks Bi and nΩ ×Ngp-blocks Vi. Finally, the squared matrix
can be decomposed as

ATA = M +RSRT with M=

[
BTB 0

0 V TV

]
, R=

[
BTV 0

0 I

]
, S=

[
0 I
I 0

]
,

(7.36)
with matrix M block diagonal and matrix R low rank, 2Ngp, so that the
Sherman-Morrison-Woodbury formula gives an efficiently computable inverse:

(ATA)−1 = (I−M−1R(S−1+RTM−1R)−1RT )M−1. (7.37)

In addition to the matrix blocks BTi Bi and
∑N
i=1 V

T
i Vi ofM one therefore only

has to invert one further (2Ngp)× (2Ngp) matrix, (S−1 +RTM−1R), and all
remaining calculations for computation of x̄ = (ATA)−1AT b can be performed
as matrix vector products. As the inversion of the matrix blocks BTi Bi is by
far the most time consuming step in the computations of the algorithm, the
computational burden is comparable to that of an OLS estimation without
global parameters.

For an illustrative example of combined estimation of local optical flow and
global camera gain as well as for further details on the numerical solution we
refer to [17].

7.3.5 Simultaneous estimation of 3D position and 3D motion

Modeling dynamic data acquired with a 2D camera grid, the solution space is
a three dimensional subspace (n = 5, d = 3, cf. Secs. 7.2.1 and 7.2.3). Using
the weighted TLS estimation scheme presented in Sec. 7.3.1), it is spanned
by the 3 right singular vectors corresponding to the 3 smallest singular values
of the data matrix D. From these singular vectors the sought for parameters
are derived by linear combination such that all but one component of dr1,
dr2, dt vanish. The parameters for disparity, surface slopes and depth motion
occur twice in the model (see Eq. (7.11)). Their estimates cannot be combined
straightforward because they are not independent in the original coordinate
system. In order to decouple these measurements we first estimated their error
covariance matrix as proposed in [90]. After diagonalizing this matrix via a
rotation in r1-r2-space (for disparity and surface slopes) or x-y-space (for
uz), we achieve independent measurements which can be combined respecting
their individual errors (see [96]). A more detailed description of decoupling
the motion estimates is presented in [99].

7.3.6 Motion estimation with the energy operator

For continuous signals s = s(x) the energy operator E is defined as [75, page
177]
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E(s) := D(s)2 − s ·D2(s) . (7.38)

Here D denotes an abstract derivative or pseudo-derivative operator.

Implementation for optic flow estimation

We implemented the energy operator in three dimensions for optic flow es-
timation based on three dimensional derivative filters in the spatio-temporal
domain in a straightforward manner using Eq. (7.38) by replacing D2 with
the Hessian of the sequence. We used the modified Sobel filters as described in
[103] and [95, page 155]. For comparison between different implementations,
the Hessian of the spatio-temporal image data was computed either by twice
applying first order derivative filters or second order derivative masks.

Numerical experiments

In our experiments we computed the energy operator on original resolution.
We conducted measurements of the average angular error for a synthetic se-
quence without noise, for synthetic sequences with noise and a real world test
sequence acquired by a camera.

Since we estimated image sequences with ground truth, we compared the best
results of a total least squares local approach for the energy operator and the
structure tensor. For results see Tab. 7.1.

Sequence Derivative filter Optimal integration scale Average angular error

Sinus pattern structure tensor 0.24 4.589143

energy operator by ...

first order derivative 3.54 10.2803

second order derivative 3.43 11.59

Marble structure tensor 3.2 3.509298

energy operator by ...

first order derivative 2.59 3.215193

second order derivative 6.02 4.498214

Street structure tensor 1.57 4.589143

energy operator by ...

first order derivative 6.1 10.251023

second order derivative 5.4 9.240537

Table 7.1. Results for optic flow estimation with the energy tensor and comparison
with the structure tensor.
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Fig. 7.2. The optimal average angular error as a function of the bandwidth and scale
of the Mexican hat wavelet for a synthetic sinus pattern sequence with discontinuity.
In the left image the range is set between 6 and 11 degrees, in order to show the
region around the minimum.

On the effect of the bandpass filtering: filter bandwidth versus
wavelet scale

We investigated the dependency of the average angular error as a function of
the bandwidth and wavelet scale simultaneously. Here we mean the bandwidth
of the bandpass filter or the spread of the wavelet, used to filter the input
image sequence. As a result it comes out, that there is an optimal point in the
bandwidth-scale plane which minimizes the error measure, see also figures 7.2
and 7.3.

Despite the preprocessing of the image sequence, our experiments showed, that
there is a need of post-integration for the energy operator to achieve optimal
average angular error of the estimated flow fields. For orientation estimation
with the energy operator [21, page 498] reported similar results and applied
a Gaussian post-filtering with σ = 1 and a smoothing window size of 7x7.

The accuracy gain for the real world Marbled Block sequence is in the first
digit behind the decimal point or approximately 7.7 %. This improvement is
acchieved under optimal parameter setting for both operators, the structure
tensor and the energy operator. For the synthetic sequence with discontinu-
ity and the Street sequence we measured higher accuracy with the structure
tensor.

The energy operator requires additional computation steps, this is the cal-
culation of the Hessian of the image data. For this reason and because of
the measurements in our experiment we recommend the structure tensor for
motion estimation in the scale space.
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Fig. 7.3. The optimal average angular error as a function of the bandwidth and
scale of the Mexican hat wavelet for the Marbled Block sequence. In the left image
the range is set between 3 and 4 degrees, in order to show the region around the
minimum.

7.4 Filter design

All models described above contain derivative filters of first order (e.g. Eqs. (7.2),
(7.5), or (7.11)), second order (Eq. (7.71)) or higher orders, e.g. if bright-
ness changes are due to diffusive processes or more than two orientations are
present. They are discretized by finite differences using convolution kernels
optimized with respect to the model assumptions, scales and/or noise present
in the data.

7.4.1 Optimal filters for linear models

As shown in Sec. 7.2 linear models describe linear subspaces in multi-
dimensional data in the form dTp = 0 (cmp. Eq. (7.20)). Thus a parameter
vector p is a solution to Eq. (7.20) if it is normal to the data vector d. In
all the models above except the ones with a data independent source-term,
the data vector d can be formulated as an operator vector O applied to the
signal s. Consequently a discrete filter family is optimal for a model if the
orientation of the operator vector calculated by the filter family is as precise
as possible. This observation can be formulated in Fourier domain (see be-
low for an example). Selecting fixed size filter sets, their transfer functions
(TFs, i.e. Fourier transforms) are known. The coefficients of the whole filter
set may then be optimized simultaneously by adapting a TF optimization
scheme first presented in [95]. There a weighted 2-norm of the difference of an
ansatz function fa(k̃) and a reference function fr(k̃) is minimized

c(h) =

√∫
w2(k̃)

(
fr(k̃)− fa(k̃,h)

)2

dk̃ with
∫
w2(k̃)dk̃ = 1 (7.39)
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with normalized wave-numbers k̃, i.e. Nyquist wave-number equal to 1. The
normalized weight function w(k̃) allows to specify statistical importance of
different wave vectors k̃ and thus allows for scale selection.

Example: Filter families for two transparent motions

The operator vector O for transparent motion can be extracted from Eq. (7.71)

O = [∂xx, ∂xy, ∂yy, ∂xt, ∂yt, ∂tt]
T (7.40)

and its TF is Ô = −π2
[
k̃2
x, k̃xk̃y, k̃

2
y, k̃xk̃t, k̃yk̃t, k̃

2
t

]T
. The reference function

therefore is Ô normalized by its length

fr(k̃) =
[k̃2
x, k̃xk̃y, k̃

2
y, k̃xk̃t, k̃yk̃t, k̃

2
t ]T√

k̃4
x + k̃2

xk̃
2
y + k̃4

y + k̃2
xk̃

2
t + k̃2

yk̃
2
t + k̃4

t

(7.41)

We discretize O (from Eq. (7.40)) using fixed size separable kernels. The filter
family consists of only four 1D filters: a first order derivative D1, a second
order derivative D2 and two smoothing kernels I1 and I2. Please note the up-
per indices. The 3D filters are then ∂xy = D1

x ∗D1
y ∗ I1

t and ∂xx = D2
x ∗ I2

y ∗ I2
t

where ∗ denotes convolution and lower indices denote the application direc-
tion. All filters not introduced above, can be derived by suitably exchanging
lower indices. All one-dimensional filters are constrained to numerical con-
sistency order 2 (cmp. [95]). We refer to [98] for further details. Using the
transfer functions D̂xx, D̂xy, D̂yy, D̂xt, D̂yt, and D̂tt of these filter kernels, we
get the ansatz function

fa(k̃) =
[D̂xx, D̂xy, D̂yy, D̂xt, D̂yt, D̂tt]T√
D̂2
xx + D̂2

xy + D̂2
yy + D̂2

xt + D̂2
yt + D̂2

tt

(7.42)

E.g. for 5× 5× 5- filters the optimization results in the kernels (c = 1.6e− 12)

I1 = [0.01504, 0.23301, 0.50390, 0.23301, 0.01504]
I2 = [0.01554, 0.23204, 0.50484, 0.23204, 0.01554]
D1 = [0.06368, 0.37263, 0,−0.37263,−0.063681]
D2 = [0.20786, 0.16854,−0.75282, 0.16854, 0.20786]

(7.43)

For larger kernels we refer to [98].

7.4.2 Steerable and quadrature filters

Quadrature filters have become an appropriate tool for computing the local
phase and local energy of one dimensional signals. In the following, we describe
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the relation between steerable filter and quadrature filter. For a detailed de-
scription on steerable filters we refer to [58].

The main idea of a quadrature filter is to apply two filters to a signal such
that the sum of the square filter responses reflect the local energy of the
signal. Furthermore, the local energy should be group invariant, i.e. the filter
outputs should be invariant with respect to the deformation of the signal by
the corresponding group. In order to achieve group invariance, we construct
our quadrature filter from the basis of a unitary group representation. Groups
with a unitary representation are compact groups and Abelian groups [131].
The even he and odd ho components of the quadrature filter are constructed
by a vector valued impulse response consisting of the basis functions of a
unitary representation of dimension me and mo, respectively.

he =


he1(x)
he2(x)

...
heme

(x)

 , ho =


ho1(x)
ho2(x)

...
homo

(x)

 . (7.44)

It can be shown that all basis functions belonging to the same subspace attain
the same parity. The filter responses of he and ho are denoted as the filter
channels ce = s(x) ∗ he(x) and co = s(x) ∗ ho(x), respectively. The
square of the filter response of each channel are denoted as even and odd
energies. Due to the unitary representation, both energies are invariant under
the corresponding group action

Es = (D(g)cs)
T (D(g)cs) = cTs cs s ∈ {e, o} .

Note that the inner product is taken with respect to the invariant subspace,
not with respect to the function space. The local energy of the signal is given
by the sum of the even and odd energy. In the following we will examine
the properties of the filter channels required to achieve a phase invariant local
energy when applied to bandpass signals. In the ideal case, a simple9 bandpass
filtered signal consists of only one wave vector k0 and its Fourier transform10

reads with the Dirac delta distribution δ(k)

S(k) = S0δ(k − k0) + S∗0δ(k + k0) . (7.45)

We start with examining the Fourier transform of the even and odd energies

Es = cTs cs =
ms∑
j=1

(s(x) ∗ hsj(x))2 . (7.46)

Applying the convolution theorem to Es reads
9 simple signal: signal with intrinsic dimension one.

10 Note that the Fourier transformed entities are labeled with capital letters.
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F{Es}(k) =
ms∑
j=1

(S(k)Hsj(k)) ∗ (S(k)Hsj(k)) .

Inserting the signal Eq. (7.45) in the equation above, computing the convo-
lution and performing the inverse Fourier transformation results in a phase
invariant local energy

E = 2|S0|2
me∑
j=1

|Hej(k0)|2 +
mo∑
k=1

|Hok(k0)|2
 .

Thus, each steerable filter whose basis can be decomposed as described above
is a quadrature filter which is invariant with respect to the corresponding
group action.

7.4.3 Design and application of Wiener-optimized filters and
average masks

The filter masks described in Sec. 7.4 have been optimized for ideal noiseless
signals. However, the fact that all real world images are with different extents
corrupted by noise has thus been neglected. In the following we present how
these filters have to be adapted in case of noisy signals. A detailed treatment
can be found in [52].

The signal and noise adapted filter approach

The signal and noise adapted (SNA)-filter approach is motivated by the fact
that we can exchange the directional derivative filter dr(xn) in the BCCE by
any other steerable filter hr(xn) which only nullifies the signal when applied
in the direction of motion [70]. The shape of the frequency spectrum of any
rank 2 signal11 is a plane Kr going through the origin of the Fourier space
and its normal vector n points to the direction of motion r ([44],p.316). Thus,
the transfer function12 Hr(f) has to be zero in that plane, but the shape of
Hr(f) outside of plane Kr can be chosen freely as long as it is not zero at all.
If the impulse response hr(xn) shall be real-valued, the corresponding transfer
function Hr(f) has to be real and symmetric or imaginary and antisymmetric
or a linear combination thereof. The additional degrees of freedom to design
the shape outside Kr make it possible to consider the spectral characteristics
of the signal and the noise which are encoded in the second order statistical
moments in the filter design. In the following section the derivation of an
optimal filter is shown which is a special case of the more general framework
presented in [87] and for the special case of motion estimation in [53].
11 The rank of a signal is defined by the rank of the corresponding structure tensor.
12 The Fourier transforms of functions are denoted here by capital letters.
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General model of the observed signal

The general idea of the SNA-filter proposed first in [68] is to combine Wiener’s
theory of optimal filtering with a desired ideal impulse response. The term
ideal, in this case, means that the filter is designed for noise free signal s(x).
But signals are always corrupted by noise. Our goal is now to adapt the ideal
filter hr(x) to more realistic situations where signal is corrupted by noise. We
model the observed image signal z at position i, j, k in a spatio-temporal block
of dimension N ×N ×N by the sum of the ideal (noise free) signal s and a
noise term v: z(i, j, k) = s(i, j, k) + v(i, j, k). For the subsequent steps, it is
convenient to arrange the s, v, and z of the block in vectors s ∈ IRM ,v ∈ IRM

and z ∈ IRM . The extraction of a single filter response value ĝ can thus be
written as the scalar product ĝ = xTz using a filter coefficient vector x ∈ IRM .
The corresponding equation for the actual filter output ĝ reads:

ĝ = xTz = xT ( s+ v) = xT s+ xTv . (7.47)

Our task is to choose xT in such a way that the filtered output ĝ approximates,
on an average, the desired output g = hTs for the error-free case as closely as
possible. The next step is to define the statistical properties of the signal and
the noise processes, respectively. Let the noise vector v ∈ IRN be a zero-mean
random vector with covariance matrix E

[
vvT

]
= Cv (which is in this case

equal to its correlation matrix Rv). Furthermore, we assume that the process
which has generated the signal s ∈ IRN can be described by the expectation
E [s] = ms of the signal vector, and an autocorrelation matrix E

[
ssT

]
= Rs.

Our last assumption is that noise and signal are uncorrelated E
[
svT

]
= 0.

Designing the optimized filter

Knowing these first and second order statistical moments for both the noise
as well as the signal allows the derivation of the optimum filter x. For this
purpose, we define the approximation error e := ĝ−g between the ideal output
g and the actual output ĝ. The expected squared error Q as a function of the
vector x can be computed from the second order statistical moments:

Q(x) = E
[
e2
]

= E
[
ĝ2
]
− 2E [gĝ] + E

[
g2
]

= hTRsh− 2xTRsh+ xT (Rs
T + Rv)x

We see that a minimum mean squared error (MMSE) estimator can now be
designed. We set the derivative ∂Q(x)/∂x to 0 and after solving for x we
obtain

x = (Rs
T + Rv)−1Rs︸ ︷︷ ︸

M

h = Mh . (7.48)
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Fig. 7.4. Bar plots of the average angular error (AAE) vs. the signal to noise (S/N)
ratio. For every S/N ratio the AAE for three different densities is depicted: From
left to right: 86%, 64% and 43%. The gray bar denotes the AAE with the original,
the black ones the AAE with the optimized filters. Note that the experiment is
performed at rather low S/N ratio in range 10 dB to 0 dB.

Thus, the desired SNA-filter is obtained by a matrix vector multiplication. The
ideal filter designed for the ideal noise free case is multiplied with a matrix
M composed out of the correlation matrices of signal and noise. In principle,
this result is a direct consequence of the Gauss-Markov theorem.

Experimental results

In this section, we present examples which show the performance of our opti-
mization method. For the test we use three image sequences, together with the
true optical flow: ’Yosemite’ (without clouds) ’diverging tree’ and ’translating
tree’ sequences13. The optical flow has been estimated with the tensor based
method described in Sec. 7.3.1. For all experiments, an averaging volume of
size 11 × 11 × 11 and filters of size 5 × 5 × 5 are applied. For the weighting
function w(x), we chose a sampled Gaussian function with width σ = 8 (in
pixels) in all directions. For performance evaluation, the average angular er-
ror (AAE) [4] is computed. The AAE is computed by taking the average over
1000 trials with individual noise realization. In order to achieve a fair com-
parison between the different filters but also between different signal-to-noise
ratios S/N , we compute all AAEs for three different but fixed densities 14

determined by applying the total coherence measure and the spatial coherence
measure [44]. We optimized the described in Sec. 7.4 denoted as Scharr filter
in the following, for every individual signal to noise ratio S/N in a range from
10 dB to 0 dB (for i. i. d. noise). We then applied both the original Scharr
and its corresponding SNA-filters.

13 The diverging and translating tree sequence has been taken
from Barron’s web-site and the Yosemite sequence from
http://www.cs.brown.edu/people/black/images.html

14 The density of an optical flow field is defined as the percentage of estimated
flow vectors which have been used for computing the AAE with respect to all
estimated flow vectors.
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As expected and shown in Fig. 7.4, the SNA-filters yield a better performance
than the original non-adapted filters in case the image sequence being cor-
rupted by noise for all types of ideal filters . The performance of the Scharr
filter is increased by optimizing it to the corresponding images sequence. We
can conclude that for these cases the optimum shape of the filter is mainly
determined by the signal and noise characteristics, whereas for higher signal
to noise ratios the systematical optimization plays a greater role.

7.5 Model selection and intrinsic dimension

7.5.1 Intrinsic dimension of multispectral signals

A basic model selection is the classification of signals according to their in-
trinsic dimension. Based on Eq. (7.1) the intrinsic dimension [136] is defined
by the dimension of the subspace E to which the signal is confined. More pre-
cisely, the intrinsic dimension of an n-dimensional signal s is n−d if s satisfies
the constraint in Eq. (7.1) [78, 85]. Therefore, when estimation subspaces, it
is essential to know the intrinsic dimension of the signal.

Furthermore, the intrinsic dimension is relevant to image and video coding due
to the predominance of regions with intrinsic dimension 0 and 1 in natural
images [137], and the fact that images and videos are fully determined by
the regions with intrinsic dimension 2, i.e. the whole image information is
contained in the 2D regions [5, 76].

The intrinsic dimension of scalar images can be estimated with differential
methods based, for example, on the structure tensor, the Hessian, and the en-
ergy tensor. All these methods have been generalized to vector-valued (mul-
tispectral) images in [85]. A further extension is based on the concept of
fractional intrinsic dimension for combinations of subspaces [81], e.g. multiple-
motion layers. More general approaches for estimating the intrinsic dimension
are based on the compensation principle [136] and the Volterra-Wiener theory
of nonlinear systems [60].

7.5.2 Model selection by residual analysis

In local optical flow estimation under parametric model assumptions, the pa-
rameters of optical flow models are allowed to depend on non-trivial subsets
of the spatiotemporal volume. The exploitation of the full potential of this ap-
proach involves the problem of selecting appropriate motion models for each
of these subsets. While a simple optical flow model fails to approximate data
of higher intrinsic complexity under low noise conditions, a complex model
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is prone to over-fitting in the presence of noise. Various information criteria
(e.g. AIC [2], BIC [107]) have been proposed that penalize model complexity
in order to avoid over-fitting. In the context of motion estimation, the model
selection problem has been discussed by Wechsler et al. [129] as well as by
Gheissari et al. [36]. Gheissari et al. point out that “[. . . ] the available infor-
mation theoretic model selection criteria are based on the assumptions that
noise is very small and the data size is large enough” and that this assump-
tion is often violated in computer vision applications [36]. Hence, they suggest
to consider the constraint surfaces of parametric models as thin plates and
to penalize the strain energy of these plates according to a physical model.
As this penalization incorporates only second order derivatives of the model
surfaces, it cannot be used to distinguish different linear models. Moreover, if
information on the distribution of noise is available from camera calibration
measurements or noise estimation, probabilistic model selection criteria that
incorporate this information should be employed. Residual analysis fills the
gap between information theoretic penalization and heuristic surface model-
ing. Following the general idea of Cootes et al. [15], we suggest in [3] to assess
parametric optical flow models by measuring the discrepancy between the em-
pirical distribution of regression residuals and the pdf predicted from theory.
The additive Errors-in-Variables (EIV) model claims the existence of a true
signal τ : Ω → IR and, for all x ∈ Ω, a random variable ε(x) (noise) such that

∀x ∈ Ω : s(x) = τ(x) + ε(x) . (7.49)

Optical flow estimation under the assumption of the BCCE is performed on
the partial derivatives of the signal which are approximated by linear shift
invariant operators. The overlap of the finite impulse response masks of these
operators in the computation of derivatives at nearby pixels introduces cor-
relation to the entries of the data matrix Ds and data term ds used in TLS
estimation. As these entries are linear in the derivatives, they can be decom-
posed with respect to Eq. (7.49) into

Ds(x) = Dτ (x) +Dε(x) and ds(x) = dτ (x) + dε(x) . (7.50)

Equilibration as proposed by Mühlich [71] is used to derive from the covariance
matrices of the vectors vec([Ds(x),ds(x)]) (column-wise vectorization of the
matrix [Ds(x), bs(x)]) square equilibration matrices WL(x) and WR(x) to
estimate p̂(x) by TLS on the data WL(x)[Ds(x),ds(x)]WT

R (x) instead of
[Ds(x),ds(x)]. WT

R (x)p̂(x) is then taken as an estimate of the initial problem.
If the distribution of noise in the signal is known, regression residuals can be
tested to be in accordance with the theoretically expected distribution. Given
ETLS estimates p̂ : Ω → IRk (k being the number of model parameters),
the residuals are given by the mapping r̂ : Ω → IRm (m being the number
of pixels in the neighborhood for which a consistent model is assumed) such
that

r̂ := WL[Ds,ds]WT
R

(
p̂

−1

)
. (7.51)
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In principle, the theoretical pdf of these residuals is determined by the joint
pdf of the entries of Ds and ds. The latter is obtained from the EIV model,
the motion models, and the derivative operators. However, there is a direct
influence to the residual pdf by the factor [Ds,ds] as well as an indirect
influence by the pdf of the estimates p̂. In the following, we assume p̂ to
be deterministic. Then, the residuals Eq. (7.51), expressed as

∀x ∈ Ω : r̂ =

( p̂

−1

)T
WR ⊗WL


︸ ︷︷ ︸

=: R

vec([Ds,ds]) , (7.52)

are obtained from the deterministic linear mapping defined by the matrix
R, applied to the vector vec([Ds,ds]) of which the covariance matrix C is
known. The covariance matrices of the residual vectors are therefore given by
Cr := cov(r̂) = RCRT . From the Cholesky factorization LLT = Cr follows
that r̂′ := L−1r̂ is decorrelated i.e.,

cov(r̂′) = 1lm , (7.53)

while E(r̂′) = L−1RE(vec([Ds,ds])). From Eq. (7.50) follows E(vec([Ds,ds])) =
vec([Dτ ,dτ ]) + E(vec([Dε,dε])). Under the assumption that the entries of
[Dε,dε] have zero mean, it follows

E(r̂′) = L−1WL[Dτ ,dτ ]WT
R

(
p̂

−1

)
. (7.54)

In practice, it depends on the appropriateness of the parametric model as well
as on the empirical distribution of noise whether or not

[Dτ ,dτ ]WT
R

(
p̂

−1

)
= 0 (7.55)

holds, in which case Eq. (7.54) implies that

E(r̂′) = 0 . (7.56)

If, in addition, noise is i.i.d. according to a normal distribution with known
variance then, it follows from Eq. (7.53) and Eq. (7.56) that the entries of the
decorrelated residual vector r̂′ from ETLS estimation form a set of indepen-
dent standard normally distributed random variables. We therefore suggest
to test this set of residuals to be standard normally distributed. Deviations
from the standard normal distribution are then taken as indications of inap-
propriateness of the motion model. Testing for this deviation is performed by
the Kolmogorov-Smirnov test, Pearson’s χ2 test, the Anderson-Darling test
as well as the absolute difference of the vectors of the first j moments of the
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Fig. 7.5. Model selection from 11x11x3 motion neighborhoods of simulated se-
quences at 0.5% noise-to-signal amplitude ratio by comparison of 5 moments of the
residual distribution. a) displacement field of the types sequence, b) according model
selection, c) displacement field of the current sequence, d) according model selection.

empirical and theoretical distribution. In order to specifically test for prop-
erties of the model selector, we generated a variety of sequences from given
two-dimensional displacement fields by warping of an initial frame. Grayvalue
structure on multiple scales was introduced to this frame in order to avoid
the aperture problem. Zero mean Gaussian noise was added to the sequences.
Results of model selection from the models LC (locally constant), LSS (local
shear/stretch), LRD (local rotation/divergence), LAF (local affine) and LPL
(local planar) are shown in Fig. 7.5 for a sequence featuring motion patterns
of different parametric form (top) as well as for a simulated continuous current
(bottom). From the different shading in Fig. 7.5b, it can be seen that model
selection is in accordance with the true displacement field. Motion patterns
are identified correctly. The incidental choice of overly complex models is ex-
plained by the fact that a higher order model with the additional parameters
correctly estimated as zero cannot be distinguished from the simpler model
by means of residual analysis. The most complex model is correctly selected
at motion discontinuities.
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7.5.3 Bayesian model selection

In the following we consider energy functionals of the form

E(u) =
∫
γ1ψ1(α1(u)s) + γ2ψ2(α2(u)s) + βψ3(|∇u|2) (7.57)

where ψi(αi(u)s), i = 1, 2 are different data terms and we define |∇u|2 =
|∇u1|2 + |∇u2|2. The goal is to determine all hyper-parameters γ = (γ1, γ2), β
directly from the data, i.e. the relative weights of the data term as well as the
regularization term are to be estimated simultaneously with the optical flow.
For a detailed description of the method we refer to [59].

Thus, different data models are selected for the given data set. For estimating
the hyper-parameter we explore the well known relation between variational
and probabilistic methods, i.e. each (discrete approximated) energy functional
can be interpreted as the energy of the posterior pdf p(u|g,γ, β) of the op-
tical flow. The main idea to estimate the hyper-parameters are to explore
the evidence framework, that has been developed in [63] and firstly been ap-
plied to motion estimation in [57]. The hyper-parameters are estimated by a
MAP estimate of the posterior pdf p(γ, β|g) ∝ p(g|γ, β)p(γ, β) of the hyper-
parameters given the observed gradient of the signal. The derivation of the
of the likelihood p(g|γ, β) require some approximation steps whose detailed
derivation can be found in [55, 56, 59] leading to the approximated likelihood
function

p(g|γ, β, û) =
(2π)N

ZL(γ)Zp(β) det Q
1
2

exp
(
−Ĵ
)
, (7.58)

where û denotes the optical flow field that maximizes the posterior pdf
p(u|g,γ, β), Ĵ the energy of the joint pdf p(g,u|γ, β) taken at û and
ZL(γ), Zp(β) denote the partition functions of Gaussian distributions. The
matrix Q denotes the Hessian of the joint pdf energy J(u, g) taken at the
maximum of the posterior pdf p(u|g,γ, β). Since û itself depends on the
hyper-parameters γ, β we have to apply an iterative scheme for estimating
the optical flow field and the hyper-parameters simultaneously, i.e. we esti-
mate the optical flow for fixed hyper-parameters and estimate then the hyper-
parameters using the previously estimated optical flow.

uk+1 = arg min
u

{
p(u|g, γ̂k, βk)

}
(7.59)

γk+1 = arg max
γ

{
p(γ, βk|g)

}
βk+1 = arg max

β

{
p(γk, β|g)

}
.

This procedure is repeated until convergence.
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Fig. 7.6. Upper figures (from left to right): first frame of the ’Office’ sequence;
second frame of the ’Office sequence’ with a brightness decay; estimated flow field
using γ1 = 1 and γ2 = 0; Lower figures(from left to right):estimated flow field using
γ1 = 1 and γ2 = 0; estimated flow field using the Bayesian model selection approach
for; ratio of both estimated likelihood hyper-parameters γ2/γ1 vs. the gradient of
the brightness change.

7.6 Anisotropic regularization for orientation estimation

So far, we focused on modeling, model selection and estimation of parameters
in multidimensional signals. A major source of estimation inaccuracy is due
to the data being noisy, or corrupted, and thus not fulfilling the constraint
equations selected. As long as the data belongs to the same population or
distribution, one can reduce the influence of noise by smoothing, i.e. grouping
measurements belonging together. For single orientation or single motion data
this can be done by anisotropic diffusion with a diffusion tensor. A suitable dif-
fusion process is described in Sec. 7.6.1. As parameter selection is non-trivial,
a learning approach interpreting the data as a Markovian random field may be
advantageous (see Sec. 7.6.2). This approach does not end in anisotropic dif-
fusion in the same way as it is usually applied for data denoising. Anisotropic
diffusion with a diffusion tensor can be derived from a cost functional where
the expectation of the motion constraint Eq. (7.5). This is not only of theoretic
interest and opens a connection to stochastic partial differential equations,
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but also allows to construct diffusion-like denoising schemes for other (linear)
models, e.g. two transparently overlaid motions (see Sec. 7.6.3).

7.6.1 Flow adapted anisotropic diffusion

Anisotropic diffusion filtering evolves the acquired, noisy initial multidimen-
sional signal s(x, 0) via an evolution equation:

∂s

∂t
= ∇ · (D∇s) . (7.60)

Here D is the diffusion tensor, a positive definite symmetric matrix and s(x, t)
is the evolving signal. Here t is diffusion time not to be confused with the
time coordinate x3 if s is an image sequence. As we will see in Sec. 7.6.3 this
diffusion is appropriate for signals with up to single orientation only.

The diffusion tensor D usually applied in anisotropic diffusion uses the same
eigenvectors ei as the structure tensor Jρ (see Eq. (7.22)) constructed for
single orientation (Eq. (7.2)) or single motion constraint (Eq. (7.5)). Thus
smoothing is applied according to the signal structures. Smoothing strengths
along these structures are given by the corresponding eigenvalues λi of D.
Given a diagonal matrix L with Lii = λi, the diffusion tensor D is given by

D = (e1, e2, e3)L (e1, e2, e3)T . (7.61)

The directional diffusivities λi, i ∈ {1, . . . , n} determine the behavior of the
diffusion.

For denoising they shall be large for small eigenvalues µi of Jρ and vice versa.
For orientation-enhancing anisotropic diffusion introduced in [100], all λi are
calculated according to the same rule. This is in contrast to the well established
edge-enhancing anisotropic diffusion, where one λ is fixed to 1, enforcing single
orientation everywhere, even if the structure tensor indicates model violation.

One of the major problems in anisotropic diffusion application is to find an
appropriate stopping criterion. For optical flow the reliability of the estimate
can be determined by a simple normalized confidence measure. It initially
rises when the input data is smoothed and decays or reaches a plateau when
the data is over-smoothed. Consequently we stop the diffusion when this mea-
sure stops to raise significantly. Details can be found in [100, 112]. A typical
smoothing result is shown in Fig. 7.7.

7.6.2 Anisotropic diffusion as maximum likelihood estimator

A crucial ingredient to successfully use anisotropic diffusion for image denois-
ing is the appropriate selection of directional diffusivities λi (cf. Eq. (7.61)).
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a b c

d e f

Fig. 7.7. Hamburg taxi sequence: a one frame in the original sequence, b the same
frame with noise (std. dev. σ = 20) added and c reconstructed frame. d Velocity
field on the original data, e on the noisy data and f on the reconstructed data.

Fig. 7.8. Noise-free and noisy silicon chip images acquired by a focused-ion-beam
tool. From left to right: high quality image, lower quality image, sub-regions of high
and low quality images.
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Fig. 7.9. Empirical image noise statistics for silicon chip images. (a) distribution
of image noise (fi − gi). (b) log of image noise distribution. (c, d) log probability
of horizontal and vertical image derivatives.

In [101] it turned out that isotropic nonlinear diffusion and anisotropic dif-
fusion correspond to isotropic and directional statistical models, respectively.
Having training data at hand, as e.g. noisy images fi and noise-free images gi
derived in different operation modes of a focused-ion-beam tool (cf. Fig. 7.8),
image statistics are computable as histograms (cf. Fig. 7.9).
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The problem of recovering the image g from f can then be posed as the
maximization of

p(g|f) ∝
∏
i

p(fi|gi) J∏
j=1

p(nj∇gi)

 (7.62)

where p(g|f) approximates the posterior probability of the image g condi-
tioned on the observed, noisy, image f . The likelihood term, p(fi|gi), at every
pixel, i, is defined by noise statistics. The spatial prior term exploits a Markov
Random Field assumption [35] which defines the prior in terms of local neigh-
borhood properties. Here it is defined in terms of the spatial derivatives, ∇gi,
at a pixel i, in J different directions nj , and uses learned image statistics to
assess the prior probability. If ∇gi is computed using neighborhood differences
(as in Fig. 7.9), then Eq. (7.62) can be viewed as a standard Markov Random
Field (MRF) formulation of the regularization problem [35]. Calculating such
a spatial prior as histograms of the eigenvalues µ of the structure tensor Jρ
(see Eq. (7.22)), results in anisotropic diffusion. Exploiting this relationship
provides a principled way of formulating anisotropic diffusion problems and
results in a fully automatic algorithm in which all parameters are learned
from training data. The resulting anisotropic diffusion algorithm has many
of the benefits of Bayesian approaches along with a well-behaved numerical
discretization. For further details on this approach and its performance we
refer to [101].

7.6.3 Anisotropic diffusion for multiple motions

Standard diffusion may be derived from a cost function

E(g) =
∫
Ω

(g − f)2 + α|∇g|2dx (7.63)

The first term in Eq. (7.63) is usually called data term, corresponding to the
posterior probability term in Eq. (7.62). Modeled purely quadratic is equiva-
lent to p(g|f) being zero-mean Gaussian. The second term is the smoothness
term, corresponding to the prior probability, modeled by (the positive part
of) a zero-mean Gaussian of |∇g|. An extension of this constraint has been
proposed by Mumford and Shah [88]. Its connection to (not tensor driven)
anisotropic diffusion can be found in [105].

In [97] a cost function penalizing violation of a linear model was introduced.
Using e.g. Eq. (7.5) one gets

E(g) =
∫
Ω

(g − f)2dx+ α

∫
Ω

< (∇T gu)2 > dx (7.64)
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Fig. 7.10. Denoising of transparently overlaid ring pattern. From left to right:
original image, image with noise added, reconstruction via edge-enhancing single
orientation anisotropic diffusion, reconstruction via double orientation diffusion.

Minimizing Eq. (7.64) by iteratively fulfilling the minimality condition given
by calculous of variations yields exactly anisotropic diffusion with a diffu-
sion tensor mD =< uuT >. In [97] it is shown that this tensor can be
approximated by a diffusion tensor as constructed in Eq. (7.61). This ob-
servation allows to construct diffusion-like reconstruction schemes for linear
models. Plugging the 2D equivalent of Eq. (7.71) into Eq. (7.64) and mini-
mizing it as before yields such a scheme, which has been implemented using
optimized filters for transparent motion as derived in Sec. 7.4.1. A denoising
result on synthetic data is depicted in Fig. 7.10. One observes that standard
edge-enhancing diffusion produced artifacts by enforcing a single orientation
model, while enforcing the novel double orientation diffusion yields results
visually indistinguishable from the original noise-free image.

7.6.4 Optimal integration of the structure tensor

In the following we generalized the signal and noise adapted filter approach
discussed in 7.4.3 such that it is able to preserve edges (edge preserving Wiener
(EPW) filter) and generalize it from scalar valued signals to tensor valued
signals. For a detailed description we refer to [54].

The scalar valued edge preserving Wiener filter

The estimation of a true underlying image value sj at position j from a linear
but not shift invariant filtering of the observable image z can be written in
the form ŝj = mT

j z . Our task is to choose mj in such a way that the filtered
output ŝj approximates, on an average, the desired output sj for the error-
free case as closely as possible in the least mean squares sense. Therefore,
it is necessary to model the statistical properties of the signal and the noise
processes, respectively. Let the noise vector v ∈ IRN be a zero-mean random
vector with covariance matrix Cv ∈ IRN×N (which is in this case equal to
its correlation matrix Rv). Furthermore, we assume that the process that
generates the signal s ∈ IRN can be described by the expectation ws =
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E [s] of the signal vector, and its autocorrelation matrix Rs. Furthermore, let
Rssj

∈ IR1×N denote the correlation matrix between the image value sj and
the whole image s. The filter mj is then determined by minimizing the mean
squared error between the estimated signal value and the actual one

mj = arg min
m̃j

{
E
[
||m̃T

j z − sj ||2
]}

. (7.65)

Knowing the second order statistical moments for both the noise and signal
as well as the observation matrix, the Gauss-Markov theorem delivers the
optimal filter (for a detailed derivative of mean squared error based filters see
e.g. [50])

mj =
(
KjRsKT

j + Rv

)−1
KjRssj

. (7.66)

In following, we discuss the extension of this concept to matrix valued data.

The edge preserving tensor valued Wiener filter

As already mentioned in the introduction, most important tensors for image
processing are square positive (semi-)definite matrices denoted by P (n) in the
following where n is the size of the matrix. This set of tensors does not form
a subspace of the tensor vector space. For example, multiplying a positive
definite matrix by −1 yields a negative definite matrix and hence leads out
of the set P (n). Thus, applying image processing techniques to P (n) requires
additional care since even simple linear operations might destroy the basic
structure of the data. In [119] the proposed nonlinear diffusion scheme is
shown to preserve positiveness of the processed tensor field. An equivalent
proof based on discrete filtering can be found in [130] which uses the fact
that the proposed diffusion filters are convex filters. This is also the basis for
the design of our tensor valued EPW-filter, i.e. we design the tensor valued
EPW-filter as a convex filter. A map F : IRN → IRN is denoted as a convex
filter (see e.g. [132]) if for each z ∈ IRN there are weights wij(z) with

(Fz)k =
N∑
t=1

wkt(z)zt, wtk(z) ≥ 0 ∀k,
N∑
t=1

wkt(z) = 1 . (7.67)

If each component of the tensor-field is processed with the same convex filter,
it is simple to prove the positiveness of the processed tensor field. This implies
that we have to model each matrix component by the same process and thus
use the same statistical model as in the scalar case for each matrix element. We
have to design a filter mask whose sum is equal one and where each element
is non-negative. The first requirement can easily be obtained by a proper
normalization. The second requirement is not guaranteed by Eq. (7.65). In
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Fig. 7.11. Upper left: original tensor field; upper right: left tensor field corrupted
by additive Gaussian noise (σv = 0.3 on each matrix element); lower left: processed
tensor field by our EPW-filter with β1, β2 = 0; lower right: EPW-filter with β1 = 6,
β2 = 1.

order to keep each element non-negative, further constraints are introduced
to the optimization procedure

mj = arg min
m̃j

{
E
[
||m̃T

j z − sj ||2
]}

such that (mj)k ≥ 0 . (7.68)

In contrast to Eq. (7.65)), a closed form solution does not exist for the non-
negative least squares problem and numerical methods (chapter 23, pp. 161
in [61]) need to be applied.

7.6.5 Tensor field integration by nonlinear diffusion

Here we present a method for adaptive integration of tensor fields with re-
spect to motion estimation. The smoothing is fulfilled by a suitable nonlinear
diffusion strategy, which is then applied on the manifold of the matrices with
same eigenvalues, cf. [120].
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As already discussed in [120, 121, 122], there is a general smoothing on cor-
ners, when we use the nonlinear diffusion based on total variation flow. In
order to circumvent this drawback, [13] defines a coherence dependent map,
which stops the diffusion near corners. We propose the formalism of curva-
ture preserving partial differential equations(PDE’s) to avoid oversmoothing
on corners. This is just a result of the analysis in [120, 121, 122]. It is a direct
approach following the formalism for the heat flow equation, constrained on a
curve. The adaptive, curve dependent metrics drives the diffusion according to
the desired behavior by itself and avoids dependency of the smoothed tensor
field on the derivatives of the steering geometry.

The next theoretical part of this section is to choose a proper integration
scheme, which constraints the diffusion flow on the manifold of the matrices
with the same spectrum. We represent different flows and conduct experiments
with the isospectral flow. In optic flow and motion estimation not only the
computation of the flow field is important, but also the confidence of the
estimated flow. Most of the confidence measures rely on the eigenvalues of
the second order tensor in the estimated pixel. The isospectral flow leaves the
eigenvalues of second order tensors untouched. This is an intrinsic property of
the flow, at least analytically. This means, the confidence measure is preserved
locally. That’s why we decided to employ an integration scheme, based on the
isospectral flow. Additionally it should be mentioned, that the isospectral flow
represents a good trade-off between performance and computational costs,
[120, page 149].

Diffusion tensor regularization can be used to general symmetric and semi-
positive definite matrices such as structure tensors or covariance matrices.

Let Ω ∈ Rn. T : Ω → Pn×n, P: positive semi-definite matrices. The multi-
valued regularization process can be expressed in variational, divergence and
trace-based formulation. ∫

Ω

φ(‖∇T‖) dx→ min

∂Ti
∂t

= div
(
φ′‖∇Ti‖
‖∇Ti‖

∇Ti
)
, i = 1, ..., n

∂Ti
∂t

= trace(DHi), i = 1, ..., n,

where D is the smoothing geometry and Hi is the Hessian of Ti.

We choose the discontinuity-preserving smoothing geometry

D :=
∑

ai
1

(1 +
∑
λi)p

θiθ
T
i ,
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where λi are the eigenvalues, θi are the eigenvectors of T , ai ∈ R is an
anisotropy weight and p is the discontinuity preservation amount for i=1,...,3.
ai and p are set by the user.

We constrained this diffusion process on the submanifold N of the matrices
with the given set of eigenvalues by using the isospectral flow

∂T

∂t
= [T, [T,−L+ LT ]],

where L is the matrix, corresponding to an unconstrained Lagrangian, de-
scribing the regularization process.

A suitable integration scheme is

Tt+dt := At(x)T Tt(x) At(x) (7.69)
At(x) := e−dt[L(x)L,T ] .

Numerical experiments

We measured the performance of both techniques on a synthetic sequence
without noise, containing a moving sinus pattern with discontinuity.

We achieved a small accuracy gain, compared to the isotropic smoothing, for
synthetic sequences without noise by using the isospectral flow. The accuracy
gain vanisches after adding Gaussian noise to the synthetic sequence, thus the
method is noise sensitive. The tuning of parameters is crucial and it’s difficult
to find a trade-off between preserving of discontinuities and noise sensitivity
of the diffusion flow. There is a thin line for the proper parameter setting, at
least in our implementation of the isospectral flow by matrix exponential for
the integration scheme Eq. (7.69).

7.6.6 Adaptive anisotropic filtering

Sec. 7.6 emphasized the importance of reducing the noise inherent in the data
for modeling, model selection, and estimation of parameters in multidimen-
sional signals. Standard procedures smooth the data by averaging measure-
ments s(x) over neighborhoods in the domain of s. Apparently, size and shape
of the neighborhoods are crucial to the performance of such procedures.

The method of Adaptive Anisotropic Filtering, based on Adaptive Weights
Smoothing [93], determines size and shape of such neighborhoods making two
structural assumptions on s. First, in a neighborhood of local flow homo-
geneity, s takes the form of Eq. (7.1) (with d = 2, n = 2) and can thus be



7 Nonlinear analysis of multi-dimensional signals 269

approximated by a univariate function f(u) ≈ f(∇T s · x). A second assump-
tion of local linearity regarding f leads to an approximation of s of the form

s(x) ≈ a+ cβT (x− x0), (7.70)

where β denotes a vector parallel to the gradient of s.

Noise reduction in the data with respect to the above formulation can be
achieved by estimating the parameters a for each data point. This can be ac-
complished in an iterative procedure where an initial estimate of β determines
an elliptic neighborhood which is used to estimate the parameters a and c. In
a subsequent step the parameters a and c are used to improve the estimate of
β and so on. In each iteration the elliptic neighborhoods are increased until
further extension of the neighborhoods will consider data that significantly
deviate from the estimated model with respect to a given threshold.

7.7 Estimation of multiple subspaces

7.7.1 Introduction to multiple subspaces

Multiple superimposed subspaces as defined in Sec. 7.2.2 can be estimated by
extending the constraint in Eq. (7.2) based on the observation that all direc-
tional derivatives within the different subspaces must equal zero. Therefore,
the concatenated, directional derivatives of s must equal zero, a condition that
leads to a nonlinear constraint on the components of the ui. This constraint
can be linearized by introducing the mixed-motion or mixed-orientation pa-
rameters (MMPs and MOPs), which then need to be separated such as to
yield the ui´s.

For the case of scalar image sequences with two additively superimposed mo-
tions, such a constraint was first used in [108]. After successively applying
α(u1) and α(u2) to Eq. (7.7), the resulting constraint α(u)α(v)f = 0, is
linear in the MMPs, i.e. we obtain a model that is linear in its non-linear
parameters. The non-linear parameters can then be estimated using linear
estimation techniques for the MMPs, which are then separated by solving a
complex polynomial as shown below.

Here we summarize the comprehensive results obtained for multiple motions
in videos and multiple orientations in images. The final goal, however, is the
estimation of any combination of any number of subspaces with arbitrary
intrinsic dimensions and signal dimension. First steps toward a comprehensive
classification of such combinations have been done in [79, 80, 81]. In [86, 118]
the problem of estimating multiple orientations in n-dimensional signals has
been solved.
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7.7.2 Multiple motions

Analytical solutions for multiple motions

First consider two additive motion layers s1, s2 as defined by Eq. (7.7). The
constraint for the velocities Eq. (7.71) becomes

α(u1) ◦α(u2) ◦ s = cxxsxx + cxysxy + cxtsxt + cyysyy + cytsyt + cttstt = 0,
(7.71)

with MMPs defined by:

cxx = u1,xu2,x, cyy = u1,yu2,y, cxy = (u1,xu2,y + u1,yu2,x)
cxt = (u1,x + u2,x), cyt = (u1,y + u2,y), ctt = 1.

(7.72)

Eq. (7.71) is non-linear in the motion parameters themselves, but linear in
the MMPs, which therefore can be estimated by standard linear techniques,
e.g. [77, 115].

MMP decomposition with complex polynomials

In [77] a general solution for decomposing an arbitrary number of super-
imposed motions has been proposed. Here we sketch the idea for the case
of two motions. The interpretation of motion vectors as complex numbers
u = ux + iuy enables us to find the motion parameters as the roots of the
complex polynomial

Q(z) = (z − u1)(z − u2) = z2 − (cxt − icyt)z + (cxx − cyy + icxy), (7.73)

whose coefficients are expressed in terms of the MMPs. The generalization of
this approach to N overlaid motion layers is straightforward.

Solutions for multiple motions based on regularization

A major benefit of the above approach to multiple motions is that it involves
a linearization of the problem such that it becomes mathematically equiv-
alent to the problem of estimating only one motion. As a consequence, the
regularization methods used for single motions can be applied. In [115, 116],
the well-known algorithm for single-motion estimation proposed by Horn and
Schunck has been extended to the case of multiple motions by the use of the
following regularization term:
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N = (∂xcxx)2 + (∂ycxx)2 + (∂xcyy)2 + (∂ycyy)2 + (∂xcxy)2 + (∂ycxy)2

+(∂xcxt)2 + (∂ycxt)2 + (∂xcyt)2 + (∂ycyt)2.

The MMPs c are obtained as the values that minimize the above term together
with the squared optical-flow term in Eq. (7.71), i.e.∫ ∫

(α(u1) ◦ α(u2) ◦ s)2 + λ2N dΩ.

λ is the regularization parameter and Ω the image plane over which we inte-
grate. Note that working on the MMPs has the great advantage that we obtain
an Euler-Lagrange system of differential equations that is linear, which would
not be the case, when working directly on the motion vectors themselves.

Block-matching for multiple motions

The framework for multiple motions has been extended such as to include
block-matching techniques for estimating an arbitrary number of overlaid mo-
tions [114]. To estimate N motions, N + 1 images of the sequence are needed.
A regularized version of the algorithm has also been derived based on Markov
Random Fields [117], and the increased robustness has been demonstrated.

Separations of motion layers

A benefit of multiple-motion estimation is that the parameters of the multiple
motions can be used to separate the motion layers. This problem has been
solved in the Fourier domain, where the inherent singularities can be better
understood and interpolated than in the spatio-temporal domain [83, 115].

Occluded motions

For occluded motions as defined by Eq. (7.9), one obtains the constraint

α(u1) ◦ α(u2) ◦ s = −α(u1) ◦
[
χ(x− tu1)

]
(u1 − u2) · ∇s2(x− tu2). (7.74)

In [84], it has been shown that

α(u1) ◦ α(u2) ◦ s = q(x, t,u1,u2)δ(B(x− tu1)), (7.75)

where

q(x, t,u1,u2) = −(u1 − u2) ·N(x− tu1) (u1 − u2) · ∇s2(x− tu2). (7.76)
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B(x) = 0 determines the occluding boundary of N(x) = ∇B(x) is the unit
normal to the boundary. Eq. (7.75) shows that the occlusion distortion is (i)
restricted to the occluding boundary, (ii) minimal when the normal to the
boundary is orthogonal to the relative motion (the difference between fore-
and background motions) and maximal when the two vectors are aligned,
(iii) proportional to the intensity gradient of the background pattern. By a
Fourier analysis of occluded motions, it has been revealed that the decay
of the distortion is hyperbolic for both straight and curved boundaries and
the exact expression for the distortion term has been derived for the case
of straight boundaries [84]. Based on these results, a hierarchical motion-
estimation algorithm has been designed that obtains very good estimates at
the occluding boundary by avoiding the there localized distortion [6, 7, 82, 84].

7.7.3 Multiple orientations

Orientation estimation in tensor form

If m orientations in n-variate signals are to be found, this problem can either
be written using the mixed orientation parameters (MOP) vector or, alterna-
tively, in tensor notation. The latter form was presented in [86], including the
generalization to p-dimensional signals, for instance color or multi-spectral
images, which will not be handled here.

In order to express orientation estimation in tensor form, we first define the
sought entity, the orientation tensor, as outer product of all individual orien-
tation unit vectors ui:

U = u1 ⊗ · · · ⊗ un . (7.77)

With the tensor scalar product

〈O,U〉 :=
n∑

k1,...,km=1

(O)k1···km
(U)k1···km

, (7.78)

we can define the data constraint as

〈O,U〉 = 0 (7.79)

where

(O)k1···km
=

m∏
i=1

∂s

∂xki

(7.80)

is the data tensor generated for the occluding orientations model. In a similar
way, the additive superposition of multiple orientations leads to

〈T ,U〉 = 0 with (T )k1···km
=

∂ms

∂xk1 · · · ∂xkm

. (7.81)
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Symmetry properties of the data tensors

The commutativity in the definitions of Eq. (7.79) and Eq. (7.81) is the key
to the understanding of multiple orientations. The data tensors are invariant
against any arbitrary permutation of indices and therefore have some very
pronounced symmetry properties.

For m = 2, the data tensors O and T are symmetric n× n matrices, but for
higher m, concepts from matrix algebra will not suffice and a tensor notation
becomes necessary. We therefore define the space of fully symmetric m-tensors
which are invariant to any arbitrary permutation of indices – and not just to
some special permutations only. We define

Rn×···×n⊕ =
{
T ∈ Rn×···×n

∣∣∣∣(T )i1···im = (T )P (i1···im)

}
(7.82)

with P (i1 · · · im) denoting any arbitrary permutation of the indices i1 · · · im.

For both models – occluding or additive superposition –, the resulting data
tensors are fully symmetric and from this symmetry property follows an im-
port consequence: the sought orientation tensor cannot be estimated uniquely,
but only up any arbitrary permutation of indices. One cannot distinguish be-
tween a “first” orientation, “second” orientations and so on; all we can com-
pute a set of m orientations.

Fortunately, this problem can be resolved by restricting the sought orientation
tensor to those tensors which are invariant to index permutations, i.e. to
Rn×···×n⊕ . Within this set, the solution becomes uniquely determined – at
least in non-degenerate cases.

Estimation of the orientation tensor

Stacking the independent elements of data tensor O (resp. T ) and of the
symmetrized (and therefore uniquely determined) orientation tensor U gen-
erates two vectors which can be understood as generalization of the double-
orientation constraint handled in [1]. See [86] for details.

In many applications, for instance in feature extraction for tracking, this is
already sufficient. If, on the other hand, a decomposition into the underly-
ing individual orientations is necessary, then an additional problem arises:
the orientation tensor estimated so far is overparameterized because ‘true’
orientation tensors must belong to the set

Rn×···×n~ =
{ ∑
P (i1···im)

ui1 ⊗ · · · ⊗ uim
∣∣∣∣ui1 , . . . ,uim ∈ Rn \ {0}

}
(7.83)
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Fig. 7.12. Modelling blood vessels in x-ray images often requires three orientations.
Left image: input image. Right image: region of interest (light square in left image)
and detected orientations.

which we will denote as set of minimal fully symmetric tensors. They are
constructed by summing up all possible permutations of outer products and
obviously form a subset of Rn×···×n⊕ .

In [86], methods for estimating an arbitrary number of orientations in images
(arbitrary m for n = 2) and for double orientation estimation (m = 2) in
general n-variate signals are presented. The second problem boils down to the
approximation of a general n × n matrix by a rank-2 matrix and the first
problem, the estimation of multiple orientations in images, can be formulated
as finding the roots of a degree m real polynomial.

Especially the estimation of more than two orientations in images has many
applications in image processing and computer vision, for instance in indus-
trial quality control or medical image processing. Fig. 7.7.3 shows an x-ray
image of superposed blood vessels and the estimated orientations.

7.8 Applications

7.8.1 Transport processes

The transport of energy, mass and momentum is one ubiquitous phenomenon
in our world, spanning all branches of science. It is one condition for the
continued existence of complex dynamic systems. As such, only through this
transport living organisms can coordinate and keep upright their metabolism
and other processes of life. Plants, for example, have developed complex vascu-
lar systems (the xylem) to transport nutrients and water from the roots to the
rest of the plant. At the same time, all living tissue is continuously supplied
with energy from the leaves, in form of the organic products of photosynthesis.
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Fig. 7.13. The set-up for measuring the xylem flow in plant leaves with active
thermography in A and the results of a ground truth measurement in B.

In plant physiology, it is a longstanding question how water and nutrients are
transported in the xylem of the plant’s leaf and which external factors influ-
ence it. While bulk dependencies are known, a detailed analysis has eluded
research due to inadequate measurement techniques. The transport processes
in leaves are especially important since it is known that they can be regulated
by plants according to environmental forcing. Also, due to these regulatory
mechanisms, the plant can cope with cuts in the leaf and still supply areas
affected by these cuts with xylem sap by other pathways. Still, very little is
known about these mechanisms. To shed light on the transport of the xylem
inside leafs the advanced techniques presented in this chapter have been em-
ployed on thermographic image sequences of heated water parcels in plant
leaves [31]. The experimental set-up as well as a comparative measurement to
ground truth is presented in Fig. 7.13. Through these measurements, quanti-
tative measurements could be made in different parts of the leaf in dependence
of external environmental forcings acting on the leaf [31].

On much smaller scales, a current trend in chemical and biochemical analytics
as well as in medical diagnostics is the move to microfluidic mixers and “lab-
on-a-chip” applications. Huge surface to volume ratios are achievable by micro
channels with highly controlled boundary conditions, leading to more efficient
reaction kinetics with less by-products. Even on these minute structures, the
transport of energy, mass and momentum as well as the measurements thereof
is vital for a better understanding of the processes involved. In these flow
regimes, molecular tagging velocimetry (MTV) is an alternative approach
to the standard technique of micro particle imaging velocimetry (µPIV) for
measuring fluid flows. In MTV, a pattern is written to the fluid with an
UV laser to uncage dyes and thus making them fluorescent. Although this
approach has been used since the late eighties of the last century, measuring
fluid flow with this technique has had one significant drawback: Due to the flow
profile, the uncaged dyes would appear to diffuse in a process termed Taylor
dispersion. Two frames of a typical image sequence can be seen in Fig. 7.14.
This dispersive process leads to significant uncertainties in the measurements,
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A B

Fig. 7.14. In A and B two frames of a microfluidic image sequences are shown. The
implication of Taylor dispersion can clearly be observed. Structures seem to diffuse
in the direction of fluid flow.
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Fig. 7.15. The vector field computed for an inhomogeneous flow in the mixing
chamber in A. Comparison of measured values from MTV (blue circles) and µPIV
(red crosses) compared to ground truth measurement obtained from a flow meter
(solid black line) in B.

as it is difficult to correct for this dispersion. Due to Taylor dispersion, the use
of MTV is very limited. Nevertheless, it represents the only technique available
for situations in which particles cannot be used for visualizing the flow, such
as packed columns. Motion models such as those described in Sec. 7.2.4 were
used to make feasible a highly accurate technique for measuring microfluidic
flows based on MTV [29, 32, 94]. A comparison of MTV, µPIV and ground
truth can be seen in Fig. 7.15.

In environmental sciences, it is the transport of the same quantities, energy,
momentum and mass, that is the driving force in most weather conditions on
short scales and in climatic variability on longer time periods. It plays the
dominant role on aquatic processes in the oceans such as ocean currents and
the thermohaline circulation, the meridional overturning circulation (MOC).
The two compartments of atmosphere and ocean are in contact at the ocean
surface where energy, mass and momentum is exchanged between them. Due
to experimental difficulties of measuring inside te boundary layer, extending
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Fig. 7.16. Growing pine needle. 1st (left) and 100th (right) image of the sequence,
the frames indicate the 256× 128 sheath region.
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Fig. 7.17. Growing pine needle. From left to right and top to bottom: motion
estimation results on the sheath region using 3 × 1 × 1, 5 × 5 × 5, 7 × 7 × 7, and
9 × 9 × 9-filters. Vectors longer than 4 pixels/frame are cut off. Vectors are scaled
by a factor of 4.

less than one millimeter into the water body which is undulated by waves
of several centimeters heights. Applying the advanced techniques for the es-
timation of complex motion presented in this chapter has lead to significant
advances in the field of air-sea interactions. Estimating the total derivative of
temperature T with respect to time dT/dt = α(u)◦T = c from thermographic
image sequences of the air-water interface has made it possible to accurately
estimate the net heat flux as well as the transfer velocity of heat [28, 34, 104].
The viscous shear stress could be deduced from active thermography [30]. This
will make it possible to perform process studies, relating the transport of heat
with that of momentum in the same footprint spatially and temporally highly
resolved.

7.8.2 Plant growth

In Sec. 7.4.1 optimal filters for transparent motion estimation have been de-
rived. As demonstrated in [98] using these filters reduce systematical errors
in transparent motion estimation. Motion estimation of a growing pine needle
(see Fig. 7.16) shows the effect of using different filter families. The sheath
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Fig. 7.18. reconstruction of plant using 49 camera positions. From left to right:
central image of input sequence, rendered depth estimates, close-up view on leaf
and estimated depth with surface slopes

region consists of a transparent layer, becoming more and more opaque the
closer to the base to the needle. Motion underneath this layer shall be mea-
sured in order to quantify local growth. In the current data sets only rigid
motion is visible, indicating that the growth zone is completely hidden in the
opaque region at the base of the needle. Fig. 7.17 depicts that using simple
central distances 3x1x1-filters, reliable results can be achieved nowhere in the
transparent region (same holds for 3x3x3-filters). The larger the optimized
filters, the larger and visibly more accurate the motion fields become.
The 3D model proposed in Sec. 7.2.3 has been integrated in a screening setup
established at ICG 3, Jülich. Depth and surfaces slopes of a plant (kalanchoe)
reconstructed from an input sequence of 49 images, i.e. 7 × 7 camera posi-
tions, demonstrate the accuracy of the model. Fig. 7.18 shows the central
image of the input sequence and of depth estimates rendered by povray [14].
Furthermore Fig. 7.18 shows a close-up view to compare a leaf with the esti-
mated parameters in detail. Reconstructed depth and surfaces slopes match
the original quite well.

7.8.3 Analysis of seismic signals

The analysis of seismic surface waves can provide valuable information about
the subsurface structure, which is of interest for engineering purposes and
seismic hazard assessment (see e.g. [46]).

A seismic signal typically contains several superposed propagation modes,
each with its own dispersion and attenuation characteristics. A typical prop-
agation model is

St(x, f) =
L∑
l=1

e−x(αl(f)+ikl(f))Rl(f), (7.84)

where St(x, f) is the spectrum of the signal recorded at distance x from the
source, L is the number of modes, Rl(f) is the spectrum of the source event for
each mode, and αl(f) and kl(f) are the frequency-dependent attenuation and
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Fig. 7.19. Estimation results obtained on a signal containing two superposed prop-
agation modes; noise level σ = 0.001, 20 recording stations.

wavenumber, respectively. (The wavenumber is related to the phase velocity
by the expression kl(f) = 2πf

cl(f) ).

The problem is now to estimate αl(f) and kl(f) from signals s(x, t) recorded
at stations x ∈ {x1, . . . , xm}; we call this the “Multiple Modes” problem.

Note that the Multiple Motions problem is a specialization of the Multiple
Modes problem where we have kl(f) = 2π fcl

and αl(f) ≡ 0 for all l = 1, . . . , L,
i.e. all frequency components propagate with the same phase velocity cl and
there is no attenuation.

There are several existing approaches to solving the Multiple Modes problem,
e.g. by estimating a wavelet operator [46]. We have developed a solution that is
based on the technique of harmonic inversion by filter diagonalization [64, 65].
This technique successfully separates modes that overlap in both time and
frequency, but it is quite sensitive to noise (Fig. 7.19 shows a sample result).
However, our interest in the technique stems from the fact that, like the Mul-
tiple Motions technique, it is based on solving an eigenproblem. Based on this
observation, we conjecture that the ideas used in the solution of the Multiple
Motions problem can be generalized to yield a solution for the Multiple Modes
problem; however, we have not been able to find such a solution so far.
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7.9 Conclusions

In this chapter, the results of a fruitful and highly collaborative research initia-
tive have been presented. A number of previously untackled and long-standing
problems of estimating local and complex orientations were addressed in a
multi-disciplinary effort. We have presented novel formulations for constraint
equations, linking multi-dimensional signals to local orientations. These con-
straint equations make estimation of complex motions feasible. Also, a number
of algorithms have been presented that make use of these orientation con-
straint equations and compute the model parameters in a statistically sound
and efficient way. The novel algorithms that were presented in this chapter
result from the combination of modern statistical signal processing, differen-
tial geometric analysis, novel estimation techniques, and nonlinear adaptive
filtering and diffusion techniques. Moreover, these novel algorithms were ap-
plied to a number of applications, making digital image processing feasible to
a number of them for the first time. The advanced algorithms were used in
environmental-, earth-, bio-, and life sciences, leading to significant advances
and contributions within these fields.

Acknowledgement. The authors gratefully acknowledge financial support from the
German Science Foundation (DFG) within the priority program SPP1114.

References
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[74] Mühlich, Matthias, Mester, Rudolf (1998) The role of total least squares
in motion analysis. In: Proceedings European Conference on Computer
Vision ECCV 1998, Lecture Notes on Computer Science, pp 305–321

[75] Mitra, SK, Li, H, Lin, I-S, Yu, T-H (1991) A new class of nonlinear fil-
ters for image enhancement. In: International Conference on Acoustics,
Speech, and Signal Processing, 1991. ICASSP-91., 1991, IEEE, Toronto,
Ontario, Canada, vol 4, pp 2525–2528

[76] Mota C, Barth E (2000) On the uniqueness of curvature features. In:
Baratoff G, Neumann H (eds) Dynamische Perzeption, Infix Verlag,
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denoising, 264, 268
derivative, 241
diffusion tensor, 261, 264
diffusion, anisotropic, 260
diffusion, nonlinear, 266

discontinuity-preserving, 267

eigenproblem, 279
energy operator, 246
energy tensor, 246, 255
energy, local, 251
estimation, motion, 239–248
estimation, multiple orientation, 272

filter diagonalization, 279
filter, convolution, 249
filter, design, 249
filter, edge preserving, 264
filter, optimal, 249
filter, optimized, 253
filter, quadrature, 250
filter, signal and noise adapted (SNA),

252
filter, steerable, 251
filter, Wiener, 264
filter, Wiener-optimized, 252
filters, derivative, 241
fluid flow, 237
Fourier domain, 271

Gaussian noise, identical isotropic (iid),
240

global parameters, 245

harmonic inversion, 279
harmonic functions, polar-separable,

243

information criteria, 256



292 Index

intrinsic dimension, 255
isospectral flow, 268

layers, multiple-motion, 255
linearization, 270
local flow homogeneity, 268
local parameters, 245

Markov Random Field, 263, 271
matrix equilibration, 256
microfluidics, 275
mixed OLS-TLS estimator, 244
mixed-motion, 269
mixed-orientation, 269
model complexity, 256
model selection, 255
model selection, Bayesian, 259
model selection, probabilistic, 256
model, additive orientations, 272
model, affine motion, 235, 236
model, multi-dimensional signals,

234–239
model, multiple motions, 235
model, occluding orientations, 272
molecular tagging velocimetry (MTV),

275
motion, 234
motion estimation, 239–248
motion layers, 271
motion layers, separation, 271
motion model, 234–235
motion, occluded, 271
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