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Abstract. We study detecting cell events in phase-contrast microscopy sequences
from few annotations. We first detect event candidates from the intensity differ-
ence of consecutive frames, and then train an unsupervised novelty detector on
these candidates. The novelty detector assigns each candidate a degree of sur-
prise. We annotate a tiny number of candidates chosen according to the nov-
elty detector’s output, and finally train a sparse Gaussian process (GP) classi-
fier. We show that the steepest learning curve is achieved when a collaborative
multi-output Gaussian process is used as novelty detector, and its predictive mean
and variance are used together to measure the degree of surprise. Following this
scheme, we closely approximate the fully-supervised event detection accuracy by
annotating only 3% of all candidates. The novelty detector based annotation used
here clearly outperforms the studied active learning based approaches.

1 Introduction

Modern cell biology thrives on time lapse imaging where the fate of cells can be studied
over time and in response to various stimuli. Phase-contrast microscopy is an important
experimental technique in this area because it is non-invasive and allows the detec-
tion of events such as mitosis (cell division) or apoptosis (cell death). A fundamental
challenge in phase-contrast microscopy images is the hardness of segmenting the cell
boundaries accurately. Even though there have been attempts for segmenting cells in
this type of images [5], the accuracy and the tolerance to imaging artifacts provided by
the state-of-the-art are significantly below the reliability level. The suggested methods
for automated analysis of phase-contrast sequences by-pass the segmentation step and
jump directly to detecting events of interest from a heuristically generated set of candi-
date regions. Huh et al. [3] extract a candidate mitotic region from each large enough
bright spot in a frame. Each candidate is represented by a Histogram of Oriented Gradi-
ents (HoG) feature set, passed through a binary classifier, and the classifier decisions are
smoothed by a Conditional Random Field (CRF). In [4], apoptotic events of stem cells
are detected by extracting candidate regions exploiting the image acquisition principles
of phase-contrast microscopy, a rule-based filtering using application-specific heuris-
tics, and a support vector classifier.

All the above methods require a fully-supervised training sequence. A time-lapse
sequence consists of hundreds of events, which often occur simultaneously, making
their annotation a tedious task. Hence, a way of reducing the annotation labor would
save the biologist’s precious time. This problem has first been investigated by Kandemir
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Fig. 1. Two proposed pipelines for interactive cell event detection. Way 1: Unsupervised event
detection followed by supervised learning. Way 2: Active learning. The novelty detector we
introduce in Way 1 gives a steeper learning curve than Way 2.

et al. [6], where a multioutput GP (MOGP) is used as an autoregressor to predict the
features of a patch at time t from its features at time t− 1. This autoregressor is trained
on the first few (five) frames of the sequence where there occur no events of interest.
The prediction error made by the autoregressor is used as the degree of surprise, and an
event is fired if this surprise is above a preset threshold.

In this paper, we study ways of reaching high cell event detection accuracy using a
supervised classifier as opposed to [6], but using only a small amount of annotations as
opposed to [2,3,4]. For this, we introduce a new pipeline, and a new candidate genera-
tion scheme, which does not use labels as [2]. We then extract a set of generic features
from each of these candidates, and train a novelty detector on the resulting data set. We
assign a probability to each candidate proportional to its degree of surprise, and choose
the candidates to be annotated by sampling from the resultant probability distribution.
The annotated candidates are then fed into a binary classifier. The proposed pipeline is
illustrated in Figure 1 as Way 1.

We test our pipeline and the proposed feature unpredictability based novelty de-
tector on eight separately acquired sequences of human liver cell cultures, and three
sequences of stem cell cultures. We have several interesting outcomes:

– Cell events can be detected almost as accurately as the fully-supervised case, and
much more accurately than [6], by annotating less than 3% of the training data
following the order suggested by the novelty detectors.

– The steepest learning curve is reached when a state-of-the-art collaborative multi-
output GP regressor is used as the novelty detector, which is trained for predicting
the feature vector of a candidate at frame t from its feature vector at the previous
frame t − 1, and the prediction error is calculated using the predictive mean and
variance together, differently from [6] which uses only the predictive mean.

– Even though active learning (AL) looks like an intuitive solution to this problem
(Figure 1 , Way 2), annotating the sequences using our unsupervised novelty detec-
tion (Way 1) performs clearly better than the studied algorithms.



2 Background Subtraction

As the common property of any event is an abrupt change in time, we propose taking
the intensity difference of every consecutive frame, and fire a candidate event for each
large enough connected component in the difference image. We threshold the intensity
difference image from 25% of its brightest pixel value, filter out the components of
the resultant binary image having an area smaller than 20 pixels, apply image opening
with a 2-pixel disk, and finally fill the holes. Each connected component in the resultant
image is treated as an event candidate. We represent a candidate by a 26-bin intensity
histogram calculated on the intensity difference of that frame and its predecessor, 58
LBP features of the current frame, another 58 Local Binary Pattern (LBP) features for
the difference from the predecessor, and 128 Scale Invariant Feature Transform (SIFT)
features.

3 Sparse Gaussian Processes

Let X = {x1, · · · ,xN} be a data set containing N instances xn ∈ RD, and y =
{y1, · · · , yN} be the corresponding real-valued outputs. The main drawback of the stan-
dard GP is the inversion of the N ×N kernel matrix, which undermines the scalability
of the standard GP. There exist several sparse approximations in the GP literature to
overcome this problem. Here, we choose the FITC approximation [13]

p(u|Z,θ) = N (u|0,KZZ),

p(f |X,u,Z,θ) = N (f |KT
ZXK−1

ZZu, diag(KXX −KT
ZXK−1

ZZKZX)),

p(y|f) = N (y|f , σ2I), (1)

whereN (x|µ,Σ) is a multivariate normal distribution with mean µ and covariance Σ,
is the vector of noise-free latent outputs, Z is the pseudo input data set, u is the vector

of its pseudo targets, KZX is the kernel responses between Z and X, the vector θ has
the kernel hyperparameters, and σ2 is the variance of the white noise on the outputs.
The sparse GP, denoted as SGP(f ,u|Z,X), is a parametric approximation to the non-
parametric full GP. For regression, u is available in closed form as p(u|Z,X,y,θ) =
N (u|KZZQ−1KZX(Λ + σ2I)−1y,KZZQ−1KZZ) where Q = KZZ + KZX(Λ +
σ2I)−1KT

ZX and Λ = diag(λ) with λn = kxx−kTZxK
−1
ZZkZx. Here, kZx is the kernel

responses between Z and a single instance x. The marginal likelihood is p(y|X,Z,θ) =
N (y|0,KT

ZXK−1ZZKZX + Λ + σ2I). The remaining parameters Z and θ are learned
by gradient descent.

For binary classification, it suffices to replace the likelihood in Equation 1 with

p(t|f) =
∏N
n=1 Φ(fn)

tn(1 − Φ(fn))
1−tn , where Φ(s) =

1√
2π

∫ s
−∞ e−

1
2 s

2

ds is the

probit link function and t is the vector of output classes tn ∈ {−1,+1}. Since this like-
lihood is not conjugate with the normal distribution, the posterior p(u|Z,X,y,θ) is no
longer available in closed form, hence has to be approximated. We choose the Laplace
approximation due to its computational efficiency and yet reasonable performance [9].

Given the approximate posterior q(u|X,Z,θ), and a newly seen instance (xn, tn),
the predictive distribution is p(tn|t) =

∫ ∫
p(tn|fn)p(fn|X,u,Z)q(u|X,Z, t)dudfn.



We follow the common practice and take only the first integral with respect to u, use
the mean µ(xn) and variance σ(xn)2 of the resultant normal distribution as the approx-
imate predictive mean and variance, and replace the integral with respect to fn with its
point estimate. See [9] for further details.

4 Collaborative Multi-output Gaussian Processes for Novelty
Detection

As the novelty detector, we follow the paradigm of Kandemir et al. [6] and propose the
recent collaborative multi-output Gaussian process (CGP) regression model [8] as the
feature predictor. The CGP is defined as

p(G,U|Z,X) =

Q∏
j=1

SGP(gj ,uj |Zj ,X), p(H,V|W,X) =

P∏
i=1

SGP(hi,vi|Wi,X),

p(Y|G,H) =

P∏
i=1

N∏
n=1

N
(
yin

∣∣∣ Q∑
j=1

wijgj + hi, β
−1
)
, (2)

where X is a N ×D matrix having D dimensional N instances in its rows, and Y is a
N × P matrix having the corresponding P dimensional targets in its rows. Here, gj’s
are sparse GPs shared across all output dimensions, and hi’s are sparse GPs specific to
each output dimension. The likelihood in Equation 2 combines all these GPs linearly
by the weights wij . The intractable posterior of this model is inferred by the efficient
stochastic variational inference method. See [8] for further details. We use the source
code provided by the authors 1.

Given the feature vector of a candidate at the previous frame xn, we plug its top 50
principal components into the CGP as input, and predict the top 5 principal components
yn of its features at the current frame as the output. As the degree of surprise, or Train-
ing Utility Value (TUV) in other terms, Kandemir et al. [6] propose using the squared
distance between the mean of the predicted outputs µ(xn) = [µ1(xn), · · · , µP (xn)]
and the true observations TUV (xn)MSE = ‖µ(xn) − yn‖22. We here propose to ex-
tend this measure by taking into account also the predictive variance which is shown
to be useful in certain recognition tasks [11]. A principled way for this is to define a
true distribution for the observed features ptrue = N (ŷn|yn, εI), with a very small ε,
constructing spikes at the observed locations of the feature space, and use the Kullback-
Leibler divergence between ptrue and the predictive distribution ppred = N (ŷn|µ(xn),Σn)
as the degree of surprise, where [Σn]ii = σ2

i (xn) is the predictive variance for output
dimension i, and ŷn is the predicted feature vector. The resultant training utility func-
tion becomes

TUV (xn)KL =
1

2

(
tr(Σ−1n εI) + (µ(xn)− yn)

TΣ−1n (µ(xn)− yn)− log
|εI|
|Σn|

)
.

Note that when Σn is equal for all instances, TUV (xn)MSE and TUV (xn)KL give
identical orderings.

1 https://github.com/trungngv/multiplegp

https://github.com/trungngv/multiplegp


4.1 Proposal Generation by Sampling

Given the TUVs assigned to each instance, the question of how to use these values to
choose the order for annotating the instances follows. We propose defining an N cate-
gory multinomial distribution by assigning each instance a probability of being chosen

P (C = xn) =
TUV (xn)∑N
j=1 TUV (xj)

. We determine the next instance to be annotated by

taking a draw from this distribution. In multi-armed bandit formulation, each choice
C = xn can be viewed as an arm (a potential action), and P (C = xn) the reward
distribution. The most intuitive way of choosing the instances with the highest reward
probability (i.e. largest TUV) corresponds to the greedy algorithm (exploitation), which
is known to have linear regret. We have also observed it to give poor performance. Since
almost all highest ranking instances are true events, choosing instances only from the
top of the list causes class imbalance. Our approach, sampling from the reward dis-
tribution, corresponds to probability matching, which is a well-known technique for
balancing exploration and exploitation.

5 Workflows

Way 1: Novelty detection plus supervised learning. As novelty detector we compare the
following models: i) CGP-KL: CGP followed by TUV (xn)KL, ii) CGP-MSE: CGP
followed by TUV (xn)MSE , iii) OC-SVM: The standard One-Class Support Vector
Machine [10], iv) 150fps: Sparse-coding based real-time novelty detection proposed
by Lu et al. [7], as a representative of the dictionary learning based novelty detection
methods.

The difference of CGP-MSE from [6] is that the former samples the instances to
be annotated as in Section 4.1, and then trains a supervised classifier on the annotated
instances, while the latter classifies the events directly by thresholding the TUVs.

Way 2: Active learning. We consider the following two active learning methods:

– MES: Maximum entropy sampling [12] annotates the instances in decreasing or-
der with respect to: TUV (xn) =

∣∣∣p(yn|Xu,yu) − 0.5
∣∣∣, where Xu is the set of

instances for which the labels yu are known, p(yn|Xu,yu) the predictive distri-
bution of any probabilistic classifier, and xn is an instance in the unlabeled set.
In the well-known exploration-exploitation trade-off, this technique relies only on
exploitation and ignores exploring the feature space.

– BALD: Bayesian Active Learning by Disagreement [1] follows a principled Bayesian
approach and quantifies the importance of an instance by the change it is expected
to make in the entropy of the model posterior

TUV (xn) = H[θ|Xu,yu]− Ep(yn|θ,xn)

[
H[θ|Xu,yu,xn, yn]

]
,

where H[·] = Ep(·)[− log p(·)] stands for the entropy function and p(θ|Xu,yu)
is the posterior of a model. BALD has been shown to handle the exploration-
exploitation trade-off in a balanced way, since the first term always favors the most



uncertain instance (i.e. equals to MES), hence, performs exploitation, and the sec-
ond term performs exploration by penalizing the terms with high intrinsic noise.
The BALD for the standard GP classifier follows as

TUV (xn) = Φ

(
µ(xn)√
σ(xn)2 + 1

)
−

√
π log 2

2√
σ(xn)2 +

π log 2
2

exp

(
µ(xn)

2

2σ(xn)2 + π log 2

)
.

6 Experiments

We detect mitosis and apoptosis events in phase-contrast microscopy sequences inde-
pendently acquired from two different live cell tissues: i) a human osteosarcoma cell
line that consists of eight sequences of 134 frames each, and ii) the public stem cell line
data set of Huh et al. [4] that consists of three sequences of 540 frames each. For the
stem cell data set, only apoptotic events were publicly available. We also annotated the
mitotic events to make the two applications comparable. In all experiments, a model is
trained on one sequence and tested on another. All results are averaged over all possible
training-test combinations of the sequences of a given tissue type.

We used the standard Gaussian process classifier with a probit link likelihood as
the supervised event predictor (the Classifier box in Figure 1) and with a squared ex-
ponential kernel function with isotropic covariance k(x,x′) = γ0 exp(−γ1‖x− x′‖22).
The kernel hyperparameters γ0 and γ1 are learned by Type II Maximum Likelihood.
Since MES and BALD cannot perform an absolute cold-start (an empty labeled set),
we started these models from a randomly chosen 10 labeled instances.

6.1 Event Detection from Few Annotations

The main goal of our workflow is to direct the annotator to the relevant instances in
the sequence. We achieve this without any supervision, differently from Kandemir et
al.’s MOGP [6], which requires a small number of frames without any events to be
provided. Figure 2 shows highest ranking five cell event candidates found by the four
novelty detectors. CGP-KL, CGP-MSE, and OC-SVM all retrieve comparably relevant
candidates. However, as seen in Figure 3, the TUVs found by CGP-KL lead to the steep-
est learning curve with respect to F1 score (harmonic mean of precision and recall),
when a GP classifier is trained with an increasing number of annotated instances. For
the novelty detectors, new training instances are chosen in each round using the sam-
pling method described in Section 4.1. For the AL models, the unlabeled instances with
largest TUV are chosen, following the theoretically grounded and commonly adopted
way. While for the AL models the choice of new instances at a round is dependent on
the choices and the trained classifiers of the previous rounds, the novelty detectors are
trained once on an unsupervised sequence, and then provide a labeling order on a target
sequence independently of the classifier. Despite not using any labeled data for pro-
posal generation, the novelty detectors have a more stable learning curve. In both cell
types, the two AL algorithms either saturate immaturely as for osteosarcoma, or overfit
and harm the classifier in the later rounds as for the stem cell. For osteosarcoma, the
fully supervised learning performance is exactly reached, and even slightly exceeded



Fig. 2. Highest ranking cell event candidates are sorted from left to right in decreasing TUV.
Green frame around a patch indicates that the candidate corresponds to an event, and red frame
indicates that it is a false positive.
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150fps
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after only 10(initial) + 15(rounds) × 5(questions) = 85 annotations (2.4% of the
candidates), and for the stem cell, 95% of the fully supervised learning performance
is covered after 10(initial) + 30(rounds) × 10(questions) annotations (1.9% of the
candidates).

Fig. 3. Learning curves of the sparse GP classifier when it is trained with instances chosen by the
novelty detectors and the AL algorithms. A higher Area Under Learning Curve (AUC) indicates
faster learning, which is desired. CGP-KL provides highest AUC in both tissue types.
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In both tissue types, CGP-KL outperforms Kandemir et al. [6] with F1 = 0.81
vs. F1 = 0.77 for Osteosarcoma, and F1 = 0.74 vs. F1 = 0.65 for Stem from
comparably few annotator effort (< 3% of candidates from both classes for CGP-KL
versus five frames from the negative class for [6]). We observed that linear combination
of the TUV’s of CGP-KL and any of the AL algorithms never improves on CGP-KL
alone.

Failure cases of our entire framework include floating dead cells, events taking place
at the image boundaries or behind the white grid in osteosarcoma sequences, and events
taking place more slowly than usual.



7 Discussion

The suboptimal performance of the AL models in the problem we studied is due to the
severe class imbalance coming from the nature of the event detection problem, which
makes the positive instances look overly valuable for the AL models. Hence, these mod-
els focus only on refining the decision boundary, ending up overfitting. This could also
be seen from the fact that MES and BALD follow very similar learning patterns for
both applications. In other words, BALD reduces to MES under class imbalance. An-
other reason for their suboptimal performance is the cold-start problem. AL algorithms
require a labeled starting subset (warm start) that includes instances from both classes,
which raises yet another novelty detection problem. On the contrary, the novelty detec-
tors benefit from the class imbalance by using it as a modeling assumption.

The fact that clearly higher accuracies can be reached with a small annotation effort
could be noteworthy for further studies in the image-based cell behavior analysis field.
Our pipeline can be integrated into an annotation software used by biologists, and could
provide them an importance ordering of the locations to be looked in large sequences.
This would bring a remarkable effort gain given that expert annotator time is very costly.
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