
Probabilistic Image Segmentation with Closedness Constraints

Bjoern Andres, Jörg H. Kappes, Thorsten Beier, Ullrich Köthe and Fred A. Hamprecht
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Abstract

We propose a novel graphical model for probabilistic im-

age segmentation that contributes both to aspects of percep-

tual grouping in connection with image segmentation, and

to globally optimal inference with higher-order graphical

models. We represent image partitions in terms of cellular

complexes in order to make the duality between connected

regions and their contours explicit. This allows us to formu-

late a graphical model with higher-order factors that repre-

sent the requirement that all contours must be closed. The

model induces a probability measure on the space of all par-

titions, concentrated on perceptually meaningful segmenta-

tions. We give a complete polyhedral characterization of the

resulting global inference problem in terms of the multicut

polytope and efficiently compute global optima by a cutting

plane method. Competitive results for the Berkeley segmen-

tation benchmark confirm the consistency of our approach.

1. Introduction

We study the image partitioning problem, where the task

is to decompose an image into a previously unknown num-

ber of segments that are somehow homogeneous but do not

belong to a predefined set of categories such as {ground,

car, sky}. The most popular representation for this kind of

problem is in terms of pixel labels: segments are then de-

fined as connected components of pixels with the same la-

bel. However, while a labeling uniquely defines a segmenta-

tion, the converse is not true. This aggravates the inference

problem, as discussed in Section 3.

Alternatively, one may represent image partitioning as

an edge labeling problem. Here, a region adjacency graph

of pixels or superpixels can be constructed, and each edge

in the graph can be labeled as “active” (1) or “dormant” (0).

Each maximal set of nodes that is connected by edges of

type 0 corresponds to one segment. An important advan-

tage is that arbitrary partitionings can thus be represented

using only binary labels. On the downside, not every bi-
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Figure 1. (a) Oversegmentation of an image. The curves that sepa-

rate superpixels are shown in white. (b) Given local boundary and

Gestalt features that characterize each curve, we make a predic-

tion if a curve should be kept (“active”) or discarded (“dormant”).

Connected component analysis then yields a segmentation that is,

however, of poor quality because the contours of most real objects

have gaps. Each gap arises from a curve that was falsely discarded.

Many “active” curves (shown in red) then end up in the interior of

connected components and are hence inconsistent with the seg-

mentation. (c) The introduction of topological constraints yields

improved and consistent closed-contour segmentations.

nary labeling results in closed contours. Such inconsisten-

cies could be addressed by a heuristic postprocessing that

closes gaps in contours, or eliminates dangling boundaries

within a segment. While empirically useful, such methods

are hard to characterize theoretically and hence difficult to

improve systematically.

To address these challenges, we start from an overseg-

mentation whose regions become the nodes of an adjacency

graph. A binary random variable is associated with each

edge, stating whether the corresponding curve should be-

come active as part of a segment boundary, or remain dor-

mant. A probabilistic graphical model is proposed that as-

sociates a probability with each realization of these random

variables. Importantly, we formulate a prior that assigns

zero probability to all those configurations that correspond

to inconsistent edge labelings. This corresponds to an expo-

nential number of constraints in the integer linear program-

ming (ILP) problem to which the inference problem can be



cast. However, we can find violated constraints in polyno-

mial time (Section 3.2) and add these iteratively, thus solv-

ing the inference problem to global optimality using branch-

and-cut. Overall, this amounts to a practical solution of the

multicut problem, despite its NP hardness.

Summarizing, our main contributions are

• A statistically sound formulation of the partitioning

problem that explicitly includes a closedness con-

straint and achieves state-of-the-art performance on the

Berkeley segmentation dataset (BSD) [15].

• An explicit objective function that measures the fit of a

partitioning to an image, rather than a mere procedural

recipe.

• Empirical proof that globally optimal (maximum a

posteriori) solutions can be found even in the face of

non-local closed-contour constraints.

• A probabilistic model whose underlying statistical as-

sumptions are made explicit and which can be param-

eterized without manual tweaking based on statistical

learning from training data.

2. Related Work

Image segmentation has successfully been formulated as

an optimal graph partitioning problem, e.g. in normalized

cuts [25]. While the normalized cut framework settles for an

iterative bisectioning of the graph by solving a relaxation of

the normalized cut objective, we solve an unrelaxed multi-

cut objective to global optimality. We formulate this objec-

tive in terms of a higher-order probabilistic graphical model

over edge labelings.

Graphical models over edge labelings have been pro-

posed in [17, 28]. These models are restricted to the spe-

cial case in which curves cannot intersect. Each segment is

thus adjacent to at most one other segment in a global opti-

mum. If it is known a priori that only two segments exist,

this assumption is mild and the optimization problem can

be solved efficiently [17]. We drop this assumption for the

general case in which the number of segments is not known

a priori. We still guarantee the closedness of curves globally

through higher-order constraints and find global optima.

In [28], the ”multi class segmentation” problem is ad-

dressed in which object categories are given and the goal

is to assign one category to each pixel. We, in contrast,

address the multicut problem where the goal is to partition

the image, based merely on a notion of similarity. Model

assumptions are violated in the solutions of [28] (Fig. 14)

found by Loopy Belief Propagation which indicates that the

problem has not been solved to global optimality.

The advantages of superpixels and features derived from

these have been expounded by [23] and others.
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Figure 2. Unequal node labelings that represent the same segmen-

tation (a through d) can be obtained by permuting labels (b) and

by using one or several labels for more than one segment (c). The

number of choices increases if there are more labels than necessary

to represent all segmentations (d).

On the theoretical side, our model is strongly related to

the partitioning or multicut problem in combinatorial op-

timization, cf. [6, 9, 7]. While the calculation of minimal

cuts has become a standard technique in computer vision

[12, 24], its generalization to the multi-class case (multi-

cuts) has so far been deemed to be impractical for computer

vision applications. However, the multicut problem can

be formulated as a linear program over the multicut poly-

tope [11]. Unfortunately, the number of facets defining this

polytope is exponential in general. Therefore, cutting plane

methods are used to iteratively tighten an outer approxima-

tion of the multicut polytope [10, 3].

Pioneering applications in computer vision that exploit

these techniques in the primal (node) domain are [26] and

[18]. In contrast to these, we consider the dual (edge) do-

main and apply branch-and-cut algorithms [5] in order to

guarantee optimal integer solutions.

3. Probabilistic Models of Graph Segmentation

We represent an image as a graph G = (V,E) whose

nodes correspond to pixels or image regions / superpixels.

We set out to find a probabilistic model on the set of all pos-

sible partitionings SG of that finite graph G into connected

subsets of nodes. That is, we want to find a probability mass

function p that assigns a probability p(S) ∈ [0, 1] to every

possible segmentation S ∈ SG. For all but the smallest

graphs, the set SG is too big to explore exhaustively, requir-

ing an implicit definition. While such a definition in terms

of node labelings is challenging (Section 3.1) we use bi-

nary edge labelings together with additional constraints that

guarantee closed contours.

3.1. Graph Segmentation by Node Labeling

One way to define the desired probability mass function

implicitly is to define a graphical model in terms of a node

labeling. Assuming a set L of labels, each of the |V | dis-

crete variables in the graphical model can take any of |L|
states. The segmentation induced by a node labeling is then

defined as the partition of V into maximal connected sub-

sets of nodes that have the same label.

The set of all node labelings is greater than the set of all

segmentations represented by these labelings (see Fig. 2).

This implies that the optimizer has to work in a search space
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Figure 3. A set of superpixels (a) and its corresponding adjacency

graph (b). The current configuration of curves / edges labeled as

active (blue) or dormant (gray) is inconsistent: the closed path de-

picted in green does not meet the requirements from Definition 1

or Lemma 1. The section between the orange dots indicates that

the respective superpixels should belong to different segments;

while the remainder of the path claims the contrary.

that has degenerate optima [11], and that certainly is (much)

larger than is theoretically necessary. Two approaches to

tackle this problem are by introduction of a label bias [8]

and through a Dirichlet process prior [19]. While the first

still has to operate on a huge state space, the latter requires

sampling methods for optimization. We present a third way

via the dual problem in which edges are labeled.

3.2. Graph Segmentation by Edge Labeling

Indeed, we represent any segmentation of a finite graph

(V,E) by an edge labeling y ∈ {0, 1}|E| that indicates for

each edge e ∈ E whether its incident nodes belong to the

same segment (curve dormant, ye = 0) or not (curve active,

ye = 1). A probability mass function p : {0, 1}|E| → [0, 1]
on the set of all possible edge labelings can now be defined

in terms of a graphical model with |E| binary variables.

This representation has received little attention so far, with

the notable exception of [17, 28].

The state space of all 2|E| possible edge labelings is still

too large because not every edge labeling is consistent. The

notion of consistency is clarified in Fig. 3 and the following

Definition 1: Given a finite graph G = (V,E), an edge

labeling y ∈ {0, 1}|E| is termed consistent if, for all closed

paths (v1, . . . , vn = v1) in G, either none or more than one

edge is labeled as active (1), i.e.
∑n−1

j=1 y{vj ,vj+1} 6= 1 .

The number of these paths can be exponential. Therefore

in practice, to determine which inequalities are violated, if

any, it is more convenient to look for paths that short-circuit

two nodes that lie on opposite sides of an activated edge.

Such short-circuiting paths are the subject of

Lemma 1: An edge labeling y ∈ {0, 1}|E| of a graph G =
(V,E) is consistent if and only if, for all edges {v, v′} ∈ E

with y{v,v′} = 1 and all paths (v1, . . . , vn) from v1 = v to

vn = v′:
∑n−1

j=1 y{vj ,vj+1} > 0.

See [6] or the appendix for a short proof of the lemma.

Thus, while the number of inequalities can be expo-

nentially large, violated constraints can be found in time

(a) (b)

Figure 4. The segmentation of a pixel grid (a) partitions the con-

tinuous image plane into regions s1, . . . , s5, curves c1, . . . c8 that

bound these regions, and junctions (points) j1, . . . , j4 that bound

these curves. The topology of this segmentation is captured in

a cellular complex [13] that relates each region to its bounding

curves and each curve to its bounding junctions (b).

O(|V |+ |E|) and added iteratively until the solution is fea-

sible. One simple algorithm for this purpose labels the con-

nected components of the graph G0 = (V, {e ∈ E|ye = 0})
in time O(|V |+ |E|) and then tests for each edge {v, v′} ∈
E that is labeled 1 whether v and v′ belong to the same

component, in time O(1). If this is the case, the edge label-

ing is inconsistent, and any path in G0 from v to v′ yields

a violated inequality, including a shortest path that can be

found in time O(|V |+ |E|) using breadth-first-search.

This insight is crucial for the implementation of our

model which is designed to allow only consistent edge la-

belings. Each consistent edge labeling relates bijectively to

a segmentation. This bijection is the subject of the multicut

problem in optimization [7]: the set of consistent edge la-

belings corresponds to the vertices of the multicut polytope

[9, 6]. Inconsistent edge labelings lie outside the multicut

polytope. In this sense, any heuristic that generates a seg-

mentation from an inconsistent labeling can be seen as some

kind of (and typically suboptimal) mapping onto the multi-

cut polytope. As shown in [7], the multicut problem can

be formulated as an integer linear program which is usually

solved with cutting plane methods [10, 5].

4. A Probabilistic Higher-Order Graphical

Model for Image Segmentation

4.1. Representation, Terminology and Notation

So far, we have discussed graph segmentation. Image

segmentation is a special case, where the initial graph is

an adjacency graph [20] whose nodes are either individual

pixels or superpixels (connected subsets of pixels).

The initial segmentation partitions the continuous image

plane into (i) regions, (ii) curves that bound regions, and



(iii) junctions where several curves meet (Fig. 4).

It is important to note that the topology of these sets can

have a richer structure than the region adjacency graph re-

veals. For example, in Fig. 4, the two curves c3 and c6
bound the same regions s2 and s4. However, in the adja-

cency graph, these regions are connected by a single edge.

From the viewpoint of topology, c3 and c6 are distinct and

need to be handled separately. We use a topological grid [4]

to represent all regions, curves and junctions, and a cellular

complex [13] to capture their topology, see Fig. 4.

The topology of curves and junctions can be expressed

as a bipartite graph (C, J, T ), Fig. 4, in which C is the set

of curves and J is the set of junctions. A relation (c, j) ∈ T

indicates that the curve c ∈ C is bounded by the junc-

tion j ∈ J . Due to the regularity and discreteness of the

nearest-neighbor Cartesian pixel grid, junctions can only

bound either three or four curves. For future use in our

graphical model, we call these corresponding sets of junc-

tions J3 and J4. All junctions that delimit a curve and vice

versa are referenced by N (c) = {j ∈ J |(c, j) ∈ T} and

N (j) = {c ∈ C|(c, j) ∈ T}.

Summarizing, then, in this representation a segmentation

is defined indirectly through a given configuration of curves

that are either switched on (active) or off (dormant).

4.2. The Probabilistic Model

We now come to the core of our modeling effort. Based

on the arguments from Section 3, we assign a binary ran-

dom variable to each curve of an initial segmentation which

determines if that curve is active or dormant. We further

propose a probability mass function p : {0, 1}|C| → [0, 1]
that assigns a probability to every conceivable configuration

of active and dormant curves. It assigns zero probability

to all inconsistent curve labelings, thus guaranteeing that

each admissible solution has a one-to-one correspondence

to a closed-contour segmentation. We define p in terms of a

graphical model as a probability mass function conditioned

on local features of junctions and curves, as well as on the

topology of the segmentation.

Qualitatively, we learn unary potentials that look to the

underlying image for evidence of “boundariness”. If there

is strong local evidence for a boundary, these potentials en-

courage a curve becoming active. The third and fourth or-

der junction potentials allow to express Gestalt laws such as

good continuation [23, 28]. The combination of all poten-

tials in a single model trades off the potentially conflicting

local beliefs encouraged by the different potentials.

The potentials depend on features f
(1)
c of curves c ∈ C

and features f
(n)
j of junctions j ∈ Jn=3,4. The curve fea-

tures are standard descriptors of the color distribution and

filter responses across curves and adjacent regions (cf. [23]

and supplementary material). The junction features are the

angles between incident curves (cf. supplementary mate-

rial). The collection of all features extracted from an image

is abbreviated as F := (f (1), f (3), f (4)).
We introduce random variables over the states y of the

model, over the features F and over the topology T 1 and

denote these by Y,F and T , respectively.

We now make a series of conditional independence as-

sumptions that are all detailed in the appendix. While hav-

ing to make such assumptions is always undesirable, at least

being able to state them explicitly is to be preferred. The

first assumption is that the features and topology are statis-

tically independent, F ⊥⊥ T , thus making for the factoriza-

tion

p(y|F, T ) =
p(y, F |T )

p(F |T )
=

p(F |y, T )p(y|T )

p(F |T )
(1)

=
p(F |y)p(y|T )

p(F )
=

p(F |y)

p(F )

p(T |y)p(y)

p(T )

∝ p(F |y)p(T |y)p(y) . (2)

In the last line, we have discarded the denominator since we

are only interested in that configuration y which has highest

probability, and not the probability itself. We now address

the modeling of each of the three remaining factors in turn.

The Curve Prior p(y). We assume that the prior for

labeling curves as dormant (0) or active (1) is identical for

all curves. We here introduce our only design parameter

β ∈ (0, 1),

p(yc)
!
=

{

1− β if yc = 0

β if yc = 1
(3)

that states if, without looking at an image, we would prefer

to keep curves active (resulting in a fine-grained segmenta-

tion) or dormant (resulting in a coarse segmentation). This

crucial parameter thus trades off boundary detection preci-

sion vs. recall (Fig. 6).

The Likelihood of a Topology p(T |y) given a configu-

ration y is set to nil if y is inconsistent for the topology T ,

and to a constant otherwise. Learning the true likelihood of

topologies for a given configuration from data is certainly

interesting but very challenging and beyond the scope of

this work. In order to avoid over-fitting, we assume a uni-

form distribution over all consistent topologies.

The Likelihood of the Features p(F |y). Given the con-

ditional independence assumptions stated in the Appendix,

the likelihood p(F |y) factorizes according to

p(F |y) = p(f (1), f (3), f (4)|y) (4)

= p(f (1)|y)p(f (3)|y)p(f (4)|y)

=
∏

c∈C

p(f (1)
c |yc)

∏

d∈{3,4}

∏

j∈Jd

p(f
(d)
j |yN (j)) .

1Recall that the topology of junctions and curves is described by the

bipartite graph (C, J, T ).



We propose to learn the approximate probability p̂(yc|f
(1)
c )

from class-balanced training data. We then have p̂(yc) =
0.5 and thus

p(f (1)
c |yc)

!
= p̂(f (1)

c |yc) ∝ p̂(yc|f
(1)
c ) p̂(f (1)

c ) . (5)

For each junction j ∈ J3 of three curves {c1, c2, c3} ∈

N (j), we also learn the likelihood p̂(yN (j)|f
(3)
j ) =

p̂(yc1 , yc2 , yc3 |f
(3)
j ) from training data2 under the assump-

tion that p̂(yN (j)) is constant. Plugging in this estimate, we

have

p(f
(3)
j |yN (j))

!
∝ p̂(yN (j)|f

(3)
j ) p̂(f

(3)
j ) . (6)

Junctions j ∈ J4 with four incident curves are rare in

practice, and a reliable estimate of the likelihood of all pos-

sible assignments is hard to obtain from limited training

data. In order to avoid over-fitting, we assume a uniform

distribution p(f
(4)
j |yN (j)).

The Full Model: A Conditional Random Field. In

summary, then, the proposed probabilistic model for seg-

mentation is the Conditional Random Field

p(y|F, T ) ∝
∏

c∈C

p̂(yc|f
(1)
c )

∏

j∈J3

p̂(yN (j)|f
(3)
j ) p(T |y) p(y).

The optimization problem of finding a segmentation with

maximum posterior probability

argmax
y∈{0,1}|C|

∏

c∈C

p̂(yc|f
(1)
c ) p(y)

︸ ︷︷ ︸

exp(−g(1)(y))

∏

j∈J3

p̂(yN (j)|f
(3)
j )

︸ ︷︷ ︸

exp(−g(3)(y))

· p(T |y)

︸ ︷︷ ︸

exp(−g(T )(y))

is equivalent to the high-dimensional binary minimization

problem

argmin
y∈{0,1}|C|

g(1)(y) + g(3)(y) + g(T )(y) (7)

The term g(1)(y) includes local evidence whether a curve

should be removed or preserved, the Gestalt term g(3)(y)
supports the smoothness of segment contours, and the topo-

logical term g(T )(y) enforces their closedness. The ef-

fect of these terms is illustrated in Fig. 1. Using only

g(1)(y) + g(3)(y) is not optimal because the consistency of

the edge labels cannot be guaranteed, Fig. 1(b). The seg-

mentation using the full model is depicted in Fig. 1(c).

2Among the |{0, 1}3|=8 possibilities of removing or preserving the

three curves incident to a junction, the three assignments (0, 0, 1), (0, 1, 0)
and (1, 0, 0) are inconsistent and thus not represented by any samples in

the training data. We assume a uniform distribution of these three assign-

ments to obtain a likelihood term that is agnostic with regard to topology.

5. Optimization

The combination of all three terms can be formulated as

an Integer Linear Program3 in which g(T )(y) is encoded as

the set of constraints in eq. (9) whereas g(1)(y) and g(3)(y)
are encoded in the weights w ∈ R

2·|C|+8·|J|. The labeling

y is represented by an overcomplete indicator vector µ.

min
µ

∑

c∈C

∑

a∈{0,1}

wc,aµc,a +
∑

j∈J

∑

a∈{0,1}3

wj,aµj,a (8)

s.t. µ ∈ {0, 1}2·|C|+8·|J|

∀c ∈ C : µc,0 + µc,1 = 1

∀j ∈ J3, b ∈ {0, 1}, k ∈ {1, 2, 3} :
∑

a∈{0,1}3,ak=b

µj,a = µN (j)k,b

∀ cycles (c1, . . . , cn) :
n∑

i=2

µci,1 ≥ µc1,1. (9)

Without eq. (9), the number of constraints is only polyno-

mial and a commercial ILP solver4 can be applied. Includ-

ing the topological constraints (9), however, is not straight-

forward because their number can be exponential. Luckily,

thanks to Lemma 1, we can find violated topological con-

straints in polynomial time and add these iteratively so as

to solve the full problem to global optimality by a branch-

and-cut approach [5]. In our experiments, a few hundred

topological constraints are sufficient to solve the full ILP.

6. Experiments and Benchmark Results

Model Description. To apply the proposed model to

the color images of the BSD, we first need to learn the

likelihood functions from Section 4.2. To that end, we

start from a watershed segmentation5 of the training im-

ages (Fig. 1(a)), and use a simple tool that displays training

images and curves between segments to annotate in total

8000 curves each as active or dormant. The curve likelihood

p̂(ye|f
(1)
e ) is then learned by a Random Forest, using these

labels and a set of features of each curve and its adjacent

segments (cf. supplementary material). For the junction

likelihood p(ye1 , ye2 , ye3 |f
(3)
j ), the features f

(3)
j consist of

the angles between those curves e1, e2, e3 that are incident

to the junction j. Their distribution is learned by a Gaus-

sian mixture model while respecting the sum constraint (all

3This over-complete representation [27] can be simplified; it is used to

support readability.
4Here: IBM CPLEX 12.1
5Depending on the image, the number of curves between segments

varies between 439 (minimum) and 10970 (maximum). The median over

all images is 4276. It can be seen from Fig. 6, for high β, that the initial wa-

tershed segmentations are in fact over-segmentations with many excessive

curves.
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Figure 5. (a) Average boundary detection precision and recall (over all 100 images in the BSD test set) of closed contours obtained by [1]

(red) and by the proposed method (blue: full model, other colors: simplified models, eq. 7), for different β. (b) Quality of segmentations

obtained by the proposed method, for each BSD test image, in a fixed-parameter setting (blue), and in a setting where β is optimized for

each image (green). (c) Those images for which our segmentations have maximum precision (1), minimum recall (2), maximum recall (3)

and minimum precision (4).

angles add up to 2π). The learned model is applied to the

watershed segmentation of the BSD test images, using all

bias settings from β = 0.01 to β = 0.99 (cf. Fig. 6). For

each image and each boundary bias β, we obtain one seg-

mentation.

Evaluation on BSD. The BSD [15] is the standard

benchmark for assessing these segmentations. It compares

the closed contours of the estimated segments to those of

human-made segmentations in terms of precision and recall

(and F-Score). It has also been used to evaluate boundary

detectors which need not produce closed contours. As is

best practice [2], we compare segmentations to the BSD

ground truth also in terms of the Variation of Information

(VI) [16] and Rand index (RI) [21] which measure the dis-

crepancy of partitions. Results are shown for two settings,

one in which β is chosen optimally for the entire BSD test

set, and one in which β is chosen optimally per image,

see Table 1 and Fig. 5(b). It is apparent from this figure that

closedness constraints are necessary. Perhaps surprisingly,

the Gestalt terms seem to add little information in addition

to the boundary terms.

At the time of writing, the quality of the partitioning as

measured by the F-Score in the setting where the same (op-

timal) parameterization of algorithms is used for all images

is on a par with [1] and second to no other algorithm that

produces closed contours. But note that pure boundary de-

tectors that need not produce closed contours [14, 22] still

have a higher F-Score, that [2] achieves a higher RI and

lower VI, and that [1] performs better in a different set-

ting where parameters of the algorithms are optimized sep-

arately for each image.

Closedness constraints arguably alleviate the risk of

under-segmentation: If two objects in an image which

F (Prec, Rec) [15] VI [16] RI [21]

Parameters [1] 0.67 (0.66, 0.69) 1.74 0.78

fixed [2] 0.59 1.65 0.81

Ours 0.67 (0.64, 0.74) 1.88 0.78

Parameters [1] 0.71 (0.72, 0.72) 1.53 0.83

optimized [2] 0.65 1.47 0.85

per image Ours 0.70 (0.68, 0.76) 1.68 0.83

Table 1. Segmentation quality. A good algorithm has high F-

measure, low index of variation (VI), and high Rand index (RI).

should be separated by a segmentation meet in n pairs of ad-

jacent superpixels, n independent decisions to merge these

pairs, with an average risk p ∈ (0, 1) of false mergers, lead

to an exponential average risk 1−(1−p)n of falsely merging

the objects. A remarkable achievement of e.g. [1, 2] is that

p is low enough on the BSD to achieve top performance de-

spite this risk. Closedness constraints enforce a consistent

decision for all pairs and thus avoid the exponential risk.

Runtime. The runtime for the construction of the model,

including the watershed segmentation, feature extraction

and random forest prediction, is about 100 s in the median,

cf. Fig. 7. The runtime spent on the optimization is small

in the median (4 s) and no longer than 400 s for the most

complex image of the BSD test set (Fig 7). It takes between

one (for two out of 100 test images) and 18 cutting plane

iterations (four in the median) until all constraints are sat-

isfied and thus, the global optimum has been found. The

warm-start mechanism of CPlex is used.

The runtimes we observe are interesting even for inter-

active applications since most operations can be paral-

lelized.



Image β = 0.03 β = 0.10 β = 0.30 β = 0.50

Figure 6. Different segmentations of the same image can be obtained by adjusting the prior probability β ∈ (0, 1) of preserving curves

between regions. The closed contours of all regions are depicted in yellow. The perceptually optimal β differs w.r.t. the image, and for the

same image, several settings of β can correspond to meaningful but different segmentations.
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Figure 7. The absolute runtime for segmenting a BSD color image

is about 100 s on average and about 500 s in the worst case.

7. Conclusion

We have proposed a new probabilistic graphical model

for image segmentation. Introducing the topology of a cel-

lular complex as a random variable has allowed us to ex-

clude inconsistent edge labelings from the state space of this

model. The likelihood of topology given an edge labeling is

represented by a set of linear inequalities that enforce closed

contours. In conjunction with appropriate conditional in-

dependence assumptions, the overall prior probability for

merging adjacent regions is the only free parameter of this

model. For any setting of this parameter, the edge labeling

with maximum a posteriori (MAP) probability has closed

contours. The MAP inference problem is a multicut prob-

lem and is amenable to a practicable solution, as we show,

using a branch-and-cut algorithm. The quality of the result-

ing segmentation is comparable with the state of the art in

closed-contour segmentation on the BSD benchmark. First

experiments indicate that the model scales to 3D segmen-

tation problems. We are currently working on interactive

extensions where constraints can be added based on user

input.
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Appendix

Proof of Lemma 1

Proof. If an inequality in Definition 1 is violated, there ex-

ists an n ∈ N, a closed path (v1, . . . , vn), and a j ∈ N such

that all edges of the path except {vj , vj+1} are labeled zero.

Thus, there exists a path from vj to vj+1 along which all

edges are labeled zero, and y{vj ,vj+1} = 1. Hence, at least

one inequality in Lemma 1 is violated.

Conversely, if an inequality in Lemma 1 is violated, there

exists an n ∈ N and a path (v1, . . . , vn) along which all

edges are labeled zero, and there exists the edge {v1, vn}
that is labeled one. Thus, the closed path (v1, . . . , vn, v1)
violates an inequality in Definition 1.

Conditional Independence Assumptions

F ⊥⊥ T

∀c, c′ ∈ C|c 6= c′ : Yc ⊥⊥ Yc′

∀c, c′ ∈ C|c 6= c′ : Yc 6⊥⊥ Yc′ |T

∀d, d′ ∈ {1, 3, 4}|d 6= d′ : F (d) ⊥⊥ F (d′)|Y

∀c, c′ ∈ C|c 6= c′ : F (1)
c ⊥⊥ F

(1)
c′ |Y

∀c ∈ C : F (1)
c ⊥⊥ YC\{c}|Yc

∀d ∈ {3, 4}∀j, j′ ∈ Jd|j 6= j′ : F
(d)
j ⊥⊥ F

(d)
j′ |Y

∀d ∈ {3, 4}∀j ∈ Jd : F
(d)
j ⊥⊥ YC\N (j)|YN (j)
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C. Schnörr. Globally optimal image partitioning by multi-

cuts. In EMMCVPR, 2011.

[12] V. Kolmogorov and R. Zabih. What energy functions can be

minimizedvia graph cuts? TPAMI, 26:147–159, 2004.

[13] V. A. Kovalevsky. Finite topology as applied to image anal-

ysis. Computer Vision, Graphics, and Image Processing,

46(2):141–161, 1989.

[14] M. Maire, P. Arbelaez, C. Fowlkes, and J. Malik. Using con-

tours to detect and localize junctions in natural images. In

CVPR, 2008.

[15] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database

of human segmented natural images and its application to

evaluating segmentation algorithms and measuring ecologi-

cal statistics. In ICCV, 2001.

[16] M. Meila. Comparing clusterings by the variation of infor-

mation. In B. Schölkopf and M. K. Warmuth, editors, Learn-

ing Theory and Kernel Machines, volume 2777 of Lecture

Notes in Computer Science, pages 173–187. Springer Berlin

/ Heidelberg, 2003.

[17] E. N. Mortensen and J. Jia. Real-time semi-automatic seg-

mentation using a bayesian network. In CVPR, 2006.

[18] S. Nowozin and C. Lampert. Global connectivity potentials

for random field models. In Computer Vision and Pattern

Recognition, 2009. CVPR 2009. IEEE Conference on, pages

818 –825, june 2009.

[19] P. Orbanz and J. Buhmann. Nonparametric Bayesian image

segmentation. IJCV, 77:25–45, 2008.

[20] T. Pavlidis. Structural Pattern Recognition, volume 1 of

Electrophysics. Springer, 1977.

[21] W. M. Rand. Objective criteria for the evaluation of clus-

tering methods. J. of the American Statistical Association,

66(336):846–850, 1971.

[22] X. Ren. Multi-scale improves boundary detection in natural

images. In ECCV, 2008.

[23] X. Ren and J. Malik. Learning a classification model for

segmentation. In ICCV, 2003.

[24] C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szum-

mer. Optimizing binary MRFs via extended roof duality. In

CVPR, 2007.

[25] J. Shi and J. Malik. Normalized cuts and image segmenta-

tion. TPAMI, 22:888–905, August 2000.

[26] D. Sontag and T. Jaakkola. New outer bounds on the

marginal polytope. In NIPS, 2008.

[27] M. J. Wainwright and M. I. Jordan. Graphical models, expo-

nential families, and variational inference. Foundations and

Trends in Machine Learning, 1(1-2):1–305, 2008.

[28] L. Zhang and Q. Ji. Image segmentation with a unified graph-

ical model. TPAMI, 32:1406–1425, 2010.


