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Joint Spatio–Temporal Alignment of Sequences
Ferran Diego, Joan Serrat and Antonio M. López

Abstract—Video alignment is important in different areas
of computer vision such as wide baseline matching, action
recognition, change detection, video copy detection and frame
dropping prevention. Current video alignment methods usually
deal with a relatively simple case of fixed or rigidly attached
cameras or simultaneous acquisition. Therefore, in this paper we
propose a joint video alignment for bringing two video sequences
into a spatio-temporal alignment. Specifically, the novelty of the
paper is to formulate the video alignment to fold the spatial
and temporal alignment into a single alignment framework.
This simultaneously satisfies a frame–correspondence and frame–
alignment similarity; exploiting the knowledge among neighbour
frames by a standard pairwise Markov random field (MRF). This
new formulation is able to handle the alignment of sequences
recorded at different times by independent moving cameras that
follows a similar trajectory, and also generalizes the particular
cases that of fixed geometric transformation and/or linear tempo-
ral mapping. We conduct experiments on different scenarios such
as sequences recorded simultaneously or by moving cameras to
validate the robustness of the proposed approach. The proposed
method provides the highest video alignment accuracy compared
to the state–of–the–art methods on sequences recorded from
vehicles driving along the same track at different times.

Index Terms—Markov random fields, video alignment, video
retrieval, image registration, direct–based, feature–based, syn-
chronization.

I. INTRODUCTION

Video alignment relates video sequences in temporal and
spatial dimensions (Fig. 1). Hence, the video is decomposed
in temporal and spatial alignment. The former, or synchro-
nization, estimates a discrete temporal correspondence that
associates the frames of a sequence to the frames of another
maximizing a similar image content. The latter, usually called
registration, takes a pair of corresponding frames and maps
the image coordinates of one frame to another based on some
similarity measure and a spatial deformation. Video alignment
has received considerable attention for many years since the
seminal paper by Stein [1] and plays an important role in
applications as wide baseline matching [2], high dynamic
range video and video mating [3], action recognition [4],
change detection [5], detecting abandoned objects [6], and
frame dropping prevention [7].

Most video alignment methods deal with sequences
recorded simultaneously by cameras fixed or rigidly attached
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Fig. 1. Example of the most general video alignment problem: the alignment
of video sequences recorded from independent moving cameras at different
times. An estimation of a non–parametric temporal correspondence of frame
pairs (i, xi) (temporal alignment), where i and xi are the ith and xthi frame in
the observed and reference sequence respectively; and one per frame unknown
and non–fixed geometric transformation parameter denoted by θi (spatial
alignment) is required.

to each other that involve a fixed parametric model and a
fixed geometric transformation across the sequences [8], [2].
The problem can be formulated as some minimization over a
small number of parameters: time correspondence (e.g. offset
and frame rate ratio) and geometric transformation. However,
the video alignment problem becomes more challenging (and
general) when this constraint for spatial and temporal mapping
is broken because the sequences have been acquired at differ-
ent times by independently moving cameras. This challenge
has been tackled in the literature dividing the problem in two
steps: a video synchronization and an image registration for
each pair of corresponding frames. However, the errors on the
first stage are propagated to the second without exploiting the
complementarity between both steps.

Therefore, in this paper, we propose a joint spatio–temporal
video alignment to handle the challenging problem of aligning
sequences. Specifically, the video alignment is formulated as a
unique inference problem on a huge number of parameters, a
non–parametric temporal correspondence and non–fixed geo-
metric transformation, instead of independently tackling either
temporal or spatial alignment. This simultaneously satisfies
a frame–correspondence, or synchronization, and a frame–
alignment, or image registration, along the whole sequence.
Hence, this joint similarity accurately discriminates among
successive frames that share a huge similarity of content; thus
reducing spatio– and temporal–misalignments. This reduction
is reinforced by exploiting the similarities between neighbor
frames. The way we do it is by integrating the estimation of the
spatio–temporal parameters into a standard pairwise Markov
random filed (MRF); thus restricting the frame correspondence
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and spatial transformation according to the neighborhood.
Finally, this new formulation is able to handle the alignment of
sequences recorded at different times by independent moving
cameras that follows a similar trajectory, and also generalizes
the ’classic’ cases that of fixed geometric transformation
and/or linear temporal mapping.

This paper is organized as follows: before going more
deeply into the details of our method, the past works are
reviewed in Sect. II. The joint formulation of the temporal
and spatial alignment is presented in Sect. III. The inference
of the most likely non–parametric temporal correspondence
and a non–fixed (and unknown) geometric transformation is
described in Sect. IV. Experiments on different video sequence
pairs are presented in Sect. V. In addition, the proposed
approach is compared with regard to the most close related
work [9], [5], [10]. Finally, the main conclusions are drawn
in Sect. VI.

II. RELATED WORKS

Several video alignment methods have been proposed in the
literature. They are distinguished based on the assumptions
made by each method. Table. I classifies the methods based
on the assumptions of the temporal correspondence and the
relation between cameras. The most studied case assumes that
the sequences are recorded by static or rigidly fixed cameras.
Hence, these methods [2], [11], [12], [13], [14], [15], [16],
[17], [18], [8], [7] rely on an unknown and fixed geometric
transformation, i.e. homography or fundamental matrix, along
the whole sequence. Furthermore, most of these works also
handle video sequences recorded simultaneously involving
that the temporal correspondence is a simple constant time
offset tr = to + β [16], [12], [14] or a linear relationship
tr = αto + β [2], [18], [17], [8], [13] to account for different
camera frame rates. For instance, Caspi and Irani [2] presented
video alignment solutions for static or jointly moving cameras.
They align feature trajectories like in [15], [16], [18] or register
directly the whole intensity manifolds, in order to estimate
jointly an homography and an affine temporal mapping. A
few works [15], [11] aim to align video sequences captured
at different times showing slightly different object motions,
such as the same action performed by different people. The
main challenge of these works is the non–parametric temporal
correspondence due to the difference between motions. For
instance, Rao et al. [15] used a rank constraint of corre-
sponding points to measure the similarity between trajectories
together with a dynamic time warping; thus allowing to find
the non-linear time-warping function. Moreover, these works
are also differentiated by the input data, which can be either
more or less difficult to obtain. Feature–based methods require:
tracking of one or more characteristic points along both whole
sequences [16], [15], [19], [11], or detecting interest points in
space or space-time [12], [13], [18], [17]. In contrast, the so–
called direct methods are based solely on the image intensity
[2], Fourier transform of image intensity [14] or dynamic
texture [8].

A few works [20], [19], [3], [5], [9], [6], [10] address
the challenging case of independently moving cameras. Their

TABLE I
THE REVIEWED ALGORITHMS ARE CLASSIFIED BASED ON THE

RELATIONSHIP AMONG CAMERAS AND THE ASSUMED TEMPORAL
CORRESPONDENCE.

Temporal correspondence
affine tr = αto + β unknown

cameras Static [12], [14], [2], [16], [18] [15], [11][17], [8], [13], [7]
Moving [20], [19] [3], [5], [9], [6], [10]

major challenge is to estimate a non–fixed geometric trans-
formation along the whole sequence. That is, the geometric
transformation between corresponding frame pairs changes
from frame to frame. Lei and Yang [20] and Tuytelaars
and VanGool [19] simplified the problem assuming an affine
temporal correspondence since the videos recorded the same
physical event by mobile cameras, e.g. football match broad-
casting or athletic events. In particular, Tuytelaars and Van-
Gool [19] find a temporal offset that minimizes the distance
between the backprojected lines that have been tracked suc-
cessfully through both sequences. In contrast, Lei and Yang
[20] evaluate a tri–ocular geometric constraint among point
or lines manually selected for a large number of hypothesis
of temporal offsets. Other works [3], [5], [9], [6], [10] deal
with sequences recorded at different times that entails the
challenging task of estimating a non–parametric temporal cor-
respondence. Kong et al. [6] only consider GPS information
for associating independently corresponding frame pairs that
are registered using a modified RANSAC. Sand and Teller [3]
and Liu et al. [9] estimated a temporal and spatial alignment
frame–by–frame minimizing a robust image alignment for
many possible pairs of frames or a dense scene alignment
for few retrieved pairs of frames, respectively. One of our
previous work [5] decomposes the video alignment to estimate
globally a temporal correspondence fusing the information
obtained from two different sensors, a camcorder and a GPS
receiver, and estimate the geometric transformation for each
pair of corresponding frames frame–by–frame. Finally, the
other previous work [10] estimates the temporal correspon-
dence as a maximization of some overall similarity measure
between candidates of corresponding frames, with regard to
the parameters of the geometric transform. This estimation is
based on a divide–and–conquer algorithm in order to avoid an
exhaustive search. However, the shortcoming of this approach
is that an error in earlier stages of the algorithm is propagated
through the next estimations of the temporal mapping. There-
fore, instead of tackling independently the spatial and temporal
alignment or each frame independently as mentioned in the
previous works, the proposed algorithm formulates jointly
the spatial and temporal alignment exploiting the knowledge
among neighbor frames.

III. JOINT VIDEO ALIGNMENT

Suppose we are given two video sequences So and Sr

designated as observed and reference sequence, respectively.
The reference provides the spatial and temporal reference;
whereas the observed is mapped to match it. The observed
sequence is assumed to be entirely contained within the
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reference and hence all the observed frames has associated
a corresponding frame in the reference sequence. The video
alignment consists of associating the most similar frame
in the reference sequence to each frame in the observed
sequence (temporal alignment) together with the estimation
of an unknown geometric transformation that relates the
image–coordinates of this frame pair (spatial alignment). The
synchronization, or temporal alignment, is formulated as an
estimation of a temporal correspondence x1:no = [x1 . . . xno ],
being xi ∈ {1, ..., nr} the index of the corresponding frame in
reference sequence to the ith frame in the observed sequence,
and nr and no are the number of frames in the reference and
the observed sequence, respectively (Fig. 1). The registration,
or spatial alignment, estimates an unknown parameters θi of
the geometric transformation model which relates the image
coordinate systems of such pair of corresponding frames
(i, xi). For instance, θi would be the 8 parameters defining
the homography between the ith pair of corresponding frames.
Therefore, the video alignment consists of estimating the
following parameters Θ = [x1:no ;θ1:no ].

Specifically, our main scenario is focused on aligning se-
quences that are recorded at different times from independent
moving cameras. The trajectories of the cameras must be sim-
ilar but not necessarily coincident; hence allowing trajectory
dissimilarities between the sequences. Therefore, the problem
of video alignment must deal with the challenging task of
estimating a non–parametric temporal correspondence and an
unknown and geometric transformation, e.g. an homography or
affine transformation. In this scenario, a pair of corresponding
frames are ideally assumed to be recorded at the same position
but with different camera pose; thus under the assumptions
that the two cameras have the same intrinsic parameters, the
principal point (the origin of the image coordinate system) is
at the image center and the focal length for the x and y axis are
equal, the image-coordinates of this pair is related by a conju-
gate rotation H = KR(θi)K

−1 [5], being K = diag(f, f, 1)
and f the focal length. The relative camera pose R(θi) is
parametrized by the Euler angles θi = [θx,i, θy,i, θz,i]

T .
Given an observed sequence So, the joint video alignment

Θ is posed as a maximum a posteriori Bayesian inference
problem,

Θ∗ = argmax
Θ∈L

p(Θ|So), (1)

where Θ∗ is the most likely spatio–temporal mapping between
the observed and the reference sequence, and L is the set
of all temporal correspondence and geometric transformation
parameters. The posterior probability density p(Θ|So) is prop-
erly decomposed assuming Gibbs distributions [21] because
this distribution allows to describe the pdf as a sum parts of
energy functions. This decomposition is written as follows:

p(Θ|So) ∝ p(So|Θ)p(Θ) (2)
∝ p(So|x1:no

,θ1:no
)p(x1:no

)p(θ1:no
) (3)

∝ 1

Z(Θ)
e−E(So;Θ)−E(x1:no )−E(θ1:no ), (4)

where Z(Θ) is the partition function, E(So; Θ) =
− log p(So|Θ) is the energy of joint video alignment between
the observed and the reference sequence, and E(x1:no) =
− log p(x1:no

) and E(θ1:no
) = − log p(θ1:no

) are the energy
of regularization terms in temporal and spatial dimensions,
respectively. For simplicity, the temporal correspondence x1:no

and the spatial correspondence θ1:no
are assumed to be

independent since the relative longitudinal motion between the
cameras described by x1:no has not a direct correlation with
relative dissimilarities on the camera trajectories described by
θ1:no

. Therefore, this independence allows to include simple
assumptions on the dynamics of the camera avoiding complex
priors. The meaning of these likelihoods and these assumptions
are defined below. To summarize, the joint video alignment Θ
is reformulated as follows:

Θ∗ = argmin
Θ∈L

− log p(Θ|So) (5)

= argmin
Θ∈L

E(So; Θ) + E(x1:no
) + E(θ1:no

). (6)

Fig. 2. Illustrative example of the joint video alignment formulation.
ϕS(xi, xi+1) and ρS(θd,i+1 − θd,i) allow us to restrict the smoothness
of the parameters in temporal and spatial dimensions, respectively; whereas
E(So

i ;xi,θi) measures the similarity likelihood between two frames. Square
nodes represent discrete variables and circular nodes continuous variables.
Shaded nodes denote observed variables; non–shaded nodes are hidden
variables.

A. Joint Video Alignment Energy

Joint video alignment energy E(So; x1:no
,θ1:no

) aims to
evaluate the similarity between a pair of sequences given
a spatio–temporal mapping, x1:no and θ1:no . For simplicity,
E(So; x1:no

,θ1:no
) is evaluated independently given a pair of

corresponding frames and a geometric transformation (Fig. 2)
as follows:

E(So; x1:no
,θ1:no

) =

no∑
i=1

E(So
i ;xi,θi), (7)

where E(So
i ;xi,θi) measures similarity between a pair of

frames (i, xi) considering the geometric transformation θi.
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Due to the combination of discrete and continuous hidden
variables, this likelihood is broken into two components as
follows:

E(So
i ;xi,θi) = ϕD(So

i , xi;θi)ρD(So
i ,θi;xi), (8)

where ϕD(So
i , xi;θi) denoted as temporal–correspondence

measures the correspondence based on feature points between
pair of frames (i, xi) given the geometric transformation θi;
whereas ρD(So

i ,θi;xi) denoted as spatial–correspondence or
frame–alignment evaluates the spatial alignability according to
θi and image intensities given the most likely corresponding
frames (i, xi). Both terms will be described below. Hence,
E(So

i ;xi,θi) combines jointly temporal and spatial alignment
together with the benefits of feature–based and direct–based
methods. Therefore, the spatio–temporal alignment in a pair
of sequences is defined to satisfy simultaneously the similarity
of content (feature-based method) and the image registration
(direct–based method) along the whole sequence. One im-
portant point to note here is that neither the temporal corre-
spondence nor spatial–correspondence by themselves are good
models for the joint spatio–temporal similarity E(So

i ;xi,θi).
Only their combination results in a good model, e.g. for video
alignment.

1) Temporal–correspondence: The aim of temporal–
correspondence ϕD(So

i , xi;θi) is to measure the similarity
of content between the ith frame in the observed sequence
warped according to θi and the xthi frame in the reference
sequence. This similarity is based on counting the number of
similar feature descriptors between this pair. This is computed
efficiently based on image retrieval techniques [22], [23] as
follows: first, SIFT descriptors [24] are extracted for each
frame in the reference sequence. Second, a dictionary of n
visual words (VW) is learned from a reference sequence by
running K-means on the extracted SIFT descriptors. The value
of n is typically set to 5% of extracted descriptors. Hence,
each image can be described simply as a set of visual words
in {1, . . . , n}. Finally, all frames of the reference sequence are
set up as an inverted file. That is, the qth row of the inverted
file corresponds to the qth visual word learned by K-means;
then this row contains the indexes of frames, lq ∈ {1, . . . , nr},
where the qth visual word appeared in the frames of the
reference sequence. Therefore, the correspondence–similarity
between pairs of frames is defined as the inverse of the
weighted sum of VW ocurred in both frames:

ϕD(So
i , xi;θi) =

1∑nf

q=1 ωfq1(lfq )
(xi)

, (9)

where So
i (u;θi) is ith frame in the oberseved sequence warped

according θi as defined below, u = (x, y) is the pixel
coordinates of an image, nf is the number of descriptors
in So

i (u;θi), fq is the VW corresponding to the qth SIFT
descriptor, 1(lfq )

(xi) is a indicator function that is equal to 1
if xi is indexed in lfq and 0 otherwise, and ωfq is the inverse of
the total number of frames indexed in lfq as inverse document
frequency (idf) scores used in text retrieval [25] to rely mainly
on the VWs that appear less times.

2) Spatial–correspondence: The aim of spatial–
correspondence ρD(So

i ,θi;xi) is to measure the similarity of
spatially aligning the frame i in the observed sequence to the
frame xi in the reference sequence. In order to make it more
robust to alignment outliers, the similarity is computed as the
sum of intensity–differences evaluated by a robust function
ΩD as follows:

ρD(So
i ,θi;xi) =

∑
u

ΩD

(
Sr
xi

(u)− So
i (u;θi)

)
, (10)

where So
i (u;θi) is equal to So

i (u+ U(u;θi)), U(u;θi) =
X (u) · θi is the quadratic approximation of the geometric
transformation between corresponding frames [26], [27], X (u)
is a matrix which depends only on the pixel coordinates as
shown in Eq. (13), Sr

xi
(u) is the xthi frame in the reference

sequence. Under the assumptions that these angles are small
and the focal length is large enough, So

i (u;θi) is approximated
using a Taylor series expansion as follows:

So
i (u;θi) ≈ So

i (u) +∇TSo
i X (u)θi, (11)

where ∇So
i = [

∂So
i

∂x ,
∂So

i

∂y ]T is the gradient of the ith frame
in the observed sequence along x– and y–directions. Without
loss of generality, the quadratic approximation of the conjugate
rotation [5], [10], [26] is written as follows:

U(u;θi) = X (u)θi, (12)

=

[
−xy

f f + x2

f −y
−f − y2

f
xy
f x

] θx,i
θy,i
θz,i

 .(13)

B. Temporal and Spatial regularization energy

Temporal and spatial regularization aim to introduce a prior
knowledge of the sequence pair into the temporal and spatial
alignment (Fig. 2). This knowledge restricts the estimation of
the spatio–temporal parameters Θ. On one hand, temporal
regularization E(x1:no

) favors only temporal mappings that
satisfy assumptions on the camera motion, e.g. cameras moves
forward. For simplicity, this is evaluated considering only
consecutive frame correspondences as follows:

E(x1:no
) =

no−1∑
i=1

λTϕS(xi, xi+1), (14)

where λT is a trade–of between the frame–correspondence
and the influence of smoothing the temporal correspondence.
Specifically, the vehicle movement and the content of the
videos are assumed not to reverse its motion in none of the
sequences though it allows each of them to stop at any time
independently and, of course, move forward. Hence, temporal
alignment must increase monotonically. This assumption is
modeled by setting ϕS(xi, xi+1) as follows:

ϕS(xi, xi+1) =

{
0 if xi+1 ≥ xi
β otherwise , (15)
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where β penalizes frame correspondences that breaks the
monotonically increasing constraint.

On the other hand, spatial regularization E(θ1:no
) penalizes

high variations among successive parameters of the geomet-
ric transformation θ1:no . Specifically, this variations may be
smooth along time since the relative pose between cameras
changes slightly from frame to frame in most cases. This con-
straint is due to the smooth motion of the camera. Therefore,
the spatial regularization term is evaluated as follows:

E(θ1:no) =

no−1∑
i=1

Nd∑
d

λSρS(θd,i+1 − θd,i) (16)

where λS controls the influence of the regularization term
to restrict the smoothness of geometric transformation among
successive frames, and Nd is the number of variables in the
geometric transformation, e.g. 3 parameters in a conjugate
rotation. Each geometric variable is evaluated by the robust
function ρS , e.g. Charbonnier or L-2 penalty function. Notice
that the temporal and spatial regularization terms are a discrete
and continuous pairwise MRF, respectively.

IV. OPTIMIZATION

The estimation of joint video alignment parameters Θ, a
non–parametric temporal correspondence and non–fixed geo-
metric transformations, consists of minimizing the following
equation:

Θ∗ = argmin
Θ∈L

no−1∑
i=1

λTϕS(xi, xi+1) (17)

+

no∑
i=1

ϕD(So
i , xi;θi)ρD(So

i ,θi;xi)

+

no−1∑
i=1

∑
d={x,y,z}

λSρS(θd,i+1 − θd,i).

The optimization of Eq. (17) is however not jointly convex
in the pair (x1:no ,θ1:no), but convex with respect to each
of the two variables (x1:no and θ1:no) when the other one
is fixed. A natural approach to solving this problem is to
alternate the minimization of x1:no

or θ1:no
since Eq. (8) is

broken into frame–correspondence and frame–alignment. That
is, a temporal alignment estimates globally the most likely
frame correspondence based on the reliability of the geometric
transformation; whereas the geometric transformations are
estimated based on the reliability of the temporal correspon-
dence. These iterative minimization proceeds as follows:

1. For θ1:no
being fixed, Eq. (17) is solved for x1:no

:

min
x1:no

no−1∑
i=1

λTϕS(xi, xi+1) (18)

+

no∑
i=1

ρD(So
i ,θi;xi) · ϕD(So

i , xi;θi)

where ρD(So
i ,θi;xi) is evaluated for all the reference frames

xi ∈ {1, . . . , nr}, keeping the given θi fixed. The most likely

frame correspondence x1:no is inferred using the min–sum
inference algorithm [28], [29] due to the efficient computation
of ϕD(So

i , xi;θi) for all xi and ρD(So
i ,θi;xi). This inferred

correspondence x1:no
is a good initialization to estimate θ1:no

since the corresponding frames maximizes the similarity of
content w.r.t. the frames in the observed sequence.

2. For x1:no being fixed, Eq. (17) is solved for θ1:no :

min
θ1:no

h(θ1:no
) = min

θ1:no

no−1∑
i=1

Nd∑
d

λSρS (θd,i+1 − θd,i) (19)

+

no∑
i=1

∑
x

βi · ΩD

(
Sr
xi

(x)− So
i (x;θi)

)
where βi = ϕD(So

i , xi;θi) is the similarity between a pair
of corresponding frames (i, xi), keeping fixed, and So

i (u;θi)
is approximated as Eq. (11). Therefore, the parameters of the
geometric transformation are estimated considering the frame–
correspondence likelihood ϕD(So

i , xi;θi) in order to compen-
sate spatially low reliabilities of the temporal correspondence.
The optimization of Eq. (19) may in fact be non–convex, and
difficult to minimize depending on the choice of the robust
penalty functions ΩD(·) and ρS(·). Instead of finding a global
optimum in Eq. (19), a simple local optimization is performed
by computing the gradient and setting to zero. Then, the partial
derivatives with respect to θi are:

∂h(θ)

∂θi
→ λS

[(
CS

i − CS
i+1

)
θi + CS

i+1θi+1 − CS
i−1θi−1

]
(20)

+CD
i (θi) · θi + bi(θi)

with

CD
i =

∑
x

βiΩ̃D(St)ŨT Ũ , (21)

bi =
∑
x

βiΩ̃D(St)(St)ŨT , (22)

CS
i = [ρ̃S(θ1,i − θ1,i−1), . . . , ρ̃S(θNd,i − θNd,i−1)]T , (23)

where Ũ is defined as ∇TSo
i X (u) in the previous section,

St = Sr(u)− So
i (u;θi) denotes the pixel difference between

a pair of corresponding frames, and ρ̃S(y) and Ω̃D(y) is
defined as ρ′S(y)/y and Ω′D(y)/y, respectively. Note that the
partial derivative w.r.t. θi is a function that depends on the
current spatial variables θi and the consecutive adjacent spatial
variables θi−1 and θi+1. Hence, the estimation of θi is not
tackled independently. Finally, all partial derivatives are set
to 0, and the terms are regrouped in matrix–vector form as
follows:

[CD(θ̃) + λSC
S(θ̃)] · θ̃ = −bi(θ̃) (24)

where θ̃ = [θ1,1:no , . . . ,θNd,1:no ]T is the spatial parameters
warped into a vector, and CD(θ̃) and CS(θ̃) are sparse
matrices ordered properly that depend on θ̃, and bi(θ̃) is a
vector that also depends on θ̃. In order to estimate θ̃, Eq. (24)
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is made linear by keeping CD(θ̃), CS(θ̃) and bi(θ̃) fixed, and
then solve the resulting linear equation system using a standard
technique [30]. After finding a new estimate, this procedure is
iterated until a fixed point is reached.

A. Implementation Details

The linearized brightness for So in Eq. (11) uses the first
order Taylor approximation valid only on small displacements.
Hence, the estimation of θ involves a coarse-to-fine strategy.
The image pyramid is constructed using a scale factor of 0.5
to speed–up the convergence. The number of pyramid levels is
set to 5. Furthermore, the proposed algorithm needs a warping
scheme at each pyramid level to solve Eq. (19) in order to deal
with image non-linearities. The robust function ΩD and ρS
are the Charbonnier penalty function defined as

√
x2 + ε2 and

uses ε = 0.001 for both terms. This robust function has been
proved to be useful in optical flow. Moreover, the trade–off
parameters λS and λT control the influence of the regular-
ization terms. Thus, λS used for aligning sequences recorded
by independent moving cameras, which is set empirically to
500, is lower than λS used for aligning sequences recorded
by static cameras, which is set to 2000, since a large λS
involves approximately a fixed geometric transformation along
the whole sequence. The final parameter β in Eq. (15) controls
the influence of temporal smoothness on the optimization
framework. Therefore, setting β to 0 implies that there is no
temporal assumption on the optimization in Eq. (18), e.g. each
pair of corresponding frames are estimated independently;
whereas setting β > 0, in practice equal to 100, enforces that
the temporal correspondence increase monotonically based on
β. Finally, the optimization starts setting the θ1:no

to zero
and followed by computing the frame–correspondence using
Eq. (9) and the spatial–correspondence using Eq. (10) for all
the pairs of frames. Then, the optimization alternates between
the estimation of the temporal mapping and the spatial cor-
respondence until the parameters do not change significantly
or reach a maximum number of iterations. In practice, the
stopping criterion relies on the relative decrease (typically
10−3) in the cost function in Eq. (16) and the maximum
number of iterations equal to 10. The algorithm is currently
implemented in Matlab code using VLFeat library [31] on an
Intel(R) Core(TM)2 Duo CPU E6850 at 3 GHz with 2 Gb of
RAM.

V. EXPERIMENTS

In this section, experiments to validate the proposed ap-
proach are conducted on different pairs of video sequences.
First, the synchronization performance is evaluated on se-
quences recorded at different times by independent moving
cameras following similar trajectories, and compared to the
closest related works [5], [9], [10]. Second, the proposed
method is applied to other synchronization cases that in-
volve an unknown and fixed geometric transformation or a
parametric temporal mapping to validate its robustness and
applicability.

Algorithm 1 Optimization of Joint Video Alignment
1: Input: Sr (reference sequence), So (observed sequence),
λS and λT (regularization parameters), β (temporal
smoothness) and the geometric transformation to use (e.g.
homography, affine, etc. ).

2: Initialization: θ1:no ← 0
3: while (not reaching stopping criteria) do
4: Update x1:no

:
5: Compute ρD(So

i ,θi;xi) using Eq. (10).
6: Compute ϕD(So

i , xi;θi) using Eq. (9).
7: Compute x1:no using min–sum inference algorithm on

Eq. (17).
8: Update θ1:no

:
9: while (not reaching a fixed point) do

10: Compute θ1:no
using Eq. (23).

11: end while
12: end while
13: Output: x1:no

(temporal mapping between sequences),
θ1:no

(geometric transformation between corresponding
frames)

A. Datasets

Experiments are conducted on eight video sequence pairs.
Those pairs are divided in 4 groups based on the relation
between cameras and the assumed temporal correspondence
as shown in Table. II. The first group denoted by MD
consists of 4 video sequence pairs recorded at different times
by independent moving cameras on different scenarios with
a huge dissimilar image content. Three of these sequences
(’highway’, ’campus’ and ’back–road’) are recorded with
a facing–camcorder attached at the windscreen at different
times. The vehicle must keep on the same lane, that is, the
lateral displacement of the camera is bounded to about ±2.5
meters. Variations in the camera pose at the same place occur
because of the different heading of the vehicle. They are
modeled by a 3D rotation in which the most important factor
is the yaw angle. Large variations in yaw angle occur in short
intervals but the constant and maximum allowed relative pose
between cameras is 3◦ since a vehicle will cross a road lane
in 50 meters (3 sec at 50 kph) if a dissimilar trajectory of
3◦, which means a 90% of frame overlapping, is fixed. In
constrast, the other (’indoor–1’) available in [3] is recorded
by hand–held cameras in a indoor scenario. The first three
pairs constitute a challenging task for video alignment because
frequent and large velocity differences exist between reference
and observed sequences at the same location, e.g. differences
of ±30kph occur for relatively long intervals. The second
group denoted by SD consists of 2 video sequence pairs
(’jump’ and ’dancing’ available in [32] and [15], respectively)
recorded at different times by static cameras. These sequences
show slightly different human action done by different peo-
ple and hence the temporal correspondence follows a non–
parametric form. Finally, the last two groups denoted by SS
(’water’ available in [2]) and MS (’indoor–2’ available in [33])
consists of one video sequence pair recorded simultaneously
by static and moving cameras, respectively. ’Indoor–2’ is not
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TABLE II
THE CLASSIFICATION OF THE EIGHT VIDEO SEQUENCE PAIRS USED TO VALIDATE THE PROPOSED METHOD AND THE NOMENCLATURE OF EACH GROUP IS

INSIDE THE PARENTHESIS.

Temporal correspondence
affine tr = αto + β unknown

cameras Static ’water’ in [2] (SS) ’jump’ in [32] and ’dancing’ in [15] (SD)
Moving ’indoor–2’ in [33] (MS) ’highway’, ’campus’, ’back–road’ in [5] and ’indoor–1’ in [3] (MD)

strictly recorded by moving cameras, but it consists of a
stereo video sequence pair whose observed sequence is warped
according to an affine transformation that changes smoothly
along time.

We annotate manually a ground–truth (GT) for ’highway’,
’campus’ and ’back–road’ pair to quantitatively assess the
synchronization performance on the most general alignment
problem. This assessment is also compared with the closest
related work [5], [9]. The rest of sequences available has
not any ground–truth associated since the previous works
are only evaluated qualitatively. The annotated GT consists
of a narrow interval [lt, ut] in a reference sequence for one
out every 10 frames in the observed sequence. This interval
always contains the true corresponding frame because of the
difficult decision of determining a single corresponding frame.
The frames without an available ground–truth are interpolated
linearly from time [lt, ut] to [lt+10, ut+10]. The average length
of that interval is 3 frames long. Hence, the synchronization
error at time t, given the corresponding frame xt, is defined as
the distance of xt to the closest ground–truth interval boundary
as follows:

err(t, xt) =

{
0 if lt ≤ xt ≤ ut
min (|lt − xt|, |ut − xt|) otherwise

(25)

B. Performance Evaluation

In this section, the proposed algorithm is validated by
evaluating the synchronization performance whether regular-
ization terms (second and third term in Eq. (4)) are included
or not. Furthermore, it is compared with the three closest
related works [5], [9], [10]. Our previous work [5] estimates
a complete temporal correspondence maximizing a image–
and location–similarity based on image appearance descriptors
and GPS data, respectively; whereas the geometric trans-
formation is estimated frame–by–frame using Lukas–Kanade
algorithm [34]. In contrast, the other previous work [10]
estimates the temporal correspondence as a maximization
of some overall similarity measure between candidates of
corresponding frames, with regard to the parameters of the
geometric transform. This estimation is based on a divide–
and–conquer algorithm in order to avoid an exhaustive search.
The third algorithm [9] is adapted to video alignment. This
consists of estimating a temporal correspondence and the
spatial alignment frame–by–frame as follows. First, for each
frame in the observed frame, the top–20 frames are retrieved
matching a spatial histogram of quantized SIFT. Then, these
20 frames are re–ranked based on the flow energy using a
robust dense scene alignment; thus the frame with the lowest
energy is considered as the corresponding frame.

TABLE III
PERFORMANCE OF DIFFERENT VIDEO ALIGNMENT ALGORITHMS UNDER

DIFFERENT SCENARIOS WITH DISSIMILAR IMAGE CONTENT.

Scenarios Algorithm % of frames with
err = 0 err < 1 err < 2

All

Diego et al. [5] 58.12 66.79 70.79
Serrat et al. [10] 73.2 81.86 83.04

Liu et al. [9] 77.26 87.30 91.38
Our Approach 84.20 93.04 96.22

Campus

Diego et al. [5] 78.08 90.77 94.23
Serrat et al. [10] 76.47 95.81 98.9

Liu et al. [9] 77.95 89.04 93.46
Our Approach 82.05 91.03 94.87

Highway

Diego et al. [5] 49.55 54.92 59.53
Serrat et al. [10] 66.15 70.69 72.92

Liu et al. [9] 76.06 87.16 91.49
Our Approach 87.51 96.16 98.74

Back–road

Diego et al. [5] 43.53 51.28 55.00
Serrat et al. [10] 76.99 79.40 82.57

Liu et al. [9] 77.77 85.05 88.97
Our Approach 83.11 92.02 95.04

A few sample frames of the proposed algorithm on ’high-
way’, ’campus’ and ’back–road’ pairs are shown in Fig. 3.
The performance of the algorithms is outlined in Table. III.
From the results we derive that the proposed algorithm is
robust under different scenarios. When the regularization terms
are removed, the average performance of perfect alignment is
78.87% of observed frames. That result shows that Eq. (9)
accurately discriminates corresponding frames, and improves
the best performance of Liu’s method 77.26% and our previous
works 58.12% and 73.2%. The best Liu’s performance is
obtained by retrieving the top–20 frames and choosing the
frame with the best alignment. However, when it retrieves just
one frame as we do, the average performance of Liu’s method
decreases from 77.26% to 67.88% frame; thus reinforcing the
frame discrimination of the proposed algorithm. In addition,
the average performance of the proposed method increases
from 78.87% to 84.20% when the regularizations are included.
More than 91% of observed frames of all video sequences
pairs have a synchronization error up to 1–frame. Hence, the
performance w.r.t. the state–of–the–art algorithms improves
approximately more than 6%. Moreover, the computational
time is the main drawback of Liu’s method because only
the robust dense scene alignment at half–resolution takes
more than 30 sec per image pair that does not consider the
computational time for retrieving the 20-most likely frames.
For instance, the alignment between two video sequences
with 1, 000 frames using Liu’s method takes approximately
7 days because Liu’s method needs to estimate 20 times a
robust dense scene alignment for each frame in the observed
sequence; thus it requires to estimate 20, 000 scene alignments
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Campus

Highway

Back–road

Fig. 3. Sampled frames from the fusion of three pairs of aligned videos (’campus’, ’highway’ and ’backroad’). The greenish and purple regions of unnatural
color appear because of either slight misalignment of objects common to both corresponding frames or the different scene content (vehicles). The three
complete original video sequence pairs and their fusion can be viewed at www.cvc.uab.es/∼fdiego/Joint/.
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that needs an average of 30 sec per aligment (approx. 600, 000
sec). In contrast, the frame correspondence in Eq. (18) takes
5 sec at most for each observed frame; whereas the frame–
alignment implemented in MATLAB requires 15 sec for each
pair of corresponding frames. That is, the total computational
time required is equal to 20 sec per frame. Although the
computational time is similar in both methods, the proposed
algorithm requires 3 iterations at most to converge; whereas
Liu’s method needs 20 iterations to just retrieve a single frame.

To assess the quality of the spatial alignment, a simple im-
age fusion that assigns the observed frame to the red and blue
channels and the registered corresponding frame to the green
channel is performed. Fig. 4 shows a qualitative comparison
using some aligned frames for each video alignment algorithm
on ’highway’, ’campus’ and ’back–road’. Fig. 5 shows a few
alignment samples of the proposed algorithm on ’indoor–1’
pair. Using the proposed method, Fig. 3 and Fig. 4 shows the
estimation of the geometric transformation with high sub–pixel
accuracy dealing with high dissimilar image content since this
estimation considers the adjacent geometric transformations
and the reliability of the temporal correspondence estimation.
The work proposed by Liu et al. [9] improves qualitatively
the pixel–wise correspondence at the expense of a slight loss
of accuracy in matching dissimilar image contents. Note that
the goal on [9] is a pixel–wise dense alignment instead of
estimating a geometric transformation.

More qualitative results for SD, MS and SS groups are
shown in Fig. 6, Fig. 7a, and Fig. 7b, respectively. In particular,
Fig. 7b and Fig. 7a show that the proposed algorithm handles
the estimation of an affine temporal mapping on sequences
recorded by static or moving cameras, respectively. The fixed
geometric transformation shown in Fig. 7b is estimated by
increasing substantially λS w.r.t. the value used for aligning
sequences recorded by moving cameras shown in Fig. 7a.
Increasing the value allows the estimation of a fixed geo-
metric transformation. Finally, Fig. 6 shows that the proposed
method handles sequences of different human actions acquired
at different times assuming there is enough motion in the
field–of–view. Furthermore, the conjugate rotation has been
only applied on ’highway’, ’campus’ and ’back-road’ video
sequence pairs since they satisfies the assumptions of this
geometric transformation; whereas an homography has been
applied as the unknown geometric transformation in the other
sequences. A figure containing just a few frames of the aligned
videos would be a poor reflection of the results. The original
and fully aligned video sequences can be viewed at the web
page http://www.cvc.uab.es/∼fdiego/Joint/.

VI. CONCLUSIONS & FUTURE WORK

In this paper, joint video alignment is proposed to deal
with the challenging problem of aligning video sequences;
specifically these sequences are recorded by independently
moving cameras at different times following approximately
similar but no coincident trajectories without changing the
direction. The temporal and spatial alignment are formu-
lated jointly as a minimization over a huge number of pa-
rameters, e.g. non–parametric temporal correspondence and

geometric transformation. The algorithm combines image–
retrieval and image–registration techniques for computing
frame–correspondence and frame–alignment, respectively. The
best spatio–temporal alignment is solved iteratively alternating
a min–sum algorithm and a gradient descent algorithm using
the best result found in the previous result. The new video
alignment formulation also generalizes other relative simple
cases like the alignment of sequences recorded simultaneously
or at different times by static cameras. Experiments conducted
on different video sequence pairs show that the proposed
video alignment deals with the presence of moving objects,
different image content, variations on camera velocity and
different scenarios, indoor and outdoor. The proposed method
outperforms the synchronization accuracy w.r.t. the state–of–
the–art on sequences recorded from vehicles driving along the
same track at different times. As further work, a high–order
prior can be introduced to model properly the dynamics of the
camera motion.
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a)

b)

Fig. 6. From left to right: the joint video alignment energy computed by Eq. (8) inside the range defined by time (frames) xi in reference sequence/ time
(frame) i in observed sequence. The red line is the most likely frame correspondence x1:no = [x1 . . . xno ] found using Algorithm 1. Example results of our
approach on a) ’dance’ and b) ’jump’ pair provided by Rao et al. [15] and Gorelick et al. [32], respectively.

a)

b)

Fig. 7. From left to right: the joint video alignment energy computed by Eq. (8) inside the range defined by time (frames) xi in reference sequence/ time
(frame) i in observed sequence. The red line is the most likely frame correspondence x1:no = [x1 . . . xno ] found using Algorithm 1. Example results of our
approach on ’indoor–2’ and ’water’ pairs provided by Kelly et al. [33] and Caspi and Irani et al. [2], respectively.
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