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Abstract. Automated reconstruction of neural connectivity graphs from
electron microscopy image stacks is an essential step towards large-scale
neural circuit mapping. While significant progress has recently been
made in automated segmentation of neurons and detection of synapses,
the problem of synaptic partner assignment for polyadic (one-to-many)
synapses, prevalent in the Drosophila brain, remains unsolved. In this
contribution, we propose a method which automatically assigns pre- and
postsynaptic roles to neurites adjacent to a synaptic site. The method
constructs a probabilistic graphical model over potential synaptic partner
pairs which includes factors to account for a high rate of one-to-many
connections, as well as the possibility of the same neuron to be pre-
synaptic in one synapse and post-synaptic in another. The algorithm
has been validated on a publicly available stack of ssTEM images of
Drosophila neural tissue and has been shown to reconstruct most of the
synaptic relations correctly.
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1 Introduction

Recent advances in electron microscopy instrumentation and sample preparation
allow neuroscientists to acquire unprecedented volumes of data. Automating the
analysis of the acquired images, however, still poses unsolved challenges to the
computer vision community [7,14]. In order to reconstruct the connectivity in
a block of neural tissue, neuroscientists have to trace all the neurons in the
image stack and establish which of them are connected by synapses and in which
direction. In the mammalian cortex, most synapses connect a single presynaptic
neuron (sender) to a single postsynaptic neuron (receiver). Moreover, within
the relatively small fields of view accessible to electron microscopy, mammalian
cortex neurons mostly play an unambiguous sending or receiving role. Matters
get more complicated in fruitfly neural tissue, where most synapses are polyadic
(one-to-many, Fig. 1, Fig. 3), and, due to higher overall density of connections,
more neurites are populated by both pre- and postsynaptic sites [3]. For such
data, it becomes necessary to both find all the partners in a synaptic connection
and to establish the direction of signal flow.
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Fig. 1. A small substack of the data, showing the synaptic partners involved in two
synapses. Left: raw data; black arrow points to a one-to-one synapse, white arrow to a
one-to-many synapse from inside the presynaptic neuron. Center: pre- and postsynaptic
neurons, participating in the larger one-to-many synapse (not all connections happen
in the top section). Right: pre- and postsynaptic partners of the one-to-one synapse.

Until recently, all image analysis for neural circuit mapping has been per-
formed manually. While manual processing continues to play a major role, latest
advances in neuron segmentation and synapse detection algorithms allow neu-
roscientists to switch to a semi-automated mode with automated processing
followed by targeted proofreading [10,17]. For FIB/SEM data with isotropic res-
olution [11], performance of automated synapse detection methods [2,13,18] is
already comparable to that of human annotators. While anisotropic ssTEM data
is more difficult, several methods have very recently been suggested to tackle this
problem ([9,12,19]). The significantly more challenging problem of automated
neuron segmentation has been the subject of even more active research. While
human performance is not yet reached, substantial progress has been made in
recent years [1,5,8,15,16,21]. Overshadowed by the challenges of neuron segmen-
tation and synapse detection, the problem of synaptic partner assignment has so
far been left to fully manual annotation. Automating this painstakingly laborious
and error prone analysis step is the target of our contribution.

We propose to build a probabilistic graphical model, where synaptic roles
of pairs of spatially adjacent neurites are modeled by random variables. Mor-
phological properties of the neurons are incorporated into unary factors; gen-
eral synapse properties, such as the prevalence of one-to-many connections, are
modeled by pairwise factors. Our motivation for choosing this method is the
simplicity of modeling rules of different strengths, from slight preference of cer-
tain neuron/synapse configurations to rules with almost no exceptions, such as
neurons not synapsing on themselves. Pairwise factors allow us to model much
more prior biological knowledge and substantially improve the results.

A detailed description of the model can be found in the next section. In
section 3 we apply the method to a stack of Drosophila larva neural images with
anisotropic resolution and demonstrate that this model is superior to neuron pair
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classification. Finally, in section 4 we discuss how this model could be extended
to isotropic data or used jointly with a neural segmentation procedure.

2 Methods

Our method starts from a segmentation of the stack into neurons and detection
of its synapses. In the following we refer to individual images of the stack as
sections and to cross sections of neurons in the image as neuron slices. Similar to
neuron segmentation methods for anisotropic data, we consider the stack section
by section and then introduce inter-section links.

In each section of the stack, we group adjacent neuron slices into pairs of
neighbors. For a pair of neighbor neuron slices ¢ and j we then introduce a ran-
dom variable P;; with three possible states: 1) no synaptic connection, 2) the
first neuron of the pair is presynaptic, the second is postsynaptic, 3) the first
neuron is postsynaptic, the second is presynaptic. Note that pre- and postsynap-
tic roles of the neuron slices are defined individually for each potential synaptic
connection rather than globally. Thus, a neuron slice can be presynaptic to one
and postsynaptic to another one of its neighbors.

2.1 Unary factors

The unary factors for each pair represent the prediction we can make on the state
of the pair, when considering each pair individually. These are computed as pre-
dictions of a Random Forest classifier. The features for prediction are inspired
by rules typically employed by human annotators, namely: 1) neurotransmitter
vesicles are found on the presynaptic side of the connection; 2) presynaptic neu-
ron slices are usually larger than postsynaptic ones; 3) there is a synaptic density
(electron dense region, showing as a darker spot in the images) very near to the
boundary between the slices. These cues are shown in Fig. 3(left). To compute
the first feature, we train another Random Forest classifier to detect vesicles
on the pixel level. The ilastik toolkit [20] has been used to train the classifier
interactively on very sparse user labels. A similar classifier was used by [9] to de-
tect vesicles in the retina, while [2] employ similar features to implicitly encode
the presence of vesicles on one and absence on the other side of the synapse.
The number of segmented vesicles is used as a feature for the unary Random
Forest. To obtain an estimate of the synapse presence between the neurons of
the pair, we either use smoothed precomputed synapse detections or, if these
are not available, train another pixelwise classifier on synaptic densities. The
summed predictions of this classifier in the vicinity of neuron-neuron boundary
are also taken as a feature for the unary Random Forest. The remaining features
are areas of the two neuron slices. The prediction of the Random Forest for the
neuron slices 7 and j is then taken as the unary factor v;; associated with the
random variable P;;.
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2.2 Pairwise factors

The unary factors predict the synaptic relation for each pair of neuron slices
individually. To reflect dependencies between pairs of neuron pairs, we augment
our model by pairwise factors. In particular, we strive to encode the following
biological knowledge: i) a single synapse should have only one presynaptic neuron
(there are no convergent synapses in our test data); ii) one-to-many connections
are more likely than one-to-one; iii) in cases when a neuron slice is both pre- and
postsynaptic through different synapses, these synapses are usually not located
immediately next to each other.

A pairwise factor is introduced for two random variables whenever their con-
stituent pairs share one of the slices. For example, if P;; represents the pair of
slices ¢ and j, and P;; the pair of slices ¢ and k, then we introduce a pairwise
factor 1;; 1 between them. The values of this factor depend not only on the
states of P;; and P, but also on the conditions of them belonging to the same
synapse and j and k being neighbors. Consequently, we introduce four variants
of the 1;; ;1 factor with different value tables (see also Fig. 2):
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Fig. 2. An example of a region adjacency graph of neurons and synapses and the
corresponding factor graph model. Left: a region adjacency graph for four neuron slices
i, j, k, m and one synapse. Note that ¢ and m are not neighbors, and the j to m and k
to m boundaries are not covered by the synapse. Right: the corresponding factor graph
for variables P;j, Pk, Pjk, Pjm, Pxm. Connections across different sections of the stack
are omitted. See main text in Section 2.2 for the factor legend.

1. wilj,ik: 7 and k are neighbors, i, j and k touch the same synapse. In this
case, we penalize the variable states which give rise to the configurations
with two presynaptic neurons in the same synapse (cost ¢p), neuron being
pre- and postsynaptic through the same synapse (cost ¢1) and one-to-one
rather than one-to-many connection (cost co). This potential, along with the
corresponding variable states, is shown in Fig. 3(right).

2. 1/)1‘23‘,1‘1& j and k are not neighbors, i, j and k touch the same synapse. In this
case we again penalize variable states which lead to two presynaptic neurons
in the same synapse and a neuron being both pre- and postsynaptic through
the same synapse.
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3. w?j,ik: j and k are neighbors, i, j and k do not touch the same synapse. Here
we penalize the state with a many-to-one connection, as well as the state
with one neuron being both pre- and post-synaptic, but with a lower cost
than for neurons touching the same synapse.

4. 1/ij,ik (j and k are not neighbors, i, j and k do not touch the same synapse.
In this case we slightly penalize the state, where one neuron is both pre- and
postsynaptic.

Fig. 3 shows the values of wilj’ik as a function of the state of P;; and Pj.
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Fig. 3. Left: a typical one-to-many synapse. Red dot marks the pre-synaptic neuron,
blue dots its post-synaptic partners. Yellow arrows point to vesicles and the green
arrow to the electron-dense area of the membrane. Right: the value table for the Q/Jilj,ik
factor for different values of P;; and P;,. Random variable states are denoted by arrows
showing synapse direction: P;; = 0 — no synaptic connection, P;; = 1 — ¢ is presynaptic,
j is postsynaptic, P;; = 2 — vice versa.

To link the variables between consecutive sections, we additionally introduce
pairwise factors between pairs of slices of the same neurons which encourage
consistency of the synaptic role assignment between sections. For illustration,
let neuron n; be represented by slice is in section s and by slice 7541 in section
s + 1, while neuron n; is represented by j, and js41 respectively. If both i, j,
and is41, js+1 form neighor pairs, touching the same synapse in both sections,
we add a pairwise factor between variables P;_ ;. , P ., j..,-

The MAP estimation problem for this factor graph can be reformulated as
an energy minimization problem, with the usual transition from potentials to
energies (N stands for the set of all pairs of neighbors):

Vij(Pij) = exp(—Eij(Pyj)), Vij.ik(Pij, Pir) = exp(—Eij ik (Pij, Pir))

argmin E(P) = argmin Z Eij + Z Eijir
Pij,(i,5)EN Pij,(L)EN (i yen (i,5),(i,k)EN
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We solve this problem to global optimality by an ILP solver.

3 Results

The proposed algorithm has been validated on a publicly available dataset from
Drosophila larval neuropil volume [6]. Two 1024x1024 %20 image stacks are pro-
vided along with manual neuron segmentation and synapse detections for the
first stack. We annotated the synapses in the second stack and the pre- and post-
synaptic neuron slices in both stacks. The first stack has been used for training
the unary Random Forest and the first 9 sections of the second stack have been
used for the grid search of the best values for the costs in the pairwise potentials.

Table 1. Algorithm results. First and second column show recall and precision of the
synaptic partner detection. The third column shows the total number of synaptic part-
ner pairs in the groundtruth annotation. Fourth column shows the number of synapses,
for which all partners have been detected automatically (with possible false positive
pairs besides true detections). Fifth and sixth columns show the number of synapses,
where not all or no partners at all have been found. See main text for evaluation details.

Total|Fully recovered|Partially recovered| Not recovered
pairs [synapse groups| synapse groups |synapse groups
Unary only| 90% | 64% | 163 36 6 5
Full model | 90% 78% 163 38 2 7

Method |[Recall|Precision

The evaluation procedure ran as follows: groundtruth neuron segmentation
and synapse detection were provided as input to the algorithm. Each synaptic
partner pair, detected by the algorithm, was assigned to its closest synapse,
if it was within a 10 pixel distance from it on any section. Pairs with no
synapse at such distance were discarded. Recall was computed as the num-
ber of groundtruth pairs found by the algorithm, divided by the total number
of groundtruth pairs; precision as the number of algorithm pairs found in the
groundtruth, divided by the total number of algorithm pairs. A synapse group is
“fully recovered” / “partially recovered”, if all/at least one of its pairs are found.
The groundtruth contained 47 synapses, connecting 163 neuron pairs. For 7 such
synapses, the algorithm did not find any of the pairs. We analyzed these synapses
in more detail and found that 4 out of 7 were small synapses, only visible in the
first or last slice. Another missed synapse was located very close to the image
border. A difficult missed connection of a partially recovered synapse group is
shown in Fig. 4(A, B, C, D). Other connections of this synapse, found in consec-
utive sections, were reconstructed correctly. A typical false positive, caused by
the preference for the same label for neighboring pairs, is shown in Fig. 4(E,F).
The same preference explains the reduced number of partially recovered synapse
groups for the full model in Table 1.
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Fig.4. A, B, C, D: serial sections of a missed connection. Presynaptic slice is colored
blue, postsynaptic red. E, F: a typical false positive error over two sections. Blue dot:
presynaptic neuron, red dots: correct postsynaptic neurons, yellow dot: false positive.

4 Discussion

We have introduced an algorithm for synaptic partner detection, which, by con-
structing a probabilistic graphical model to couple synaptic partner pairs, can
benefit from more biological prior knowledge than an estimator considering each
pair individually. On a test dataset, our evaluation shows a significant improve-
ment of precision without a loss in recall.

In its current form, our algorithm explicitly uses 2D neuron slices and links
them together across the lower resolution z-axis. It could, however, also be ex-
tended to isotropic 3D data, such as data produced by FIB/SEM microscopes.
For a fully 3D approach, we would consider neuron pairs within a spherical
neighborhood of each synapse detection and replace the features by their 3D
counterparts.

Assignment of synaptic partners could also be incorporated directly into the
neuron segmentation procedure and perhaps improve both the segmentation
and the partner assignment steps. For methods operating on neuron hypothe-
ses [4,15,21], this could be achieved by explicitly introducing synaptic relations
between neuron slice candidates. Segmentation could then make use not only of
the general prior knowledge of neuron appearance, but also more specific local
pre- and postsynaptic features.

We believe that the proposed algorithm can substantially reduce human an-
notation effort for insect brain circuit reconstruction by shifting the synaptic
partner detection task from fully manual to at least semi-automated domain, as
well as pointing out the human attention errors.
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