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Abstract

This chapter is concerned with the following experimental situation: a fixed
number of experiments are to be used to learn as much as possible about a space
of potential materials. The researcher is required to first commit him-/herself to
the specific materials that are to be investigated before these are all evaluated
simultaneously.

We start from the assumption that the response of interest (such as activity,
toxicity, durability, permeability, etc.) shows some spatial correlation over the
experimental space to be explored. This means that the evaluation of a specific
material tells the researcher something about the properties of similar materials,
where similarity decreases with distance in material space.

The lack of knowledge of the response surfaces—which motivates experimen-
tation in the first place—is taken into account by using stochastic processes. We
give quantitative expressions for the uncertainty in the response that persists
after experiments will have been performed and discuss strategies to find designs
that minimize this uncertainty.

Furthermore, we introduce lattices that become optimal under certain limit-
ing conditions and use these to illustrate the nature of the space-filling designs
that are derived from our assumptions.

Finally, we discuss both the case in which the specific materials to be inves-
tigated can be chosen arbitrarily as well as the case in which the samples must
be selected from a finite set, e.g., an existing collection or library.

Throughout the chapter, special emphasis is put on the problems arising
in multidimensional spaces. All required tools (stochastic processes, the best
linear unbiased estimator and lattices) are introduced to make the chapter self-
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contained.
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1.1 Introduction

We assume you are facing the following situation: you wish to find a material
that features the best possible value for some property which you can measure
quantitatively. This is your response. You can control the composition as well
as the formulation and synthesis conditions. These variables form the basis of
your experimental space. We define the experimental region as that part
of experimental space which you decide to explore in your quest for a better
material.

Previous chapters have dealt with optimization of the response. This works
fine once you have found an area in your experimental region in which the re-
sponse is greater than zero. What, however, if you have not? Also, you may
already have explored an area of your experimental region until you have found
the local response maximum, but you may be dissatisfied with what you have
found: you now wish to screen the remainder of your experimental region for
other areas which show a nonzero response.

In both cases, you are obliged to sample your experimental region systemati-
cally, at least until you have found a new active area. A similar approach may be
useful even to locate the response maximum within a known active area, in cases
when the experiments are too time-consuming to admit a sequential design, e.g.,
if long annealing is required. This entire chapter is about how to perform this
sampling most effectively in the sense of gaining the clearest possible picture of
your response surface.

1.2 Modeling the response surface

To prevent the waste of time and money, we wish to sample space systematically
in an optimal fashion. Fine, but what is “systematic” and “optimal”? Intu-
itively, we understand that, in the absence of detailed prior knowledge about
the response surface, “systematic” means the samples should be distributed uni-
formly throughout the experimental region. However, different systematic sam-
pling schemes are conceivable, and a great variety of these have been proposed
in the literature (see references in [1]). Many have been brought forward with
eloquent arguments, but as long as these are purely verbal, it is difficult to
weigh one against the other. We advocate the use of methods which are derived
from clearly (and mathematically) stated assumptions concerning the response
surface. The name of the latter derives from the case of a two-dimensional ex-
perimental region. If the response is plotted in the third dimension for each point
in the experimental region, the impression of a surface results. In this analogy, a
steepest ascent algorithm can be compared to a hiker that chooses the steepest
path to the nearest peak, which corresponds to a local response maximum. We
will always talk of “surfaces,” even in higher dimensions.
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1.2.1 Polynomial approximation

The design is the sampling scheme, or the set of all points at which experiments
are to be performed. The theory of optimal experiments [2] assumes that the
response can be approximated with an analytical model. Once a model is fixed,
those points are selected for the design that have the greatest statistical leverage,
that is, those points which minimize the uncertainty in the estimates of the model
parameters. Such optimality criteria go under the name of “alphabetic” criteria;
namely, A-optimality (minimizing the trace of the inverse of the information
matrix), D-optimality (maximizing the determinant of the information matrix),
and G-optimality (minimizing the maximum prediction variance) [3].

The by far most popular models are polynomials, that is the sum of a constant
plus a plane plus a parabola and so on. The difficulty with most implementations
is that they consider only low-order polynomials as models. This is problematic
if the response surface can be expected to be irregular, for instance featuring
multiple peaks (statisticians refer to these as “modes”) and valleys. A second-
order polynomial can provide a good model for a single peak, but not for a
chain of mountains. One consequence is that, especially in higher dimensions,
most of the design points placed optimally by the above criteria lie on the hull
of the experimental region while few points are selected within. This lack of
representation of the inner region has started a quest for more “space-filling”
algorithms.

In the following sections, we will describe a different model of the response
surface that provides a lot of flexibility. Optimal sampling strategies will then
be derived under that model.

1.2.2 Stochastic processes

Not knowing what the actual response surface looks like, we can model it using
a stochastic approach. For starters, we could draw numbers from a random
number generator, one for each of the points in the experimental region. The
resultant surface would be pure noise. If you have reason to believe that this
is a good model for the particular response surface you are studying, you may
skip this chapter: the best you can then do is to avoid sampling the same point
in experimental space twice, but other than that, all conceivable designs will be
equally good, on average.

In reality, however, many response surfaces exhibit spatial correlation. That
is, one can expect two proximate points in the experimental region to feature
similar responses. Exceptions do certainly occur, for instance in the case of
sharp phase transitions, but even then the remainder of the experimental region
will usually show some spatial correlation. This “similar property principle”
applies to a wide range of systems and we assume it to hold in the following.

What we want, then, is a mathematical tool that can exhibit a range of spatial
correlations while being random in character—because the true response surface
is not known. In other words, we wish to represent in our model the expected
smoothness of the unknown response surface (which may be guessed or inferred
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from previous experiments on similar systems), but not the exact location of the
response minima and maxima. Once such a model is found, we can derive designs
that are optimal for it.

A suitable technique which satisfies our requirements is a stochastic pro-
cess, also known as random field or random process. Such processes arise in the
description of systems that evolve in space subject to probabilistic laws. We do
not claim that a response surface is probabilistic in nature, but we do assume
that a response surface looks similar to a suitably chosen stochastic process.

Before we illustrate these concepts graphically, we need a little more termi-
nology: consider a random number generator from which random numbers can
be drawn, one at a time. These individual numbers are called realizations. In
the case of a particular stochastic process, an entire random surface (and it can
generate infinitely many of these) is just one realization. These realizations will
have their peaks and valleys at different positions, but they will also have one
thing in common: the smoothness.

Figure 1.1 shows two realizations of each of four different stochastic processes.
The surfaces are obviously all different, but pairs of them appear similar: they
share the same smoothness. The smoothness of the surfaces is governed by the
range1 of the covariance functions as well as by the behavior of the covariance
functions near the origin. A cusp as in the exponential covariance function leads
to surfaces that are much rougher on a short scale.

It is now time to quantify this smoothness and the class of stochastic processes
we use. First, consider the mean of the stochastic process Z(x) at position x,

Z̄(x) = E[Z(x)]

where E denotes expectation. One obtains the mean as one averages the response
at a specific position x over all possible realizations of a stochastic process. In
the following development, we will assume this mean to be a constant Z̄ over the
experimental region. Next, consider the covariance between two points x1, x2,
given by

Cov(x1, x2) = E[(Z(x1) − Z̄)(Z(x2) − Z̄)].

The covariance function describes how similar the response is at positions x1, x2,
averaged over all possible realizations. To make things easier, we assume the co-
variance function to depend only on the length and orientation of the vector
connecting x1 and x2. This assumption and the one of a constant mean basi-
cally express the belief that the response surface does not change in character
throughout the experimental region. It can still exhibit wild cliffs, deep canyons
and vertiginous peaks, but the character of the response surface landscape should
be homogeneous throughout. Mathematically, these assumptions are denoted

1The range indicates the interval over which the covariance function differs “substantially”
from zero. This definition is admittedly vague and conventions in the literature differ. In
the calculations shown here, the exponential and Gaussian covariance functions with range
ρ are given by Cov(x1, x2) ∼ exp(−||x1 − x2||/ρ) and Cov(x1, x2) ∼ exp(−||x1 − x2||2/ρ2),
respectively.
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Figure 1.1: Stochastic models for response surfaces. Shown are two realizations
each of four stochastic processes with their corresponding isotropic (circularly
symmetric) covariance functions. Left: processes with a Gaussian covariance
function. Right: processes with an exponential covariance function. Top: long
range. Bottom: short range. The smoothness is governed by the covariance
function: its degree of differentiability around the origin determines the smooth-
ness at a microscopic scale, its decay with distance governs the appearance of
mountains and valleys at a large scale. All simulations performed with gstat [4].
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second-order (or weak or wide-sense) stationarity.2 As a final simplification,
we may assume that the covariance function depends only on the length, but
not on the orientation, of the vector connecting x1 and x2. Such covariances
are called isotropic and the phenomena they describe admit, on average, no
discernible orientation.

Summarizing this section, we recommend to follow arguments for the selec-
tion of experimental designs that are directly derived from clearly stated models
for the response surface. We have quoted two such models: the polynomial
approximation, leading to the alphabetic criteria; and stochastic processes, for
which we will derive optimality criteria in the following sections.

1.3 Kriging

The central assumption now is that the response surface can be modeled as the
realization of a second-order stationary stochastic process. Bear with us while we
introduce an interpolation method that will, in turn, lead to criteria for optimal
designs.

Actually, an interpolator has some interest in its own right: given a number
of measured responses at some points in the experimental region, it will give an
estimate of the response in-between these points. Reflecting the importance of
this task, a large number of methods have been proposed: polynomials, splines,
B-splines, thin-plate splines, etc. The kriging3 or best linear unbiased es-
timator stands out because it provides not only an estimate of the response
surface throughout the experimental region, but also the uncertainty of that es-
timate, as a function of space: the uncertainty is low around the available data
and grows with distance from these. Just how quickly the uncertainty grows
with distance depends on the smoothness of the surface, see Fig. 1.2.

The simple kriging estimator Ẑ(x) of the true response surface Z(x) is given
by

Ẑ(x) =
n∑

i=1

λi(x)Z(yi),

where yi are those points at which experiments have been performed, that is, the
design; and λi(x) are optimal weights, one for each of the n measurements Z(yi).

4

2Fixing the first two moments, the mean and the covariance, is not very restrictive in the
sense that there is an infinite number of different stochastic processes with the same first two
moments. Generally, all finite-dimensional moments [5] are required to characterize a stochastic
process exhaustively. Gaussian processes (which were used in Fig. 1.1) are an exception because
they are completely determined by their first two moments.

3This interpolator has been developed independently in different disciplines, but has prob-
ably gained the greatest popularity in the mining community that is compelled to extract a
maximum of information from each of their expensive samples. The name honors the mining
engineer D. G. Krige [6].

4We will in the following assume that Z̄ = 0. To estimate a process Y (x) with nonzero,
but constant and known, mean, simply subtract the mean from every measurement, apply the
regular kriging estimator to the obtained zero-mean process Z(x) = Y (x) − Ȳ , and add Ȳ
again to Ẑ(x) to obtain an unbiased estimate Ŷ (x).
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Figure 1.2: Simple kriging example. The left side shows two covariance functions
that differ in their range. The right side shows an interpolation (bold line) of
the three bold points. Far from the data, the interpolation goes to the assumed
mean, in this case zero. The thin lines indicate the uncertainty of the interpo-
lation in terms of ±√

MSE(x), given by eq. 1.2. The estimates lie within the
marked intervals with a likelihood of 68 %. The uncertainty grows faster for the
covariance function with the shorter range.

Note that these weights vary over space (otherwise the estimate Ẑ(x) would be
a constant). They are found as the solution of a set of n linear equations

n∑
i=1

λi(x)Cov(yi, yj) = Cov(x, yj) j = 1, . . . , n (1.1)

depending on the covariance function of the stochastic process and are optimal
in the sense of minimizing the mean square error [5, 1] between the true and the
estimated response surfaces,

MSE(x) = E
[
(Ẑ(x) − Z(x))2

]
.

Again, the mean square error of an interpolator should be minimal on average,
that is, considering all possible realizations of the stochastic process.

We have stated previously that the growth of the uncertainty of the interpo-
lation with the distance from design points depends on the smoothness of the
surface. This smoothness enters through the covariance function in equation 1.1
for the optimal weights λi(x).

The mean square error of the kriging estimator, or the uncertainty of the
interpolation as a function of space, is given [5, 1] by

MSE(x) = Cov(x, x) −
n∑

i=1

λi(x)Cov(yi, x). (1.2)

What does this equation depend on? On the covariance function, the design yi,
and the optimal weights which, in turn, depend only on the covariance function
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and yi. If you ponder this, the all-important conclusion is that the uncertainty
in the interpolation depends on the measurement sites (the design) and the co-
variance function, but not on the measured values Z(yi).

As a consequence, the design can now be optimized so as to minimize the
mean-square error, or the uncertainty in the interpolation, before performing any
experiments. The catch is in the assumptions: the estimated uncertainty is only
correct when the “true” covariance function is used.

1.4 Optimality criteria

Equation 1.2 gives the expected error for location x. The design can then be
modified to control the uncertainty at that specific location. We wish, however,
to find a design that is optimal for the entire experimental region R. We will
introduce two natural measures of global performance that have been proposed
[7], then illustrate in which sense they differ fundamentally (sections 1.5.2, 1.5.3),
and finally argue which of the two should be used (section 1.5.4).

1.4.1 Integrated mean square error

This criterion aims to minimize the total mean square error, integrated over the
entire experimental region:

Min
∫
R

MSE(x) dx (1.3)

Given a particular experimental region (see section 1.1) and covariance function,
this criterion or objective function can be optimized with any deterministic (e.g.,
steepest descent) or stochastic (e.g., simulated annealing) optimization method5.
Algorithmic details and several examples of such an optimization are given in [1].

Fig. 1.3 shows a square experimental region and a design of 121 points that
has been optimized under eq. 1.3 using an exponential covariance function with
a range of one-fifth of the square’s side-length. The design obviously reflects
the particular shape of the experimental region under study, but its inner points
seem to have a will of their own: they are arranged in a hexagonal pattern which
does not match the shape of the boundary! This might lead us to hypothesize
that in two dimensions, the “intrinsic” structure of a design that minimizes the
integrated mean square error may be hexagonal.

To find out whether this hypothesis is of any value, we should make the
experimental region larger and larger and add more and more points to it to
keep the density of the design constant. In this way, the points at the interior
can be expected to be influenced less and less by the particular shape of the
experimental region.

5If an opinion exists as to which parts of the experimental region should be sampled most
intensely, this prior belief can be allowed for through a spatial weighting of the mean square
error [1].
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Figure 1.3: Design of 121 points for a square region, optimized under the inte-
grated mean square error.

Ultimately, and to answer the question in full generality, the experimental
region and the number of points should become infinitely large. This assumption
greatly facilitates a mathematical analysis. We state, without proof, the following
results:

• if the response surface becomes infinitely smooth or infinitely rough, it does
not matter which sampling design is used

• if the response surface is very rough, the best design is given [8] by the
densest sphere packing (see section 1.5.1)

• if the response surface is very smooth, the best design is given by the
Fourier transform of the densest sphere packing [9].

These notions will be introduced in section 1.5.1, but to satisfy your curiosity,
we will disclose the result that in two dimensions, both the best sphere packing
and its Fourier transform are indeed given by a hexagonal arrangement and our
inspection of Fig. 1.3 has thus allowed us to anticipate some deep results about
the inherent characteristics of optimal designs in general.

1.4.2 Maximum mean square error

Whereas the integrated mean square error criterion discussed above strives to
minimize the average ignorance, the maximum mean square error criterion aims
to minimize the maximum interpolation error in the experimental region. A
brute-force recipe to find a design which minimizes the maximum mean square
error consists in identifying that location in space which has the greatest error,
then perturbing the design, finding the location which now has the greatest error,
etc.

If the stochastic process is assumed Gaussian and the response surface is very
rough, this criterion becomes almost equivalent [10] to the problem of thinnest
sphere covering which is introduced in the next section.
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Figure 1.4: The cubic lattice Z2 and the hexagonal lattice A2 along with their
Voronoi cells and one possible choice of basis vectors.

1.5 Infinite experimental regions

In a thought experiment, we have previously considered an infinitely large ex-
perimental region, to be explored with an infinite number of points. This is a
trick to make boundary effects negligible and learn something about the inher-
ent character of the different design criteria. We wish to exploit this trick in
the present section to accentuate the differences between using integrated and
maximum mean square error.

In section 1.6 we will turn our attention back to the practically more relevant
case of a finite experimental region.

1.5.1 Uniformly spaced points: lattices

Intuitively, we can expect an optimal design on a perfectly homogeneous infinite
space to be very homogeneous itself. The most regular arrangement of points
conceivable is a lattice. Mathematically, a lattice consists of all linear combina-
tions of some basis vectors, with all coefficients assuming integer values only (see
Fig. 1.4). This yields a highly regular structure with the property that, with an
oft-cited observation, “if you sit on one lattice point and view the surrounding
set of lattice points, you will see the identical environment regardless of which
point you are sitting on” [11]. In this sense, all lattices are perfectly uniform
arrangements: there is not one part of space where the points lie closer together
than in any other part.

The first dimension offers not much variety when it comes to lattices: there
is only one way of arranging points at equal intervals, and the resultant lattice
is called Z1. (We follow approximately the terminology of [12], where the first
letter indicates the family and the number gives the dimension.) In contrast,
an infinite number of lattices can be conceived for any dimension higher than
one. In two dimensions, two fundamental lattices have emerged as particularly
interesting, the cubic lattice Z2 and the hexagonal lattice A2, see Fig. 1.4.
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Fig. 1.4 also displays a set of basis vectors for each lattice. A lattice is fully
specified through its basis vectors, but the converse is not true: the same lattice
can be generated from different sets of basis vectors. If the basis vectors are
collected into a matrix, we obtain a generator matrix for the lattice. Examples
of generator matrices for Z2 and A2 are[ −2 0

2 −2

]
and

[ −2 0

1 −√
3

]

where the rows represent the same basis vectors as those shown in Fig. 1.4.
Also shown in the figures are the so-called Voronoi cells of the lattices

[13, 14]. The Voronoi cell of a point in a point set comprises the part of space
that is closer to this point than to any other. Contrary to the case of general
point sets, there is only one type of Voronoi cells in a lattice, i.e., each Voronoi
cell can be superimposed onto any other by translation only, without rotation or
reflection.

When we move on to three-dimensional lattices, three basic lattices deserve
particular attention, all of them well known from crystallography. They are illus-
trated in Fig. 1.5. The cubic lattice Z3 simply consists of all three-dimensional
points with integer coordinates. If we remove every second point of the cubic
lattice as in Fig. 1.5 (b), the face-centered cubic, or fcc, lattice is obtained.
(Alternatively, it can be constructed by centering a point on each of the six
faces of a cube and stacking such cubes, hence the name.) And if we instead
remove three fourths of the points in a cubic lattice, leaving only those with
either all even or all odd coordinates, we obtain the body-centered cubic, or
bcc, lattice, depicted in Fig. 1.5 (c). Even though the point sets in themselves
may not look very different, their geometrical properties differ substantially, as
illustrated by the shapes of their Voronoi cells. In standard lattice notation, the
face-centered cubic lattice is denoted A3 and the body-centered cubic lattice A∗

3.
Their generator matrices, as well as their generalizations and other lattices in
higher dimensions, are deferred to the Appendix.

1.5.2 Packing, quantizing, and covering problems

Packing

In section 1.4.1 we have claimed that, in the case of an infinite design region
and a rough response surface, the integrated mean square error is minimized
by a design that corresponds to a best sphere packing. The sphere packing
problem asks for the densest possible way of arranging non-overlapping spheres
of equal size. The density becomes maximal when the volume of the interstitial
regions is minimized. In lattices, the multiple translations of a single Voronoi
cell tile all of space. As a consequence, it is sufficient to study a single Voronoi
cell to understand the properties of the entire lattice. To reduce interstitial
space, it is advantageous to have a Voronoi cell that is as similar as possible to a
sphere. Since spheres do not tile space in dimensions greater than one, the best
approximation is sought. If we scale all lattices such that their Voronoi cells have
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(a)

(b)

(c)

Figure 1.5: The three basic three-dimensional lattices and their Voronoi cells. (a)
The cubic lattice, whose Voronoi cell is simply a cube. (b) The fcc (face-centered
cubic) lattice. Its Voronoi cell is a rhombic dodecahedron and has 12 faces. (c)
The bcc (body-centered cubic) lattice. Its Voronoi cell is a truncated octahedron
and has 14 faces.
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r R r
R

Figure 1.6: The cubic and the hexagonal lattice with the largest inscribed and
smallest circumscribed spheres of their Voronoi cells. If both lattices are scaled
such that their Voronoi cells have unit volume, the hexagonal lattice has the
greater packing radius r and the smaller covering radius R, cf. section 1.5.2 and
Fig. 1.7.

best
Dimension packing quantizing covering

lattice
1 Z1 Z1 Z1

2 A2 A2 A2

3 A3 (fcc) A∗
3 (bcc) A∗

3

4 D4 D4 A∗
4

5 D5 D∗
5 A∗

5

6 E6 E∗
6 A∗

6

7 E7 E∗
7 A∗

7

8 E8 E8 A∗
8

Table 1.1: The best known lattices according to three criteria. A lattice L∗ is
the dual, or Fourier transform, of the lattice L. Zd is the d-dimensional cubic
lattice and Ad is the generalized hexagonal lattice. These and the other lattice
families are defined in the Appendix.

unit volume, the best packing lattice will be the one with the largest inscribed
sphere6. Its radius, the packing radius r, becomes the figure of merit for the
packing problem: the greater r, the denser can a lattice pack spheres, see Fig. 1.6

As we go to higher dimensions, we encounter an ever increasing number of
potentially useful lattices, while at the same time the evaluation of their char-
acteristics becomes more complex. Fortunately, a great amount of research has
been devoted to the search for good lattices and the results are tabulated for sev-
eral quality measures and for all dimensions that are relevant for our purposes
[12]. The best packing, quantizing, and covering (see below) lattices known for
dimensions up to eight are summarized in Table 1.1. Definitions of all lattices
mentioned in the table, in terms of their generator matrices, are found in the
Appendix.

6Lattices are not the only possible method of stacking spheres densely, but the best lattices
are generally either the best packing method known or not much worse than the best known.
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Quantizing

Work on the optimal sampling problem in signal processing [9] has led to the
conclusion that for very smooth response surfaces in an infinite experimental
region, the integrated mean square error is minimized by a design that is the
dual7 of a best sphere packer.

A glance at Table 1.1 shows that the duals of the best packing lattices can be
found8 in a column entitled “quantizing.” The quantizing problem (or vector
quantization), which owes its name to an application in digital communications,
seeks an arrangement of points such that their Voronoi cells become as compact
as possible, where compactness is measured by their average second moment.
Indeed, the intriguing fact that the best known lattices for packing and quantizing
are duals of each other has been observed outside the range of the table, too,
and it was earlier conjectured to be a generally valid relation between optimal
lattices in any dimension [12]. This conjecture does not appear to be true for
arbitrary dimensions [15], but the general tendency is still valid: the dual of a
good packing lattice is good for quantization and vice versa [16]. We will have
reason to recall this property in section 1.6.

As before, if we restrict ourselves to lattices, it is sufficient to study a single
Voronoi cell; and also as before, the most compact body of a given volume
according to this measure is—the sphere. Yet again, tiling space with spherical
cells is not possible and thus one seeks a lattice whose Voronoi cells are as nearly
spherical as possible, by the above measure, while still tiling space. The figure
of merit now is r̄ which gives the root of the mean squared Euclidean distance
of all points in a Voronoi cell to its center.

Covering

Finally, we noted (section 1.4.2) that, at least for rough Gaussian9 stochastic
processes, for an infinite experimental region, the maximum mean square error
is minimized by a design that offers a thinnest covering. In this problem, the
aim is to seek an arrangement of spheres of equal size such that each point in
space is covered by at least one sphere, while the average number of spheres
covering a point in space should be as low as possible. Arguing in terms of
lattices, the radius of the smallest circumscribed sphere around the Voronoi cell,
the covering radius R, should become minimal, see Fig. 1.6.

We have seen that all criteria, packing, quantizing, and covering, seek to find
lattices with as spherical a Voronoi cell as possible; however, different definitions
of sphericity are used and the following section will show that these lead to wildly
differing lattices.

7The dual of a lattice is essentially its Fourier transform, if the point set is regarded as a
multidimensional sum of Dirac impulse functions.

8The lattices Z1, A2, D4, and E8 are self- or isodual.
9Gaussian here refers to the finite-dimensional distribution, not to the covariance function.
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Figure 1.7: The solid curves show the radial distribution, i.e.,the percentage
of the Voronoi cells of the two-dimensional lattices Z2 and A2 (see Fig. 1.4)
that lies outside a given radius. Dashed lines indicate the figures of merit for
the packing (packing radius r), quantizing (root mean square distance r̄) and
covering (covering radius R) problems. The gray curve illustrates the radial
distribution of a circle with the same area as the considered Voronoi cells.

1.5.3 The geometry of Voronoi cells

The by far most popular multidimensional lattice in experimental design, as well
as in a wide range of other applications, is the cubic lattice, Zd. It is what one
obtains by simply allowing the same discrete set of equidistant values for all
variables, independently of each other. While this property makes it extremely
easy to generate and utilize this lattice, the lattice is by no means a good lattice
in the sense of the previous section. Note that it appears nowhere in Table 1.1
for dimensions higher than one. Figures 1.4—1.6 suggests why: its Voronoi cell
is a square, in general a hypercube, which is not a very good approximation to
a sphere.

The most important characteristic of a point in a Voronoi cell is its “radius,”
i.e., its distance to the center of the cell—the direction is irrelevant for the per-
formance, as long as a rotation-invariant figure of merit is used. Hence, the
performance of a lattice is fully determined by the distribution of the radii in the
Voronoi cell. We define the radial distribution of a body as the percentage of
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the volume that lies outside a circle of a certain radius. For lattice Voronoi cells,
this is equivalent to the likelihood that the distance between a random point
in multidimensional space and its closest lattice point is greater than a certain
value. A uniform distribution is assumed over a large enough region to make
boundary effects negligible.

To prepare ourselves for a journey into higher dimensions, we begin with
the radial distributions of the Voronoi cells of the two-dimensional lattices of
Figure 1.4. The corresponding functions are shown in Figure 1.7. The density
of both lattices have been normalized to one lattice point per unit volume. The
three quality measures r, r̄, and R (see section 1.5.2) are marked in the diagrams
for both lattices.

If we look for a d-dimensional body of unit volume with greatest inscribed
sphere (largest r), smallest moment of inertia (smallest r̄) or smallest circum-
scribed sphere (smallest R) without requiring that it allow a tiling of space, we
find that the sphere is optimal by all criteria. Hence we include in the diagrams
the corresponding curve for the distance between points in a sphere and its cen-
ter. This curve serves as a lower bound in the diagrams. A good lattice, in
the sense that it has as much as possible of the Voronoi cell located close to its
center, would in these diagrams be identified by its proximity to the spherical
lower bound. As we can see in Figure 1.7, the curves for the two lattices differ
only in their “tails.” They follow the same shape down to the packing radius r
of Z2. From there on, A2 has a steeper slope, reflecting the rounder shape of its
Voronoi cell.

Figures 1.8–1.10 show the same type of curves for higher dimensions. For
dimensions 4, 8, and 16, the best lattices for packing, quantizing, and covering,
respectively, are illustrated, along with the cubic lattice. Again, the best
lattice would have a curve that in some sense lies as close as possible to that
of the sphere. The curves coincide with that of the sphere for distances below
their packing radii r and above their covering radii R, respectively. They deviate
between these points, where the cubic lattice always shows the most prominent
“tail.” The ratio R/r is equal to

√
d for Zd and thus tends to infinity as the

dimension increases. “Good” lattices, on the other hand, typically have a ratio
less than two for any dimension. In particular, this is always true for the optimal
packing lattice.10

In all cases, in particular for the cubic lattice, the curves approach zero rapidly
long before the theoretical zero, which occurs at the covering radius R. This may
be somewhat surprising in view of the large number of vertices that a typical
Voronoi cell possesses.11 Apparently, the volume close to such a vertex is so
small that even the sum of them accounts for a negligible volume only.

One might think of a high-dimensional Voronoi cell as being similar to a sea
urchin: a spherical shape with a large number of thin needles on its surface. Such

10Because for any lattice with R ≥ 2r, a new lattice with the same r but higher point density
can be created by inserting points in the void between points in the original lattice.

11The Voronoi cell of any d-dimensional lattice has between 2d and (d + 1)! vertices, inclu-
sively, where the lowest value is attained by Zd and the highest by A∗

d [17].
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Figure 1.8: The radial distribution of Z4, A∗
4 (the best known lattice for covering),

and D4 (the best known for packing and quantizing). The gray curve represents
a four-dimensional sphere.
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Figure 1.9: The radial distribution of Z8, A∗
8 (the best known lattice for covering),

and E8 (the best known for packing and quantizing). The gray curve represents
a sphere.



18 CHAPTER 1. SPATIAL SAMPLING DESIGN

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

r r̄ R

Z16

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

r r̄ R

A∗
16

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

r r̄ R

Λ16

Figure 1.10: The radial distribution of Z16, A∗
16 (the best known lattice for

covering), and Λ16 (the best known for packing and quantizing). The gray curve
represents a sphere.
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Figure 1.11: A three-dimensional representation of an eight-dimensional hyper-
cube. The body has the same radial distribution and the same number of vertices
as the hypercube. A very small fraction of the mass lies near a vertex. Also,
most of the interior is void.
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a shape is illustrated in Figure 1.11, which is a nonlinear but radius-preserving
mapping from an eight-dimensional hypercube to three-dimensional space. We
observe that the spines are extremely thin, indicating that the space close to
a vertex accounts for a negligible fraction of the volume of a hypercube. On
the other hand, the shape is also almost empty in the center. This behavior is
typical for high-dimensional polytopes, not only hypercubes. Most of the mass
is concentrated on a belt with relatively small radial variation.12

1.5.4 Discussion of optimality criteria

We have characterized the integrated and maximum mean square error criteria
by means of the lattices that they lead to when the experimental region be-
comes infinitely large and the response surface is very smooth or very rough.
Figures 1.8–1.10 show that almost all of the volume of a Voronoi cell is confined
to a radius that is much smaller than the distance of the vertices from the center.
Repeating our metaphor, illustrated in Figure 1.11, the corners of a Voronoi cell
in a higher dimension take the shape of needles and their volume in experimental
space is low. If the probability of finding an interesting area of high response is
uniform throughout the experimental region, it is unlikely that it will come to lie
in one of the needles. For covering (and thus the maximum mean square error
criterion), however, all that matters is the distance of the tips of these needles
from the center, irrespective of what little volume they occupy. The integrated
mean square error criterion leads to Voronoi cells with longer needles. This cri-
terion pays no heed to the large interpolation uncertainty near the tip of these
needles, simply because their statistical weight is so low.

Also, in the sense of the integrated mean square error criterion, any additional
design point will reduce the uncertainty of the experimenter (as long as it does not
coincide with a previous point). By the maximum mean square error criterion,
however, only optimally placed points reduce the uncertainty if the range of the
covariance function is short.13

For these reasons, we encourage the use of the integrated mean square error
criterion, assuming that the top priority in most applications is the best overall
performance throughout the experimental region. High-dimensional lattices are
however rarely useful in experimental design unless an extremely large number
of experiments can be performed, as explained in the next section.

12For d-dimensional hypercubes, the radius of the belt approaches R/
√

3 as d increases.
13The reason being that for short ranges, the maximum mean square error criterion becomes

similar to the sphere covering problem. The maximum mean square error then depends on
the point (or points) being most remote from its closest design point. Only additional design
points that reduce this greatest minimal distance lead to a reduction in maximum mean square
error.
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Figure 1.12: A cubic experimental region 0 ≤ c1, c2, c3 ≤ 1 and the regular
triangle containing all ternary mixtures with c1 + c2 + c3 = 1.

1.6 Finite experimental regions

Having learned more about the quintessential differences between the integrated
and maximum mean square error criteria in the admittedly somewhat academic
setting of infinite experimental regions, we are prepared to study the practically
relevant case of finite experimental regions. Owing to the “curse of dimensional-
ity,” these have their peculiarities in higher dimensions.

If you can modify all of your experimental variables such as composition, for-
mulation, and synthesis conditions independently, and if you set upper and lower
limits individually for each of these variables, your experimental region is a rect-
angular body. For instance, if you can choose between 0 and 1 unit (milligram,
mol, etc.) of any of the three components c1, c2, and c3, the associated experi-
mental region is a cube in the first octant of experimental space, see Fig. 1.12.
If dependencies between the variables exist, the shape of the experimental space
changes. The most common case is the so-called mixture problem in which
all the components must add up to one unit. Geometrically, the condition
c1 + c2 + c3 = 1 is a plane that passes through the points (0, 0, 1), (0, 1, 0), and
(1, 0, 0). If one intersects this plane with the cube 0 ≤ c1, c2, c3 ≤ 1, the re-
sultant experimental region is an equilateral triangle (see Fig. 1.12), often used
for summarizing data on ternary mixtures. If one has a mixture problem with
four components, the experimental region becomes a regular tetrahedron, and
so on. The geometrical entities line segment (in dimension d = 1), equilateral
triangle (d = 2), regular tetrahedron (d = 3), etc., are summarily denoted as
d-dimensional simplices.

How do these polyhedra generalize to higher dimensions? We will look at
cubic and simplicial experimental regions in higher dimensions.

For starters, imagine that you can set d different reaction parameters (tem-
perature, pressure, etc.) to k different values each. You can then choose from kd

distinct sets of reaction conditions, see Fig. 1.13. For example, d = 8 parameters
which are set to only k = 3 values each result in 6561 distinct combinations.
How many of these lie on the surface of your experimental region? The answer is
6560 because only one point, namely, the one where all eight parameters assume
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Figure 1.13: The logarithm of the number of points in cubes (left) and simplices
(right) of various dimensions with the number of points on one edge given by
“resolution.” Points are arranged on the cubic lattice Zd in the cubes and the
generalized hexagonal lattice Ad in the simplices.

their central value, lies in the interior.
Similar properties hold for the simplices: if d components can be varied under

the condition that they must sum to some constant, all possible combinations
lie in a (d − 1)-dimensional simplex. Assuming that the individual components
can be varied in k steps, the total number of discrete combinations is (k + d −
1)!/((k − 1)!d!). Again, most points will lie on the surface: in an 8-dimensional
simplex, the resolution k must be 10 (or higher) to ensure that at least one point
comes to lie in the interior of the simplex. At this stage (8-dimensional simplex
with 10 points along each edge) the simplex comprises already 24310 points. In
this example, the points have been packed in the generalized hexagonal lattice
Ad, which has the right symmetry for a simplex [12].

Two conclusions from this section are that the volume of high-dimensional
spaces is vast and most of the volume is concentrated on the surface. Unless
special measures are taken, most of the design points will equally lie on (or
near) the hull of the experimental region, (almost) equaling one or more of the
constraints that define the experimental region.

Another implication is that if one can perform only few experiments compared
to the volume of the experimental region, the shape of the experimental region
will make a heavy impact on the optimal design. To explain it in terms of Fig. 1.3,
if you put just as many points in a higher-dimensional experimental region, most
points would make contact with one of the surfaces and the structure of the
optimal design would have to deviate strongly from the nice lattice which it
would really “like” to be.

As a consequence, if you have a large number of points (say, more than 10d

in dimension d), an extract from a lattice will be a good approximation to an
optimal design. If you have less points, you may want to think about optimizing
your design numerically.

If you can make a reasonable guess at the covariance structure of your re-
sponse surface, use eq. 1.3 as a criterion in conjunction with your favorite opti-
mizer.
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If not, you should make a guess as to whether your response surface is more
likely very rough or very smooth on the scale of your sampling density. Judging
by the toy examples from this section, in case of doubt you are probably in the
rough regime and should then use some sphere packing algorithm, e.g. [18]. If
you have reason to believe that your response surface is very smooth, you would
like to use the dual of a sphere packing. Since that is not defined for finite
experimental regions, and not for nonlattice point sets either, you might want to
put some trust in the conjecture mentioned in section 1.5.2 and decide to design
a point set that is good for vector quantization. This problem has been studied
extensively in connection with the encoding of analog signals for transmission
over a digital network. (For an excellent overview, see [19].) Design algorithms
for this purpose are readily applicable also to experimental design, for sufficiently
smooth surfaces, with or without a weight function. Available algorithms fall into
one of two main classes: “block-iterative” [20] or “sample-iterative” [21].

1.7 Extensions

The following subsections will mention further applications based on the kriging
formalism (sections 1.7.1 and 1.7.2), compare the kriging approach to popular
algorithms for the generation of space-filling designs (1.7.3), and discuss the
repercussions of some of the assumptions made and how they can be dealt with
(1.7.4).

1.7.1 Application to subset selection

In the foregoing, we have assumed that each point in the experimental region is
eligible as a design point. This need not be true in all applications.

For instance, the finest resolution in the amount of deposited component
that a pipetting robot can achieve may be an entire droplet. This leads to a
discretization of the experimental region.

In other applications, for instance in pharmacological screening, a small num-
ber of compounds should be selected from a larger library. As in the continuous
case, this selection should be optimal in the sense of allowing us to learn a
maximum about the response in the experimental region. This is the subset
selection problem. We assume that the compounds have been embedded in a
property space (see chapter 1, table 1) such that the response varies as smoothly
as possible from one compound to the next. Each compound is represented by
one point in property space and as in the continuous case, points that are close
in the experimental space should evoke a similar response.

In both examples mentioned, the experimental region now consists of a cloud
of points in space. In cases such as the screening example, the density of the
cloud will not be uniform: there may be a clutter of points in some areas of the
experimental region while others may be nearly empty.

Now, since the continuous experimental region has been replaced by a cloud of
points, and assuming the integrated mean square error criterion has been chosen,
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the integral in equation 1.3 can be replaced by a summation of the mean square
error over all points. However, the non-uniformity of the point density needs to
be taken into account, otherwise the resultant design will have most of its points
in areas that are highly populated by the library [1]. Such a design is called a
representative subset and is not compatible with the assumption of uniformly
distributed probability of high response, which in turn asks for diverse subsets.

If, instead, the maximum mean square error has been chosen as design cri-
terion, the optimization process is simplified in a similar way. It then suffices
to calculate, for a given trial design, the mean square error at each point in the
cloud, and retain the largest value found. The trial design can then be perturbed
and the new maximum mean square error found, etc.

In summary, modeling of the response surface as a stochastic procedure and
design optimization based on the best linear unbiased estimator can be applied to
the subset selection problem, with the computational simplification of considering
only the given library members as candidate points for the design rather than
the entire experimental region.

1.7.2 Adaptive sampling

All previous arguments were based on the assumption that first, a design is sought
and afterwards, all experiments determining the responses are performed. Such
experiments are denoted simultaneous. What if you have been lucky enough
to locate an area of promising response, and if you now wish to switch from ex-
ploration to optimization? You could define a narrower experimental region and
proceed as before, first optimizing a design and then performing measurements.
If you do not wish to waste experiments, you can construct a design around the
sampling points which you already have in that narrower experimental region
(for details, see [1]). If you do have a fair idea of the smoothness of the response
surface, however, you can do even better than that. You can construct a design
that directly uses the information from the previous measurements. The basic
idea in such an adaptive (also called sequential) experiment is to put your next
design point where the response (as predicted by the kriging interpolator) plus
the estimated uncertainty of your prediction are maximal. For a highly readable
account of this approach, see [22].

1.7.3 Relation to other algorithms

The algorithm you employ should mirror your assumptions concerning

(i) the response surface and

(ii) your experimental strategy.

Concerning (i), modeling the response surface as realization of a stationary
stochastic process allows to lay open the implicit assumptions that many pub-
lished algorithms rely on.



1.7. EXTENSIONS 25

For instance, the “maximin” algorithm (which seeks to maximize the min-
imum distance between any two design points) implicitly tries to find a good
sphere packing, and as such relies on the assumption of a rough response surface
in combination with the aim of minimizing the average uncertainty. Be aware
that the popular maximin algorithm pushes design points into the hull of the
experimental region. This can be avoided by using a definition of sphere packing
which relies on the sphere packing density in the experimental region rather than
on the interpoint distance [1].

If, instead, an algorithm tries to minimize the maximum distance between
any point in the experimental region and its closest design point (“minimax”),
it seeks to solve the covering problem, which in the current framework can be
interpreted as trying to minimize the maximum uncertainty on a rough response
surface, as in section 1.4.2. Some more correspondences are discussed in [1].

Concerning (ii), an algorithm that proposes design points in a sequential fash-
ion is not compatible with a simultaneous experimental setup. If all experiments
are performed without taking into account previous measurements, then an op-
timal design should also be found by varying all design points simultaneously,
rather than by augmenting an initial small design, one by one.

1.7.4 Technical details

The expected uncertainty in a kriging prediction depends on knowledge of the
true covariance function. If a guessed or fitted covariance function is used instead,
the uncertainty is underestimated. An uncorrelated random error component can
be admitted to account for random measurement error. The scaling of the co-
ordinate axes is vital; an isotropic covariance function assumes that all spatial
directions are of equal importance. If one dimension of the experimental region
represents the quantity of a particular additive and its units are changed from,
say, millimol to mol while keeping all other things equal, the experimental re-
gion is compressed thousandfold in that direction and much fewer points will be
available to illuminate the effect of the additive on the response. In other words,
prior knowledge must be used to scale the axes of the experimental region or,
equivalently, parameterize a non-isotropic covariance function.14 Also, less
stringent assumptions concerning the nature of the response surface can be made
[5, 1], in particular the response can be modeled as the sum of a trend (given,
e.g., by a polynomial) and a stochastic process. Depending on the relative im-
portance of the two, the resultant design will vary between one that is optimal
according to the “alphabetic” criteria (section 1.2.1) and one that is optimal for
the pure stochastic model.

14Rescaling of the experimental space amounts to replacing a covariance matrix that is
constant along its diagonal and zero elsewhere, with a diagonal covariance matrix with differing
diagonal elements. This is equivalent to making a shift from Euclidean to weighted Euclidean
distance.
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1.8 Conclusions and practical recommendations

Before anything else, you are required to define your experimental region (defined
in the introduction). If your experimental space has no reasonable natural limits,
you need to fix constraints arbitrarily. Upper and lower bounds on individual
dimensions are the most convenient constraints to formulate and implement, but
you should generally try to define your experimental region as tight as possible:
when working in multiple dimensions you are almost always data starved and if
you can afford only so many design points, better not waste them in an overly
generous margin.

In exploring an unknown space of materials, we think that modeling the
response surface as a realization of a stochastic process offers much flexibility in
the incorporation of prior knowledge through weight and covariance functions. If
nothing is known about the covariance structure of the response surface, at the
very least a guess is required as to whether it is smooth or rough on the scale
of the interpoint distance. In the light of section 1.5.4, we will only discuss the
integrated mean square error criterion in the following.

Remembering that the volume of a multidimensional space is vast, the few
thousand design points you can afford may easily look forlorn. Their isolation will
usually lead to a situation in which your response surface can vary significantly
between design points. In this case, if you have relatively few15 design points,
you should, for the reasons given in sections 1.4.1 and 1.6, consider numerical
optimization of your design with a sphere packing algorithm, for instance as in
[18]. If you have many design points available relative to the dimensionality of
your problem, you may ignore boundary effects and excise part of a packing
lattice for your design.

If you can assume that your response surface is smooth, you are in a lucky
position: you can then hope to gain a fairly accurate picture of the true response
surface from your experiments. Also, if you have too few design points to simply
use the dual of a packing lattice (see sections 1.4.1 and 1.5.2), you can rely on
efficient and robust algorithms for vector quantization (section 1.6).

If you are in a position to make an educated guess at the covariance structure
of the response surface, you can optimize your design under eq. 1.3 using any
local or global optimizer. Also, if for some reason you want more design points
in a particular area, you can introduce this bias through a weight function [1].

In essence, you can get away with very little knowledge about your response
surface, but if you do know more you have ways of putting this knowledge to
work in a consistent framework. The above is condensed in the flowchart in
Fig. 1.14.

In summary, if you can afford many experiments and wish to invest little
into optimization of the experimental design, you can sample your experimental
region on a lattice—though preferably not on the cubic. Switching to a more
suitable lattice will improve the performance significantly for the same number

15It is difficult to give numbers that are useful for a wide range of situations, but if hard
pressed for one, we might say that “few” means � 10d in dimension d.
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Figure 1.14: How to determine a suitable design method.

of experiments, still assuming that the number of experiments is large. If you
need to make the most out of a limited number of experiments, you will be forced
to invest time and expertise into numerical optimization of the design.

Appendix A Generator matrices for lattices

A.1 Generating lattice points

As discussed in section 1.5.1, each point in an infinite lattice can be specified by
a linear combination of basis vectors, where all coefficients take integer values
only. The basis vectors can be collected, row by row, into a generator matrix.
In this Appendix, we give one generator matrix for each lattice mentioned in the
chapter (the Z, A, D, and E families, and Λ16).

To span a d-dimensional lattice, d basis vectors are required. However, each of
these vectors can have more than d components. The two-dimensional hexagonal
lattice A2, for instance, can be defined as the intersection of the three-dimensional
cubic lattice (x, y, z) with x, y, z integer, and of the plane x + y + z = 0. The
resultant generator matrix can be written in the form

[ −1 1 0−1 0 1

]

which contains, unlike the matrices given in sections 1.5.1 and A.2, no square
root. In general, generator matrices are often easier to write down using basis
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vectors with more than d components, and textbooks usually give these matrices.
However, these lattices first need to be rotated, thus discarding the redundant
dimensions, before they can be used in experimental design. All generator matri-
ces tabulated in the following have exactly d columns for d-dimensional lattices.
Most of them are taken from the appendix in [15], where further information can
be found.

For every lattice, there is a dual (denoted by a star). One way to define it is
through Fourier analysis. Consider a sum of Dirac impulses, one at each point
of a particular lattice. The Fourier transform of the sum is another sum of Dirac
impulses. The locations of these impulses is the dual of the original lattice. If B
is a square generator matrix for a lattice, then (B−1)T is a generator matrix for
its dual.

For any particular lattice, basis vectors can be chosen in a multitude of ways.
Furthermore, lattices that can be obtained from each other just by rotation,
scaling, and possibly reflection are usually considered equivalent (denoted by
“∼=”), because even if such lattices do not contain the same points, they have
analogous properties as far as Euclidean distance is concerned. Useful equivalence
relations include Z1

∼= Z∗
1
∼= A1

∼= A∗
1, A2

∼= A∗
2 (hexagonal), A3

∼= D3 (fcc),
A∗

3
∼= D∗

3 (bcc), D4
∼= D∗

4, E8
∼= E∗

8 , and Λ16
∼= Λ∗

16.
Once an appropriate lattice has been chosen, we must also be able to deter-

mine the points of the lattice that fall within a given experimental region R.
The general procedure can be outlined as follows.

(i) Project the region R onto the first basis vector. This defines an interval in
the direction of the basis vector; find the endpoints of this interval. Repeat
for all d basis vectors and call the intervals J1, . . . , Jd.

(ii) For i = 1, . . . , d, generate all integer multiples of basis vector i that lie
within Ji and call this set of vectors Si.

(iii) Compute the set of all points that can be obtained as the sum of i vectors,
one from each Si. These points belong to a parallelepiped with sides parallel
to the basis vectors. The parallelepiped encloses R.

(iv) Discard all points in the set that lie outside R.

A.2 Generator matrices

Zd, d ≥ 1 :

⎡
⎢⎢⎢⎣

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎤
⎥⎥⎥⎦
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Ad, d ≥ 1 :

⎡
⎢⎢⎣

α 1 · · · 1
1 α · · · 1
...

...
. . .

...
1 1 · · · α

⎤
⎥⎥⎦ with α =

√
d + 1 + 2

A∗
d, d ≥ 1 : as above with α =

√
d + 1 − d

Dd, d ≥ 3 :

⎡
⎢⎢⎢⎣

2 0 0 · · · 0
1 1 0 · · · 0
1 0 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 1

⎤
⎥⎥⎥⎦

D∗
d, d ≥ 3 :

⎡
⎢⎢⎢⎢⎣

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
1/2 1/2 · · · 1/2 1/2

⎤
⎥⎥⎥⎥⎦

E6 :

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 α
0 1 0 0 0 α
0 0 1 0 0 α
0 0 0 1 0 α
0 0 0 0 1 α

1/2 1/2 1/2 1/2 1/2 3α/2

⎤
⎥⎥⎥⎥⎦ with α =

√
3

E∗
6 : as above with α = 1/

√
3

E7 :

⎡
⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 2 0 0 0
1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 0 1 1 1 0 1

⎤
⎥⎥⎥⎥⎥⎦

E∗
7 :

⎡
⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0 0
0 2 0 0 0 0 0
0 0 2 0 0 0 0
1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

⎤
⎥⎥⎥⎥⎥⎦

E8 :

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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Λ16 :

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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