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Nonparametric smoothing of interferometric height maps using 

“confidence” values 

Abstract. We use an extension of normalized convolution to smooth height maps from interferometry 

using “confidence” values. The latter are often used for dichotomous good/bad decisions only, with 

all bad data being discarded. To minimize loss of information, we weight each pixel individually by 

the inverse of its expected variance. The relation between supplied confidence values and empirical 

variances is found by regression. The width of the smoothing kernel—as small as possible to prevent 

loss of spatial resolution, as large as necessary to average out noise—is adjusted locally so as to yield 

a smoothed image with a prespecified uncertainty that is homogeneous throughout. In our 

experimental investigations using metrological data from a white light interferometric sensor, the 

variable-width mask leads to images with somewhat lower absolute deviation from an average image 

than the fixed-width masks we compare to. 
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Introduction 

Many metrological techniques, such as white light interferometry [1, 2] or phase measuring triangulation 

[3], provide not only a height value for each point, but also a measure of the associated uncertainty. The 

latter is often called a “confidence value”; no unique definition exists and these values are not to be 

confounded with statistical confidence intervals. In white light interferometry, for instance, the intensity 

curve at each pixel is recorded while the object of investigation is scanned through the range in which 

interferences with the reference beam appear. The height of the object at a point is determined by locating 

the scan position provoking the largest interference. In general, the stronger the contrast of the 

interference, the better the reliability at a given point. As a consequence, the amplitude of the interference 

at its maximum can be taken as a confidence value. 



In this paper, we discuss how a confidence map can provide guidance in identifying outliers in the 

height map and help averaging over these with the smallest possible loss of information. We emphasize 

cases in which the confidence map is strongly non-homogeneous, as in our interferometric experiments 

where the confidence can vary by an order of magnitude from pixel to pixel. 

Established approaches 

The probably best-known method to reduce noise in height maps and images is to smooth them with a 

Gaussian filter mask or a median filter, if more robustness is required. As the transfer function of 

smoothing masks drops to zero at high wave numbers, high frequencies are suppressed and spatial 

resolution is lost (see [4] for discussion). The additional knowledge provided by confidence values is not 

accounted for. 

A straightforward approach making use of confidence information is to set a threshold and discard all 

height data with insufficient confidence values. The resultant height map contains holes that render most 

analyses (like extraction of position, inclination or shape parameters) difficult. The result of follow-up 

image processing may be very sensitive to the threshold, and often the choice of threshold is a tradeoff 

between discarding “good” data and retaining outliers, as in Fig. 1b which features a continuum of 

confidence values from pure to noise to precise measurements. 

Much information is lost in these simple approaches—the former completely disregards the confidence 

data while the second makes use of a hard threshold that does not do the data justice. 

 



Fig. 1. Distribution of confidence values. a shows a benign case: a surface determined with high reliability that can 

be distinguished clearly from the noisy background. b features a typical measurement with low reliability and a 

continuum of confidence values pertaining to pure noise at one end of the spectrum and “good” data on the other. 

Relation to adaptive smoothing methods 

We wish to smooth only to the extent that is absolutely required. Since this extent varies locally with the 

reliability of our data, we need an adaptive system. All of the following are possible candidates provided 

that the intrinsic information these approaches extract from the image itself is replaced by the extrinsic 

information provided by the confidence map. 

 

In [5], the size of a Gaussian mask was adapted using the local variance as intrinsic information. The 

same kind of information was extracted from interferometric data and used in a multiscale wavelet-based 

denoising and defect detection algorithm that kept type II errors constrained [6]. The edge-preserving 

properties of variable-width filters are investigated in the context of bilateral filtering [7, 8]. 

 

Heuristic measures based on local derivatives are used [9, 10, 11] to change weights in a fixed size filter 

mask. Filter coefficients are set according to an analysis of the local noise characteristics. Related works 

use rank-order filter masks [12, 13]. Here, MAD values (eq. 4) are used to tune the parameters and 

evaluate the performance of a weighted median filter. 

 

In the field of regularization-based approaches, edges have long played an important role. Information on 

edges has been incorporated in the energy functional either explicitly as line processes [14, 15] or 

implicitly and generalized as in [16]. Similarly, the local noise variance has been investigated as a 

smoothing term in [17, 18]. 

 

In all of these adaptive approaches, confidence information could be used instead of measures based on 

local derivatives and local variance. 



Smoothing images with variance-weighted variable-width kernels 

 

We wish to denoise height maps derived from interferometric measurements. Instead of adapting a 

smoothing filter according to local height map features or discarding all data with confidence below a 

fixed threshold, we proceed as follows: 

 

We weight each height value with its uncertainty that we derive from confidence values given by the 

imaging system. At the same time, the noise in the height data is accounted for by averaging over a local 

neighborhood, the size of which should depend on the uncertainty, as in kernel smoothing (see [19, 20]). 

These two aspects are detailed in the next sections. 

 

Relating “confidence” values to variances 

There are many definitions of “confidence” values, and the exact relation to standard deviation or 

variance may be difficult to derive, or even completely unknown. In our specific metrological system, the 

confidence value is given by the maximum difference between adjacent maxima and minima [21]. 

However, the commercial systems used in an industrial environment are mostly based on unpublished 

proprietary algorithms, and this is the problem we wish to address. Accordingly, we treat the sensor as a 

“black box”, and find an empirical relation between confidence and standard deviation by performing 

repeated measurements on the same object, and regressing the empirical standard deviation on the found 

confidence values. 

We recorded 25 height maps and confidence maps and took good care to avoid any displacement of the 

object between individual scans. For each pixel we calculated the standard deviation of the height values 

and plotted these against the mean of the confidence values. The empirical standard deviations are biased 

because we use a finite scan range leading to finite empirical deviations even though the proper 

deviations are infinite in pure noise areas. 

The resulting scatter plot (Fig. 2) reveals two characteristic features: firstly, for high confidence values, 

the deviation of height values reaches a saturation, showing that there is a minimum residual error of the 



measurement that cannot be overcome. We have made no distinction between relative errors (coming 

from the interferometric post-processing) and systematic errors (coming from a depth-shift of the object 

between measurements, caused by play in the scanning mechanics). 

Secondly, the empirical standard deviation grows dramatically for small confidence values. Depending 

on the algorithm, the confidence may still take finite values even if there is no object in the scan range 

and the record consists of noise only. In this case, the empirical standard deviation has a negative bias due 

to the finite scan range. 

 

 

 

Fig. 2. The scatter plot shows the robust empirical standard deviation (eq. 4) of height values determined from 25 

scans against the confidence values for all data with a mean gray value of the camera image of 80. The line shows a 

nonlinear regression. 

Fig. 2 shows the robust empirical standard deviation (light gray dots) for each pixel as a function of 

confidence value with an average gray value of the camera image of 80. The black marks show the mean 

value of all observations with a 0.1 binning of the confidence values. 



The plot suggests modeling the relationship with a hyperbolic function and parameters for pole 

location cpole, and residual standard deviation, σopt. 

We first estimated the position of the pole and the residual σopt; the pole depends on the intensity I at a 

pixel and we found cpole = 0.94 + 0.0096*I. The asymptotic standard deviation σopt gives the residual 

empirical standard deviation that remains greater zero even for very large confidence values. 

Given these estimates we approximate the observations using 
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Smoothing with variable-width kernels 

At this point, we have a height map with estimated variances for each point that can be used in a 

nonparametric regression of the object surface. In an image processing context this approach is known as 

"normalized convolution" [22]. We choose the symmetric Nadaraya-Watson kernel smoother [23, 24] and 

are confronted with the problem of a proper choice for the kernel bandwidth. Using a weighting kernel 

with square support of side length n (n odd), we obtain the smoothed height map g’x,y as 
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where  are the coefficients of the smoothing mask with bandwidth h. Considering individual pixels 

as uncorrelated random variables (in our 25 scans, the deviations from the empirical mean are indeed not 

spatially correlated), the variance in the smoothed image becomes 
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The bandwidth h of the kernel can now be increased iteratively, until the estimated variance σ’x,y
2 

reaches the target variance, for instance the asymptotic variance that is reached for very large confidence 

values, in our case σopt
2 = 1.302 µm2. 

The result is a filter mask that is fine-tuned to the local uncertainty; if the expected noise is large, the 

height is averaged over a larger area; if the data seems reliable, the smoothing mask becomes narrow and 

blurring of the height map is avoided. 

If, for instance, the data in the local neighborhood is extremely noisy with the exception of a single off-

center pixel that has a large confidence and small predicted variance, the bandwidth h will grow until the 

“good” pixel receives a non-negligible weighting coefficient, at which point it will determine the height 

value at the central pixel because all pixels in the neighborhood but the “good” one will have a small 

weight due to their large variances. 

If, on the other hand, the central pixel is “good”, it will have a low variance from the start, the 

smoothing mask will remain tight and no blurring occurs. 

If, finally, the local environment features constant confidence values, the width of the smoothing mask 

depends on the absolute confidence values: if these are good, there is no reason to smooth the data and 

provoke a decrease in spatial resolution. If the confidence values are bad, a large smoothing mask will be 

used because including more measurements lowers the variance of the predicted height. The cost is an 

increased bias which manifests itself as a loss of spatial resolution. 

In our experiments, we have used a Gaussian kernel and a mask size n large enough such that the outer 

coefficients f are negligible. 

Experimental results 

We illustrate the method using the example of a black sheet of paper. The low luminance of the object led 

to a poor signal-to-noise ratio, resulting in a considerable number of pixels with small confidence (Fig. 

1b). The object also features a fine-grained surface structure which lets us observe the decrease in spatial 

resolution. Fig. 3 shows the result when applying a 3x3 median, 3x3 Gaussian and a variable-width filter 

mask to the original data. The size of the variable-width mask was chosen to reach a target standard 

deviation of 1µm. 



 

 

Fig. 3. Top left: the original height map as recorded by the sensor. Top right: original image smoothed with a 3x3 

median filter. Bottom left: original image smoothed with a 3x3 Gaussian filter. Bottom right: the result of the 

described method. 

A 3x3 Gaussian mask is clearly not large enough to eliminate outliers. The 3x3 median handles 

outliers much better, but visual inspection of the full-resolution (600x400) images seems to suggest that 

the median sacrifices more spatial resolution than the variable-width mask. The granular structures that 

persist in the output of the variable-width algorithm, on the other hand, seem to correspond to real 

features in the height map. 

Still, all of these observations are subjective and a quantification thereof is non-trivial: we wish to 

retain fine structure and discard noise and their discrimination is far from obvious. In short, we do not 

have a “gold standard” to compare to. Our best approximation to the truth is a median image, where we 

take the median over 25 height values from the 25 scans at each individual pixel. We can then plot the 

absolute deviation of one of the processed images from the median image. To summarize the data, we 

would like to lump together the information for all those pixels with a common uncertainty. Our best 

approximation to the uncertainty of an individual pixel is a robust estimate of the spread of the 25 height 

values around their median. To measure this spread, we calculated the median absolute deviation (MAD) 

(cf. [25] for discussion): 



||482.1 medi ggmedMAD −=  (4) 

at each individual pixel which gives, in words, the median of the absolute deviations of the 25 height 

maps from the median height map. The multiplicative constant assures that the same numerical value as 

for the standard deviation results if the data is normally distributed. 

Fig. 4 shows the median of the absolute deviations of different processed images from the median 

image, broken down according to the estimated uncertainty of the reference height data. The left part 

illustrates that the loss of spatial resolution provoked by using larger median masks does manifest itself in 

the plot we propose. Especially in the leftmost part of the plot in which the empirical uncertainty as given 

by the MAD is very small (around 0.5µm), the greater absolute errors which result in a considerable loss 

of detail produced by the larger masks are visible. 

The right part illustrates the absolute error obtained for different smoothing masks, again broken down 

according to the estimated uncertainty of the reference data. The 3x3 median clearly outperforms the 3x3 

Gaussian for all pixels but the ones with smallest MAD. The variable-width mask, in turn, leads to 

somewhat lower errors than the median, but provides not as good an estimate as the unprocessed image in 

regions of very small MAD. We ascribe this to the fact that a large spread of empirical standard deviations 

is observed for a given low confidence value (Fig. 2). In particular, there are pixels with both a low 

confidence and empirical standard deviation. The former will lead to a smoothing that is not justified by 

the latter and will thus lead to an unnecessary loss of spatial information which provokes an increased 

absolute error. On the other hand, we found that in some cases, the empirical standard deviation describes 

the reliability of a measured value badly. If the intensity curve shows a parabolic behavior – this may 

occur at a defocused bright surface spot – and no interference phenomenon is detected, common 

algorithms erroneously put the height estimate at either the beginning or the end of the curve for all 25 

measurements. This leads to a small empirical standard deviation although an infinite deviation would 

physically make sense. 

 

 



 

Fig. 4. The median of the absolute deviation of images smoothed with different methods from the reference image 

(see text), as a function of the estimated uncertainty of the reference image (see experimental results for details). Left: 

median absolute error of images that were smoothed using median masks of different sizes. Larger masks lead to 

greater loss of spatial resolution, resulting in larger absolute deviations. Right: median absolute error of an 

unsmoothed height map (“original”) and of height maps smoothed with a 3x3 Gaussian, 3x3 median, and a variable-

width Gaussian mask. 

 

 

 



 

Fig. 5: Detail of a metallic surface with a 10µm step added. Top left: the original height displayed as a surface map. 

Top right: the result of the described method. Bottom left: original image smoothed with a 3x3 median filter. Bottom 

right: original image smoothed with a 9x9 median filter. 

Fig. 5 shows the surface of a metallic object which has been modified by adding a small step to the 

height map. All deviations from the plane were judged to be outliers. A 3x3 median filter does not 

suppress all outliers and even a 9x9 median filter leaves one region of outliers. Adaptive smoothing 

leaves some outliers comparable with the 9x9 median, but preserves the height step better.  

Summary and outlook 

We apply an extension of normalized convolution using “confidence” values associated to height maps 

obtained from interferometry. The information relating to the local reliability of an image or height map is 

used in two ways. Firstly, by weighting the data appropriately: uncertain data get less and reliable data 

more weight. Proper weighting is done with inverse variances, and an empirical relation of these to the 

supplied confidence values is found by regression (Fig. 2). Secondly, the local variance of the smoothed 

image is predicted and the smoothing mask increased to the minimum size required to attain a desired 

target uncertainty (eq. 3), thus minimizing the loss of spatial resolution. 

The current implementation takes of the order of a second on 600x400 images on a commodity PC and 

is thus about ten times slower than a 3x3 median filter. This is irrelevant for our application (where 

measurements are slow), but excludes real-time applications. 



In its current form, the method relies on repeated measurements on a sample object to establish the 

relation between the supplied confidence values and the empirical uncertainty for a certain class of 

surfaces. The variable-width mask performs slightly better than the fixed-size filter masks we compared 

to, but it depends on the quality of the confidence values. We realized that the measuring system used 

provides a confidence value which is intuitive but not mathematically well-founded and which, without 

transformation, is a poor approximation to the variance. An alternative approach to generate confidence 

values from interferograms is sketched in [26]. 
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