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Using decoy databases to compute the confidence of peptide
identifications has become the standard procedure for mass
spectrometry driven proteomics. While decoy databases
have numerous advantages, they double the run time and
are not applicable to all peptide identification problems
such as error-tolerant or de novo searches or the
large-scale identification of cross-linked peptides. Instead,
we propose a fast, simple and robust mixture modeling
approach to estimate the confidence of peptide
identifications without the need for decoy database
searches, which automatically checks whether its
underlying assumptions are fulfilled. This approach is then
evaluated on 41 LC/MS data sets of varying complexity and
origin. The results are very similar to those of the decoy
database strategy at a negligible computational cost. Our
approach is applicable not only to standard protein
identification workflows, but also to proteomics problems
for which meaningful decoy databases cannot be
constructed.  

through decoy databases searches.
4,16 

Databases of nontarget 
proteins are generated by, e.g., randomizing or reversing the 
amino acid sequence of the target proteins. The percentage of 
MS/MS spectra matching these artificial sequences rather than to 
the original sequence database is regarded as a measure of the 
(global) FDR. Numerous extensions have been proposed using 
more elaborate classifiers

9,7,8,2 

or semisupervised approaches
11,3 

that 
only need a subset of decoy hits.  
While the decoy database-driven approach and its extensions have 
clear advantages, there are two major limitations: (i) The run time 
is increased by a factor of 2 since every MS/MS spectrum needs 
to be evaluated against all candidates in the decoy database,

10 

which should have at least the same size as the original database. 
Thus, the database search can become a bottleneck for large-scale 
experiments, which is particularly true for data sets acquired on 
low-resolution/low-accuracy instruments for which database 
searches take much longer than for high accuracy data sets. 
Furthermore, decoy database search strategies are suboptimal for 
specialized applications such as the identification of crosslinked 
peptides where both, the target as well as the decoy database, are 
quadratic in size compared to standard databases.

13 

 
 (ii) A suitable decoy database cannot be generated for all 
applications. For instance, for error-tolerant searches, the actual, 
correct protein sequence is unknown and amino acid substitutions 
 

Peptide identifications must be accompanied with confidence 
statements such as false discovery rates (FDRs) to ensure the
reliability of results. Peptides identified with scores below the
corresponding cutoffs have a higher likelihood of being random 
matches than deemed acceptable and thus are disregarded.
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The 
standard procedure of obtaining false discovery rates, as
suggested by guidelines of major proteomics journals (see, e.g.,
ref 1), is  
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are allowed. Thus, it cannot be assured that the decoy database
contains no potential target peptides since it cannot be filtered a 
priori against the actual correct sequences. As a consequence, the
decoy FDR might be suboptimal since correct identifications 
could be counted as decoy hits (see the Supporting Information
for a simulation). Similarly, for de novo identification strategies, a
sequence database is not even required and thus a decoy database
cannot be constructed.  

 

Several approaches have been proposed, which do not require a
decoy database to estimate a FDR. Kim et al.
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propose the
development of scoring schemes with a realistic probabilistic
output for each single spectrum. Current search engines, however,
give an unreliable probabilistic output for an individual spectrum
since they only have a small number of data points available for
the estimate.

10 

Other approaches focus on estimating the FDR from
all spectra: PeptideProphet

9 

applies a parametric twocomponent
mixture modeling approach, which is optimized to incorporate
decoy database search results but does not require them. While
very powerful when at least a subset of a decoy database is
available, its reliability suffers without decoy information: The 
estimate is based on parametric assumptions for the distributions
of the incorrect and correct identifications that are not always
fulfilled. Further, PeptideProphet is currently only applicable to
Mascot, Sequest, and X!Tandem search results and automatically
checks whether the sample size is sufficient to fit a model but does
not test whether the parametric model assumptions are fulfilled. 
An extension proposed by Choi et al.
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utilizes a mixture model
with an unlimited number of components which can be fitted to an 
arbitrary distribution using a reversible jump Markov chain Monte
Carlo approach. While the model is very powerful and has
valuable theoretical properties, the authors themselves state that
important weaknesses from a practical point of view are its major
computational requirements as well as its dependency on the
proper setting of priors, which can be data set dependent.  

Figure 1. Schematic for the two-(a) and three-components (b) 
model. The orange, dashed-dotted distribution corresponds to the 
incorrect peptides in the two-component model, which is separated 
into the red dotted distribution of low-quality spectra and the yellow 
dashed distribution of random hits in the three-component model. 
The green solid distribution corresponds to the correct peptides. The 
blue line shows the 5% confidence cutoff as indicated by our 
approach.  A flowchart of the approach is given in the Supporting 
Information.  
Mixture Model. We follow the idea of Keller et al.
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which begins 
with a mixture model of two distributions. One normal 
distribution represents the random matches to the database, i.e., 
incorrect peptide identifications. A second normal distribution 
represents correct identifications (Figure 1a). To enhance the 
model flexibility and to account for low-quality spectra which 
cannot reliably be matched to any peptide sequence and thus show 
lower scores, we also fit a three component model (Figure 1b).  

The goal of this contribution is to bridge the gap between the two
mixture models proposed by Nesvizhskii et al.

9 

and Choi et al.
2 

We 
present a method which combines the high reliability of the latter
model

2 

achieved by allowing a mixture of distributions for the
incorrect identifications with the simplicity and quick run time,

9 

making it applicable to a wider range of proteomic applications
without the need for decoy databases. We outline the
methodology and show that the results of our approach applied to
41 proteomics data sets randomly chosen from ongoing
experiments closely follow the results obtained by decoy searches
and are closer to the decoy results than other methods not based
on decoy database searches. Our proposed procedure has the
additional advantage that it is not limited to specific search 
engines, but generally applicable to various scoring schemes, and
it automatically tests whether the model assumptions are fulfilled. 
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) denote the parameters of 
the three-component mixture model, sorted by location, with µ1 

and η1 corresponding to the lowest average score. Our approach 
then applies a simple heuristic to decide between the models: 
When application of the three-component model leads to the 
distribution of the low-quality spectra being used to explain 
random hits, and the random hits distribution itself is shifted to 
partially explain correct hits, the threecomponent model does not 
fulfill its purpose. Since there is no need to precisely model the 
correct scores with more than one distribution, the two-component 
model is then used. In other words, the two component model is 
selected if µ2 < η2 + 2.57τ2 where µ2 is the mean of the high score 
component of the two component approach and η2 and τ2 

correspond to the mean and standard deviation of the central 
component of the three component mixture model. The value of 
2.57 corresponds to the 99.5% quantile of the normal distribution. 

METHODS  
Overview. We propose an adaptive two-or three-component
Gaussian mixture model for the score distribution. With the use of
an automated heuristic, the more appropriate model is chosen and
the null distribution stemming from random hits to the database is
extracted. The confidence of peptide identifications is then
computed based on this distribution. In a final quality control step,
a 

2

-test is used to check the model assumptions.  
False Discovery Proportion. We let f0 ) N(ν0,0) denote the normal 
distribution of the incorrect hits and f1 ) N(ν1,1)  



denote the normal distribution of correct hits with (ν0,ν1,0,1) 
)(µ1,µ2,σ1,σ2)or(ν0,ν1,0,1) )(η2,η3,τ2,τ3) as indicated by the number of 
component decision criterion. We estimate the score significance 
cutoff inspired by the idea of the false discovery proportion 
(FDP),

12 

which is closely related to the concept of the global false 
discovery rate (FDR). The FDR is interpreted as the expected value 
of the FDP: FDR )IE(FDP).

14 

While the FDR estimate depends on 
reliable estimates of both distributions, i.e.,  f0 and f1,

9 

we can 
estimate the FDP from f0 alone

12 

and do not have to rely on accurately 
modeling f1.A FDP of R % can be understood as having at 
maximum a probability of Rof a false discovery under the null 
distribution (f0). Since we have obtained f0, which is the null 
distribution, we can use it to estimate the likelihood that any score 
stems from the null distribution:  

low-accuracy data acquired on an LTQ, whereas “Human22” and 
“Rat1” to “Rat17” are high accuracy data acquired on an 
LTQ-Orbitrap (see the Supporting Information for details and data 
availability). All data sets were searched using Mascot and the 
confidence of peptide identifications was estimated using the
original decoy FDR approach, the Mascot E-value FDR,
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and our 
procedure, which did not use the decoy database information.  
In a third experiment, we study the influence of the sample size on 
the confidence level estimation as well as on its variance. Using 
the “Human 2” data set of the first experiment, we randomly 
sampled between 100 and 5000 spectra from the original data set 
and computed the decoy FDR as well as the curve FDP.  
The fourth experiment investigates the influence of the good/ bad 
spectra ratio on the confidence level estimation. Using the largest
data set from the second experiment, “Rat 1”, we applied our 
curve FDP approach to estimate for each spectrum the probability 
of belonging to the distribution of random matches or correct 
identifications. We then sampled spectra from both distributions 
according to these probabilities and with ratios of correct 
identifications ranging from 0% to 100%. The resulting sets of 
spectra were used to estimate confidence levels for the decoy FDR 
and our curve FDP approach.  
To analyze the variation of each estimate, we used a bootstrap 
resampling procedure to obtain 90% empirical confidence 
intervals (see the Supporting Information for details).  
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Accordingly, for a given confidence level of (100 -R)%,we can 
estimate the first score to be rejected using the appropriate
quantile. Consequently, the FDP can also be used to estimate the
expected number of false positives above the cutoff.  
�2

-Test. The proposed procedure assumes normal distributions 
for the mixture model. As a final quality control step, we test
whether this assumption is supported by the data with a 

2

test and 
obtain a p-value (see the Supporting Information).  

RESULTS  
Comparison with PeptideProphet without Decoy Information. 
While the existing nondecoy database search strategy of 
PeptideProphet is very conservative when evaluated against the 
original decoy approach and identifies on average 500 peptides or 
a quarter less than decoy FDRs (original decoy FDR or 
PeptideProphet with decoy information), our curve based ap-
proach closely follows the original decoy FDR (see Figure 2). 
While our curve FDP approach does show significantly more 
variation in the bootstrap estimates for some of the data sets 
(“Mouse” and “Human2”), the confidence intervals overlap for all 
data sets and hence indicate similar performance.  
Comparison with Original Decoy FDR. Results for experiment 
2 where we study 37 data sets are given in Figure 3. Overall, these 
results confirm the observations from the first experiment: The 
numbers of peptides identified by our curve FDR approach closely 
follow those of the decoy-based FDR. We see a slightly less 
conservative estimate than observed with the decoy approach for 
the LTQ-data sets and a slightly more conservative approach for 
the LTQ-Orbitrap experiments. The Mascot E-value FDR is by far 
the most conservative approach identifying on average more than 
1000 peptides or 40% less than the other two approaches. The 
respective cutoff scores and the average precursor charge values 
are available in the Supporting Information. With the exception of 
two outliers for the “Human4” and the “Human8” data set which 
show unusually large variation, the variation of our curve FDP 
estimate is larger, but in the same overall range as the variation of 
the decoy FDR.  
Influence of Sample Size. For the decoy FDR, we see a decrease 
in the variance for an increasing sample sizes whereas our 
approach shows constant variation (see Figure 4). For small 
sample sizes, the two approaches show similar variation, for 
larger ones, our approach has more variation. Overall, it becomes 
evident  

Implementation. Our approach is implemented in R using the
mixtools package

17 

and is available as open source code from 
http://software.steenlab.org/curveFDP and http://hci.iwr.uni-
heidelberg.de/software.php. Analysis CPU time on a data set of
approximately 5000 spectra was3sona2GHz AMD Opteron
machine.  
Experiments. We conducted four sets of experiments. In the first 
set, we compare the performance of our approach on four
previously described data sets

15 

to PeptideProphet (with and
without decoy information) and to the original decoy approach
(see the supplementary data in the Supporting Information). The
data sets “Yeast1” and “Human 1” were analyzed on an
LTQ-Orbitrap (Thermo Scientific) equipped with a nanoflow 
HPLC system (Eksigent). For the analysis of “Mouse1” and
“Human 2”, an LTQ equipped with a split-based microscale
capillary HPLC system was used (both Thermo Scientific). 
Mascot (version 2.2.04) was used for database searching and
scoring. A list of the data acquisition details and search
parameters is given in the Supporting Information.  

984

In a second set of experiments, we used Mascot search results to
evaluate the performance of our approach and the original decoy
approach on 37 additional data sets. “Human3” to “Human21” are 
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Figure 4. Analysis of the influence of the sample size on the cutoff 
score estimation and its variation. At the 5% confidence level, our 
curve FDP approach (dashed line) is compared to the decoy FDR 
approach (solid line). The overall number of spectra (divided by 100) 
is shown by the dotted line. Both approaches show a rather 
constant behavior with regard to the sample size, a slight downward 
movement can be observed for the curve FDP for smaller sample 
sizes and a slight upward movement for the decoy FDR. While the 
variation of our approach is rather constant, we see an increase of 
the variation for the decoy FDR for smaller sample sizes where it 
shows larger variation than the curve FDP approach.  

 

Figure 2. Comparison of the number of identified peptides at the 5% 
confidence level using PeptideProphet with decoy information 
(dotted line) and without decoy information (dashed-dotted line), our 
curve FDP approach (dashed line), and the decoy FDR (straight 
line); connecting lines are drawn for visual clarity only. Our 
approach and the decoy FDR show very similar behavior on all four 
data sets,

15 

whereas PeptideProphet without decoy information is 
significantly more conservative.  

 

Figure 5. Influence of the ratio of good to bad spectra. Both the 
curve FDP (dashed line) as well as the decoy FDR (solid line) show 
a rather stable behavior over varying ratios of good spectra. The 
curve FDP estimates show more overall variation, while the decoy 
FDR shows a downward trend with less strict estimates for higher 
ratios of good spectra. Both approaches show the most extreme 
behavior for the case of 0% good spectra with an increase in the 
cutoff score for the decoy FDR and a decrease for the curve FDP.  

Figure 3. The performance with regard to the number of identified 
peptides at the 5% confidence level of our curve FDP approach 
(dashed line) is compared to the decoy FDR approach (solid line) 
and the Mascot E-value FDR (dotted line). Data sets are ordered by 
the number of identified peptides using the decoy FDR; connecting 
lines are drawn for visual clarity only. 90% confidence intervals 
based on bootstrap sampling are drawn but too narrow to see in 
some cases. Our approach closely follows the decoy FDR; it is less 
conservative with regard to the low-accuracy LTQ-data (upper plot) 
and more conservative with regard to the high-accuracy Orbitrap 
data (lower plot), while the E-value FDR is much more conservative. 

be accounted for in subsequent analysis steps, e.g., for the 
inference of identified proteins.  
Influence of the Ratio of Good to Bad Spectra. Both the decoy 
FDR and our curve FDP approach show an overall similar 
stability over varying ratios of good spectra. The curve FDP 
estimate exhibits more overall variation whereas the decoy FDR 
shows more bias with respect to the percentage of good spectra. 
Only for the extreme case of 0% good spectra, we see large 
deviations: the decoy FDR overestimates the cutoff score and the 
curve FDP underestimates it (see Figure 5), when comparing the 
data set with the original ratio of good and bad spectra.  

that the estimation of confidence levels contains uncertainty which
is commonly ignored at the moment. This uncertainty should thus 



identifications, increase the flexibility and robustness of the 
model. The flexibility of the proposed model is also illustrated by 
application to other scoring schemes (see the Supporting Informa-
tion, Figure 10, for an application to PepNovo

5 

scores).  

DISCUSSION  
Our curve FDP estimation method is built on two key
assumptions. The first one is the decomposition of the score
values into an appropriate number of components and the second
one is assumption of normal distributions.  

CONCLUSIONS  Determination of the Number of Components. As il-lustrated in
Figure 8 in the Supporting Information, we see a strong difference
in the final number of fitted components between score
distributions derived from LTQ and LTQ-Orbitrap data: for the
former, there is a pronounced tendency toward three-
distribution-fits, whereas the latter can mostly be approximated
with two-component fits. While we generally note differing
characteristics of the score distributions for the LTQ and
LTQ-Orbitrap data (e.g., indicated by the differing cutoff scores in 
Figure 7 in the Supporting Information), a possible explanation
for the need of an additional component might be that fragmenta-
tion on the LTQ is not limited to peptides since no charge-state 
screening is performed resulting in a higher number of fragmen-
tation spectra of nonpeptide origin equivalent to lo

We describe a fast, simple, and robust alternative to estimating 
confidence levels of peptide identifications from any protein 
identification algorithm. Our approach combines the simplicity of 
the model of PeptideProphet

9 

with the flexibility provided by 
Choi’s approach.

2 

The main advantage of our approach is that 
confidence levels can be computed without the need for a decoy 
database, thus resulting (i) in a time advantage for standard 
protein identification workflows and (ii) applicability to
proteomics problems for which no meaningful decoy database 
search strategies can be formulated. An automated test for the 
appropriateness of the model assumptions ensures the quality of 
the results. Using a bootstrap approach, we demonstrated that 
confidence estimates for peptide identification contain significant 
variation, which should be accounted for in the subsequent 

w-quality 
spectra.  
Assumption of Normal Distributions. For the majority of data sets 
in this analysis, there was no evidence of a departure from 
normality. However, departure from this normality assumption led 
to stronger differences between our approach and the decoy FDR. 
This is underscored by the sample set which shows the largest 
difference between our approach and the decoy FDR approach 
(“Human22”): the normality assumption was rejected in 91 of 100 
bootstrap resamples. However, such unreliable results are detected 
by the incorporated automated check of the underlying 
assumptions. In contrast to existing approaches, this allows 
specialized treatment for these cases. From our experience, results 
usually tend to become more conservative when the assumptions 
are not met. Since our FDP-based approach only relies on the 
distribution of the incorrect hits to be estimated correctly, it is 
particularly robust to departures from the normal distribution for 
the correct identifications. For low scores, the mixture of two 
normal distributions, separating overall bad spectra and the false 

analysis steps 
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