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Near Optimum Sampling for Single Tone Frequency
Estimation

Stefan Trittler and Fred A. Hamprecht

Abstract—Work on single tone frequency estimation has fo-
cused on uniformly sampled data. However, it has been shown
that, for a given number of samples, more information on the
frequency of a signal can be gained by non-uniform sampling
schemes. Unfortunately, an optimum sampling pattern (that, for
example, minimizes the Cramér-Rao bound) does not automati-
cally have a fast and simple algorithm for frequency estimation
associated with it. For application in an interferometric mea-
surement system, an algorithm is needed that gathers as much
information as possible from a low number of samples, while
at the same time keeping the computational effort sufficiently
low to process millions of time series in a few seconds. One
simple approximation to the optimum pattern can be obtained
by 1) uniformly sampling blocks of data, 2) estimating phase and
frequency in each of these and 3) exploiting these intermediate
results in the final estimation. An approach to do so is investigated
in detail. Results are compared to the Cramér-Rao bound (CRB),
and it is shown that the algorithm almost reaches this limit on the
variance of unbiased estimators, at a computational complexity
lower than that of a typical FFT-based approach. For M=32
samples and a signal-to-noise ratio of 10, the standard deviation
of the frequency estimate is lower by more than 50% compared
to uniform sampling. In addition, the algorithm can easily be
applied to poorly characterized systems, e.g. systems for which
the noise is not known exactly.

Index Terms—Sampling, Frequency Estimation, Optimization,
Experimental Design

I. INTRODUCTION

AST and accurate frequency estimation for a noisy si-

nusoid is required in many applications today, ranging
from acoustic [1] and radar [2] signal processing to optical
metrology [3].

There are many techniques for the analysis of periodic
signals, both stationary and time-varying. Methods include
the (windowed) FFT [4]-[7], autocorrelation based signal
subspace techniques (Pisarenko’s method, MUSIC, ESPRIT
[8]-[10]), non-linear optimization techniques (iterative, in both
time [11] and frequency domain [12]) and filter based tech-
niques [13]. A large number of papers and many textbooks
cover these methods, including [14]-[16]. In most cases,
uniform sampling is used as this is the easiest way to acquire
data, for example if an electrical signal is recorded with
an analog-to-digital-converter. Such systems have a constant
sampling rate and acquire the signal for a given time period.
Continuous broadband signals must be band-limited by the
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Nyquist frequency to allow for exact reconstruction from the
samples and avoid aliasing [17]. In case of single tone fre-
quency estimation, this aliasing is not necessarily a problem: It
causes ambiguity, but the frequency estimates are still accurate,
and the actual frequency can be determined if prior knowledge
to resolve the ambuguity is available. The accuracy of such
a system largely depends on the sampling time, i.e. on the
number of samples.

In some cases, however, the situation is different:

o For some applications (e.g. antialiasing in computer
graphics [18]), better (in the case of computer graphics
visually more pleasing) results can be obtained with
random sampling instead of uniform sampling. This is
not discussed here.

o The sampling operation itself and the signal processing
may be expensive, and therefore a low number of samples
(but not necessarily uniform or close to each other) might
be desirable. For instance, in frequency scanning inter-
ferometry, and more generally in all applications where
the sinusoidal signal is explicitly sampled by choosing
specific sampling points, there is a cost associated with
the number of samples rather than with their spacing.

In the latter cases, sampling can be accelerated and costs
reduced by carefully choosing the optimum sampling points.
An optimum sampling scheme for a limited sampling range
and sampling time with an arbitrary distribution of the sam-
pling time across the samples has been introduced in [19].
While the proposed sampling design is optimal given the above
constraints, it does not, by itself, suggest an algorithm to
efficiently estimate the frequency from the resulting data.

This article proposes and analyzes a sampling strategy that

yields results very close to the theoretical optimum while at the
same time allowing for a fast, robust and intuitive algorithm.
In section II, the signal model is specified and the optimization
criteria are motivated and described. The algorithm is derived
in section III. Section IV offers bounds on the accuracy of
the algorithm, and a comparison with alternative sampling
strategies. The results are verified with simulations. Section
V briefly discusses several possible extensions to the algo-
rithm and section VI summarizes the implementation of the
algorithm and its key properties.

II. SIGNAL MODEL AND OPTIMIZATION CRITERIA

We would like to accurately estimate, from as few samples
as possible, the frequency of a noisy single tone

I(t) =A - cos(w -ty + ) + C + €,

ey
tmin <tn <tmaz, n=1,..,N
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Fig. 1. Optimum sampling pattern for frequency estimation for N = 128
equidistant samples, probability of outliers P. = 1%. The weights indicate
the effort that should be devoted to the acquisition of a measurement at each
sampling point. The total sampling effort is equivalent to acquiring 32 samples
with SNR 10.

with unknown amplitude A, offset C, frequency w and €,
independently and identically distributed Gaussian noise with
zero mean and variance 2. The sampling points ¢, should
be chosen such that the most accurate estimate for w can
be obtained, and they need not be spaced equidistantly in
time. “Most accurate” is defined as maximizing the Fisher
information (which is a measure of local curvature) while
enforcing a minimum distance to secondary minima: The
frequency estimation might become ambiguous in the presence
of noise if the difference between the true signal and a signal
of a different frequency becomes too small. This is illustrated
by Fig. 3 [19]. The signal at the sampling points can be almost
identical for different frequencies (especially since the offset
and amplitude are also unknown, for appropriate settings the );
for samples mainly at the borders of the sampling range, the
positions of the alternative frequencies are well-known and
can be taken into account in optimization.

It has been shown in [20] that the sampling points near
the boundary of the permissible sampling range are most
important, and it has been shown in [19] that — taking
ambiguity issues into account — using several sampling points
mainly at the borders yields optimum results. In that case,
the optimum sampling pattern for an application depends on
the assumed signal-to-noise ratio, as this ratio determines the
ambiguity threshold that is required to keep the probability
of outliers (cases where a secondary minimum as shown in
Fig. 3 is higher than the primary, correct solution) below a
given level.

The optimum sample distribution according to [19] for 128
equispaced sampling points is indicated in Fig. 1. In practice,
the “relative weights” translate to “sampling effort”, where it
is assumed that the variance of a measured value is cut in half
if the effort at that point is doubled. In the case of frequency
scanning interferometry, sampling effort is measured by the
acquisition time at a given point.

Fig. 1 demonstrates that the optimum weight distribution

focuses on the sampling points at the borders of the considered
range, and only few samples with very low weights can be
found in-between.

Arbitrary weights are hard to implement in practice, though:
For instance, while there may be a theoretical benefit in vary-
ing the time dedicated to sampling at different frequencies in
frequency scanning interferometry experiments, with a camera
it is much easier to use the same camera exposure time for all
samples, as close as possible to the limit dictated by the full
well capacity of the sensor [21].

An obvious approximation to the pattern in Fig. 1 is given
by simply using two blocks of equally weighted samples at
the borders of the range. The impact of the distance and the
size of these blocks is analyzed in detail in the next section,
and the results are compared to both uniform sampling and
the optimum sampling pattern.

III. DERIVATION OF A FAST ALGORITHM

For the reasons given above, an algorithm for evaluating
experimental data that has been sampled in multiple blocks
is derived and its properties are analyzed. For a sampling
pattern that consists of multiple blocks of equally spaced
and uniformly weighted samples, there is a straightforward
procedure: First, the frequency and phase of the signal are
determined for each block individually, and then the results
are used to initialize a final estimate based on all observations.
Fortunately, there is a very simple and highly accurate way
of combining information from multiple blocks, as detailed
below. The key to the following algorithm is the simple
observation that, visually speaking, frequency is the slope of
the phase. Consider the signal from eq. 1 sampled in two
blocks centered at ¢, and t2. For each block, w and ¢ can be
estimated separately. Then, the following relationship holds as
illustrated by Fig. 2:

<p1+(t2—t1)-w:g02+27rk,k€N 2)

As k is unknown, there is no unique solution for w.

As a first guess for the frequency, the mean value of the
frequency estimates from each of the blocks can be used
(strictly speaking, only a frequency estimate from one block
is required, but multiple blocks are needed for the phase
estimation anyway):

v+ ...+ oN

N 3)

Winit =
k is then chosen such that
A = @1 — Winitts — (P2 — Dinitta) — 27k, ke N (4)

1s minimized:

kopt = arg mkin(@ + Winit - (t2 —t1) — @2 +21k) ()

Ambiguities are resolved correctly as long as the combined
error caused by frequency and phase estimation errors as well
as unknown sampling jitter does not exceed 7.
Next, an improved frequency estimate can be computed. Its
accuracy depends on the accuracy of the phase estimation only.
_ 922 - 9271 + 27"'kopt

Anew— 6
w — (6)
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Fig. 2. Relationship between phase and frequency: Phase estimates from
multiple blocks of data can be combined to obtain a more accurate frequency
estimate. The phase values of the blocks define a grid of possible phase slopes
(=frequencies), the correct one is chosen based on the frequency estimates
from the individual blocks.

k=2
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Fig. 3. Possible frequencies based on the phase estimates and the frequency
estimate from the individual blocks. The signal at the sampling positions is
very similar for all three cases depicted here, which can lead to a wrong k
being chosen.
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The results of the phase estimation define a “ladder” of
frequencies that are more or less compatible with the obser-
vations; the initial rough frequency estimate is used to find &
and thus identify the “right step on this ladder”. Provided that
k, the number of wavelengths between the sampling blocks,
is correctly found, the accuracy of the final result depends
only on the accuracy of the phase estimates, the accuracy
of the block distance estimate (which might be influenced
by sampling jitter) and the absolute distance of the blocks
(a larger distance increases accuracy). The accuracy of the
initial frequency estimate and the distance between the blocks
determine the probability of outliers P, i.e. situations in which
the estimate k is wrong (a smaller block distance reduces this
probability).

Processing is very fast for this algorithm due to two factors:

1) The number of samples 2 - M is much lower than N
in case of uniform sampling, and all computationally
expensive steps can be done per block individually, re-
quiring only a very low number of samples and therefore
little memory in every step.

2) The computational complexity is not higher than that
of any other frequency estimation algorithm applica-
ble to a low number of samples, i.e. O(NlogN) in
case of a typical FFT based implementation. For two
blocks with M < N/2 samples, the computational
effort (2 - M log M) is lower than for processing of
the uniformly sampled data (/Vlog N). Combining the
results from multiple blocks needs a fixed low effort
only.

In case of more than two blocks, the approach above can be
applied iteratively, starting out with the two blocks with the
smallest distance, and then consecutively choosing pairs of
blocks with increasing distance, but using @y, ¢, obtained from
the previous two blocks instead of w;,;¢. This procedure can
be repeated until the two blocks with maximum distance are
used, and therefore this leads to the same accuracy as if only
the blocks with the largest distance were used, but with a lower
probability of outliers (incorrect k).

If a certain number of outliers must not be exceeded, there
are three ways to reach this goal, with different drawbacks:

o Increasing the number of sampling points per block
increases measurement and processing time.

 Increasing the number of blocks also increases measure-
ment and processing time.

« Reducing the distance between the blocks reduces accu-
racy.

IV. COMPARISON OF THE ALGORITHM TO THE
THEORETICAL BOUND FOR UNIFORM AND FOR OPTIMUM
SAMPLING

The performance of the proposed algorithm is compared to
the theoretical lower bound (CRB) of the variance for both
the theoretically optimum sampling pattern and the uniform
sampling pattern. Data acquisition time, processing time and
accuracy as well as robustness to outliers are discussed. For
that purpose, an approximation for the probability of outliers
P, and for the accuracy of the algorithm given in section III
is derived.

For the frequency estimation accuracy of the individual
blocks an (approximate) lower bound is derived in [5]. This
bound applies to complex signals only, in the real-valued case
the bound depends on the true frequency and phase of the
signal. In addition, the bound in [5] does not take an unknown
signal offset into account. Asymptotically though, the variance
of the real valued case with unknown offset approaches twice
the variance of the complex valued case (which is intuitively
clear as only half the number of independent measurements are
assumed to be available). This is briefly shown in the appendix.

The relative standard deviation is then given by the square
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Fig. 4. Block diagram of the proposed algorithm for frequency estimation.
Once the optimum sampling pattern for the application has been chosen,
the raw data is acquired. Optionally the actual sampling positions might be
determined for use in the algorithm. Then a frequency and phase estimate
for each block of data is obtained, and a new frequency estimate is computed
using the algorithm described in this paper. Optionally, a high precision phase
estimate can be performed on the basis of the new frequency estimate, and can
then be used for a new frequency estimate. Finally, the resulting frequency and
phase estimates are returned. There are multiple extensions possible, including
amplitude estimation, iterative approaches and using prior knowledge, but
these are outside the scope of this paper.

root of this approximate variance divided by ,

26 o 1

Sp = — - (7
A MM (- i)

Fig. 5 (top) shows the lower bound on the standard deviation
as a function of true frequency and phase when taking the
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Fig. 5. Theoretical lower limit on the relative standard deviation of a
frequency (top) and a phase (bottom) estimate for a single noisy tone (eq. 1)
using 16 equispaced samples and a SNR of 10, based on numerical evaluation
of the CRB. The plot underlines the fact that estimation becomes unreliable
for frequencies close to zero or the Nyquist frequency, where the color scale
has been truncated.

unknown offset and the real-valuedness of the signal model
into account.

For the phase estimation from a block of samples with
known frequency or for the phase in the center of a block
of samples with unknown frequency, using the same approxi-
mations as above, one obtains [5] a relative standard deviation
of

®)

Again, eq. 8 does not take the unknown offset and the real
signal model into account. The CRB can be computed exactly
for the phase estimation, with an approach similar to the one
for the frequency estimation, see Fig. 5 (bottom).

Returning to the algorithm described in section III, the
probability of outliers (incorrect l%opt in eq. 5) depends on
the frequency and phase estimation accuracy as well as on the
inter-block distance. In the following, we assume there are two
blocks with M uniform samples each, and a total range (from
one edge of one block to the other edge of the other block) of
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Fig. 6. Probability of outliers P. as a function of sampling range N and
block size M, logarithmic scale.

N (uniform) samples. Then we can compute an approximate
variance for A defined in eq. 4, assuming independence of the
frequency and phase estimates:

2
var(A) = o? ~ 2- (2#3(23) +((N—=M)-7s5)>  (9)

Equation 9 is only an approximation, though; the real estima-
tion accuracy depends on the true signal frequency and phase
and on the algorithms used for frequency and phase estimation.
In the optimum case (if the true phase and frequency lead
to a minimum in the variance of the phase and frequency
estimates), the variance is roughly half the one given above;
in the worst case (i.e. when the signal frequency is close to the
Nyquist frequency) it can be infinite. In addition, the phase and
frequency estimates are not independent of each other, hence
the above approach that assumes uncorrelated data is not exact.
For frequencies far from zero or the Nyquist frequency (cf.
Fig. 5, the exact range depends on the SNR and the number of
samples per block) the estimate above is good enough to show
some general relations. If one assumes that the distribution of
the parameter estimates is approximately Gaussian (which is
a good approximation in case of low noise; for high noise
the algorithm is not applicable as then a combined analysis
of all sampled blocks instead of an analysis of the individual
blocks is much better), one can easily compute the probability
of outliers P.: For A, a Gaussian distribution with zero mean
and variance according to eq. 9 can be assumed. If the absolute
value of A is larger than 7, the phase coupling procedure fails.
Thus the probability of outliers is approximated by

f;—P¢M>wy—m&<7T) (10)

V20
This does not take into account outliers that are caused directly
by the M-point frequency estimation, but if the SNR is high
enough for the coupling of blocks to work, the probability of
outliers occurring in the M-point frequency estimation step is
negligible.
The standard deviation as given above is directly propor-
tional to the noise level. For a given number of samples per

block and a given SNR, one can compute the maximum (and
therefore optimum) block distance IV for a previously specified
probability of outliers P, as demonstrated in Fig. 6.

This strategy is easy to implement even if in a practical
application analytical treatment becomes difficult: One can
simply implement the algorithm and look at a histogram of
the phase differences A across all pixels in the image. It is
then obvious when the algorithm fails (i.e. if the distribution
becomes too broad) and very simple to adjust the parameters
block size M and block distance N — M empirically such
that the desired performance and error probability for a given
problem is reached. This strategy can therefore be applied even
when the noise is correlated, multiplicative or a simple closed
form solution does not exist for other reasons.

The accuracy of the result (disregarding outliers) is given
by the accuracy of the phase estimate and block distance only.

2msg 2 o 1
V2 a(N—-M) =« A (N—M)W/M (b
A lower bound for the error based on the CRB can be
computed as shown in Fig. 7.

For the values used in Fig. 7, the root mean squared value of
the theoretical limit based on the CRB for the relative accuracy
of the frequency estimation in the center frequency range from
0.125 to 0.875 is 1.39 - 10~*. A numerical estimation on
simulated data (using a linear least squares estimator for the
phase) yields a standard deviation of approximately 1.40-10~%,
which shows that this accuracy can be reached in practice.
Both of these values are very close to the approximation
in equation 11, which yields 1.42 - 10~*. Going back to
the theoretically optimum sampling pattern as described in
[19], the following results are obtained: For P, = 2.5 - 10~4
(approximately the same theoretical probability of outliers
as in the case of two blocks with 16 samples each and a
total range of 128 samples, according to Fig. 6), a theoretical
relative accuracy of 1.35 - 10~* is reached. This comparison
might be unfair as we have not shown that there is an algorithm
that can actually reach such a low probability of outliers, but
the probability of outliers of very simple implementations can
easily be shown to be far below 1%. With P, = 1%, as
assumed for Fig. 1, the theoretical accuracy improves only
slightly to about 1.34 - 10~%. In contrast, using the same
number of samples (20 = 32) distributed uniformly across
the measurement range [NV, the relative standard deviation is
2.15 - 10~* (in this case excluding the values at the border
frequencies relative to the new Nyquist frequency, otherwise
the results would be even worse). This shows that the accuracy
of the procedure described here is very close to the theoretical
limit (to about 3% in this case): Even if arbitrary sampling
weights are allowed, there cannot be a significantly better
frequency estimation as long as the constraints on sampling
range and sampling effort are kept.

A more systematic comparison of various possible sampling
strategies yields the results shown in Fig. 8. The following four
cases are compared:

1) Uniform sampling with a fixed number of samples 2M

over a fixed range of samples M:

ti=i, 1<i<2M

Swnew
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Fig. 7. Lower bound on the standard deviation of the frequency estimate

from two blocks with 16 samples each from a range of 128 samples (top); for
comparison the same bound is shown for the same total number of samples
(32), but now uniformly spaced over the same range of 128 samples (bottom).
The areas of zero and Nyquist frequency are clearly visible; and even in
between the accuracy is more than 30% lower. The scales for both graphs are
different, the scale is truncated in the white areas.

2) Uniform sampling with a number of samples N, same
sampling distance as above, N increasing. This would
require significantly longer measurements:

ti=14, 1<t <N >2M

3) Uniform sampling with 20/ samples, but increasing
distance of the samples such that the total range is
identical to the case with N samples.! In practice this
would cause ambiguity issues as the Nyquist frequency
decreases.

)
ti=—-N, 1<i<M
M ==

4) Sampling in two blocks with M samples each, the block
distance increasing with N such that the total range is

n addition, we investigated the case of N uniform samples, with lower
measurement effort for each, such that the sum of relative weights amounts
to 2M < N. However the results are so similar to case 3) that they have
been omitted in the graph of Fig. 8.

x 104 Comparison of Sampling Strategies (M = 16, SNR=10)
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Fig. 8. Comparison of different sampling strategies: Three different ways

for uniform sampling (fixed number of samples and distance; fixed number of
samples and increasing distance; increasing number of samples) and sampling
in two blocks with increasing distance are compared. The sampling strategy
depicted with a black line uses 32,...,128 samples, whereas all other
strategies require 32 samples only. For a range of N = 128 and 2M = 32
samples, the two-block strategy proposed here has a standard deviation which
is about 34% lower than that of uniform sampling with the same number of
samples and measurement range, at a slightly reduced computational cost and
with a larger unambiguous range.

N.
i, for 1 <i:< M

t; =
N—-M+i, for M+1<i<2M

This is the main strategy proposed in this paper.

As the results are proportional to the noise level for suffi-
ciently small noise, an SNR of 10:1 was chosen with little loss
of generality. The results show that the proposed algorithm has
a very good theoretical accuracy if there is a sufficiently large
block distance (as long as the upper limit on the inter-block
distance dictated by the acceptable probability of outliers is
not exceeded) Performance is necessarily worse than using
N >> 2M samples. A more detailed comparison between
strategy 2) and 4) is offered in Fig. 9.

Sampling with 2 x 16 samples instead of 1 x 64 samples
decreases measurement time by 50% and processing time (if
an FFT based algorithm is used in both cases) by 75%, at the
cost of a reduction in accuracy of less than 10%. Even at a
quarter of the sampling time, the relative standard deviation
increases by only about 32% instead of the 100% expected
from the noise.

V. EXTENSIONS
A. Known sampling jitter

Phase estimation still works very well even if the samples
are not equally spaced. If the jitter is large, it calls for more
sophisticated algorithms for frequency estimation. If the jitter
is not too large, it can simply be ignored in the frequency
estimation step: For moderate block distances a sub-optimal
frequency estimation does not lead to many outliers, and
therefore the final result is still close to the theoretical limit.
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Fig. 9. Relative error of dual block method (2 = 32 samples in total,
but increasing block distance N — 2M) compared to single block method
(increasing range and number of samples N and therefore increasing total
sampling time).

B. Multiple blocks of data

The algorithm can easily be extended to more than two
blocks of data. As described in section III, this can be done
by using two blocks of data at a time, starting with the blocks
with the smallest distance, and then looking at increasing block
distances. In this case the probability of outliers decreases,
and the accuracy is determined by the largest available dis-
tance. Alternatively, a (weighted) least squares estimate could
be obtained from all phase values simultaneously (which is
especially relevant if for some reason the outer blocks do not
offer good signal quality), but this is only applicable if the
maximum distance of the blocks is small enough to avoid
outliers.

C. Tracking frequencies

The proposed algorithm can be modified for tracking
quickly changing frequencies: In that case one can use the
frequency and phase estimate from short blocks, and adjust the
block distance used for the final frequency estimate depending
on the input data. This can be done for example using a
Kalman filter or a simple heuristic approach that increases
the distance when the correction based on the phase estimate
is small, and decreases it when the correction is larger. This is
useful if the tracking is based on blockwise information, e.g.
blocks of pilot symbols embedded in a signal [22].

D. Using prior knowledge on the signal phase

If prior knowledge on the signal phase is available for
some t, a method for a more accurate frequency estimation
can be derived. This can be applied in optical metrology, for
example. For a smooth and continuous surface, the result of
using this approach in a multiple wavelength interferometry
system is identical to that obtained with spatial unwrapping,
at a much lower computational cost. In addition to that, the
phase estimation can also be used to obtain highly accurate

measurement results for surfaces that are not continuous as
long as the surface properties and therefore the signal phase
¢o remains the same.

For this approach, first the frequency w is determined as
accurately as possible with the algorithm described above.
Next a single phase value is considered. This phase value can
be obtained from only one block or from the whole set of
samples. Once again the signal is given by eq. 1. Then in this
special case we use our prior knowledge on the phase ¢y and
obtain

2tk =@o — (w-t+ ), ke N. (12)

Again, there is no unique solution and therefore k is chosen
such that the difference is minimized:

kopt = arg mkin(géo — (@ -t+ @)+ 27k) (13)

Then an improved frequency estimate can be computed (again,
the accuracy depends only on the phase estimate):
Whew = P fot 27Tkopt
t

This is very similar to the derivation above, but ¢ is usually
much larger than ¢, — ¢;, and therefore the “ladder” of
frequencies is very fine and the results are more accurate; but
the probability of outliers increases.

If there are outliers, it is usually difficult to change the
distance of the blocks (in case of optical metrology this
distance is given by the laser frequency). This issue can
only be resolved with a sufficiently accurate initial frequency
estimate, which can be obtained by the algorithm described
earlier, or by using prior knowledge on spatial relationships
(e.g. smoothness constraints) to correct incorrect choices of k.

(14)

VI. SUMMARY AND CONCLUSION

An efficient sampling scheme and algorithm for single tone
frequency estimation has been presented. An implementation
of the proposed algorithm consists of the following steps:

e Choice of sampling points (e.g. using two blocks of
samples with maximum feasible distance for a desired
probability of outliers)

o Frequency estimation for one or more blocks [23]

o Phase estimation for each block [23]

o Determination of the actual sampling points (optional, if
available one can take sampling jitter into account)

« Improved frequency estimate by phase coupling

o Absolute phase estimation using prior knowledge (op-
tional, if knowledge is available)

For a practical implementation, the block size and block
distance have to be adjusted to reach the desired accuracy
and probability of outliers of the frequency estimation.

The proposed algorithm has three key advantages:

o First of all, it is very fast. Processing time depends
mainly on the algorithms used for phase and frequency
estimation for the individual blocks, the rest of the
algorithm takes much less than a second on a current
PC. If fast approaches are used for phase and frequency
estimation, a total processing time of less than 10s for
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I million frequency estimates using M = 32 frames can
be achieved in Matlab on an Intel Core 2 Duo E6600
processor. Processing with dedicated hardware or more
optimized software is expected to be significantly faster.
Computational complexity is usually lower than that of
uniform sampling, given the same number of sampling
points. In particular, the algorithm is faster than taking
the FFT on a single block of M uniformly sampled data
points.

o The algorithm is also highly accurate: The performance
of this algorithm by far exceeds that of uniform sampling
with the same number of samples and gets very close to
the theoretical optimum sampling scheme and theoret-
ically best frequency estimation. On the one hand, the
sampling pattern is close to the theoretically optimum
sampling pattern, and on the other hand, the algorithm
almost reaches the CRB (to less than 1% for an SNR
better than 1) for this sampling pattern. Altogether, the
result is within 3% of the theoretical limit on the accuracy
for the theoretically optimum sampling pattern, i.e. any
possible improvements are known to be very limited.

o The algorithm is highly flexible: It can easily be extended
to take known sampling jitter or multiple sampling blocks
into account, without extra computational effort. In addi-
tion, one can easily apply the method even if the noise
is correlated or unknown by optimizing a histogram of
phase differences as computed from eq. 4. The proposed
method can therefore be generalized to a wide variety of
applications.

APPENDIX
CRB FOR REAL-VALUED SIGNAL

The Cram’er-Rao bound for unbiased estimators is given by

1 1
Varg > = 5 5
0 Ey {(@bgm(y)) }

For a general signal model y(t,0) with a vector parameter 6
and multivariate Gaussian noise n with covariance matrix >

5)

z=y(t,0)+n (16)

this leads to the following equation for elements of the Fisher
information matrix Iy [24]:

. (N el [ Oy
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Applying this result to the real-valued sinusoidal signal
model given by eq. 1 yields the 4 x4 Fisher information matrix
I. The diagonal elements of the inverse of this matrix represent
the lower bound on the variance for unbiased estimators of
the frequency, phase, amplitude and offset. The corresponding
element for the frequency is visualized in Fig. 5.

The exact results for the real-valued case require more
space than is available here and are not very instructive. For
practical applications a simplified result is often sufficient. For
frequency estimation with known phase, amplitude and offset,
only a single element of the Fisher information matrix has to
be inverted. If additionally the signal is sampled uniformly

A7)

and the noise is independent and identically distributed, one
obtains:
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This looks very different from the results given by [5], but
one can easily show that the results are closely related: The
second sum is much smaller than the first one for almost all
combinations of sampling points and frequencies, and the more
samples the bigger the difference gets. In the worst case, the
second sum is equal to the first one and therefore the Fisher
information becomes zero; in the best case the absolute value
is identical, but the sign reversed, leading to twice the value.
In this case the accuracy for the complex signal model is
reached, even though only the real part of the signal was
available (see below). On average across all possible signal
phases, the second sum is zero; the first sum is the average
Fisher information in this sense. A closed form expression can

be given for this part, using ¢, = (n+no)T, withng = —&-2
[24].
A2T? N(N? —1)
I = (19)
1T g2 12
This can be used as a rough estimate for the CRB:
2 24
Var(w) > 17! ~ -2 (20)

T A2T2 N(N? —1)

The visualization of the exact result in Fig. 7 is centered on
this rough estimate, and the result shows that it is a reasonable
approximation. For a complex valued sinusoid with no offset
the derivation leads to an exact closed form solution [5]. The
approximation above is equal to twice the value obtained for
the complex valued case, which is not surprising as only half
the number of independent noisy measurements is used.
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