
An object-oriented library

for systematic training and comparison

of classifiers for computer-assisted tumor

diagnosis from MRSI measurements

Frederik O. Kaster12, Stephan Kassemeyer1, Bernd Merkel3, Oliver Nix2,
Fred A. Hamprecht1

1Ruprecht-Karls-Universität, Heidelberg
2Deutsches Krebsforschungszentrum, Heidelberg

3Fraunhofer MEVIS, Institut für Bildgestützte Medizin, Bremen

frederik.kaster@iwr.uni-heidelberg.de

Abstract. We present an object-oriented library for the systematic train-
ing, testing and benchmarking of classification algorithms for computer-
assisted diagnosis tasks, with a focus on tumor probability estimation
from magnetic resonance spectroscopy imaging (MRSI) measurements.
In connection with a graphical user interface for data annotation, it al-
lows clinical end users to flexibly adapt these classifiers towards changed
classification tasks and to perform quality control of the results. This
poses an advantage over previous classification software solutions, which
had to be manually adapted by pattern recognition experts for every
change in the data acquisition protocols. In this article, we concentrate
on software architecture and design principles of this library.

1 Introduction

In the past years, pattern recognition methods have proved their efficacy for the
automated tumor detection based on MRSI measurements, e.g. [1]. They often
show higher robustness against measurement artifacts and noise than tumor de-
tection methods that depend on the explicit quantitation of relevant metabolites.
However, the use of quantitation-based algorithms in the clinic is already well-
established, since they are typically included in the software packages supplied by
MR scanner manufacturers. Furthermore, several stand-alone software products
such as LCModel [2], jMRUI [3] or MIDAS [4] exist. In contrast, the application
of pattern recognition-based methods still has to gain ground in clinical routine,
and existing software products such as CLARET [5] or HealthAgents [6] are more
of prototypical character. We believe that this may be partially due to differ-
ences in the flexibility with which both categories of algorithms can be adjusted
to different experimental conditions (e.g. changes in scanner hardware and in
measurement protocols) or to a different imaged organ. For quantitation-based
methods one must only update the metabolite basis spectra to a given experi-
mental setting, which can be achieved by quantum-mechanical simulation. On



2 F.O. Kaster et al.

the other hand, methods based on pattern recognition achieve their robustness
by foregoing an explicit data model. Instead they learn the mapping from obser-
vations to tumor class labels from training examples provided by human expert
annotators, which have to be provided anew for every change in experimental
conditions. Since there exist many different classification techniques whose rela-
tive and absolute performance on a given task cannot be predicted beforehand,
for every change in conditions a benchmarking experiment as in [1] should also
be conducted to select the best classifier and monitor the classification quality.

While we cannot obviate the need for classifier retraining, benchmarking
and quality assessment, we have designed an object-oriented C++ library which
assists this task better than existing software. Extensibility was an important
design criterion: by providing abstract interfaces for classifiers, data preprocess-
ing procedures and evaluation statistics, user-defined classes may be plugged in
with moderate effort. Hereby it follows similar ideas as general purpose clas-
sification frameworks such as Weka (http://www.cs.waikato.ac.nz/ml/weka/),
TunedIT (http://tunedit.org/) or RapidMiner (http://www.rapid-i.com). How-
ever, it is much more focused in scope and tailored towards medical diagnostic
applications. In contrast to an earlier conference contribution [7] which focused
on the validation results on prostate MRSI measurements acquired at 1.5 Tesla,
this paper outlines the software design architecture.

2 Materials and Methods

The library is designed for the following use case: the user defines several clas-
sifiers to be compared, the free classifier-specific parameters to be adjusted in
parameter optimization and custom preprocessing steps for the data. A training
and test suite is then defined, which may contain several classification tasks,
e.g. predicting the voxel class (tumor vs. healthy) and the signal quality (good
vs. poor). Every classifier is assigned to a preprocessing pipeline, which trans-
forms the observations into training and test features. Some elements of this
pipeline may be shared across several classifiers, while others may be specific for
one classifier. Input data (observations and labels) are passed, preprocessed and
partitioned into cross validation folds, and the parameters of every classifier are
optimized on one fold by maximizing an estimate for the generalization error.
The mean and variance of all evaluation statistics are then estimated using cross-
validation, and statistical tests are conducted to decide whether the classifiers
differ significantly in performance. Typically not only two, but multiple classi-
fiers are compared against each other, which must be considered when judging
significance: e.g. for five classifiers with equal performance, we have ten pairwise
comparisons and a significant difference (praw < 0.05) is expected to occur with
a probability of 1−0.9510

≈ 0.40. Hence the “raw”p-values from statistical tests
must be corrected accordingly. Finally the classifiers are retrained on the total
data for predicting the class of unlabeled examples. Trained classifiers and test
results may then be saved and reloaded for persistence.



Object-oriented library for MRSI classifier training 3

3 Results

We developed a C++ library for managing multiple classifiers, preprocessing
procedures and evaluation statistics: abstract base classes for all these entities
provide flexibility for later adjustments. The class architecture is depicted in
fig. 1. Concerning the classifiers, we implemented bindings for support vector
machines, random forests, ridge regression and principal components regression.
External libraries such as LIBSVM (http://www.csie.ntu.edu.tw/ cjlin/libsvm/)
or VIGRA (http://hci.iwr.uni-heidelberg.de/vigra/) are linked to provide the
underlying classification algorithms. As exemplary preprocessing and feature ex-
traction steps, we implemented a MRSI specific preprocessor that performs e.g.
the extraction of relevant parts from the spectrum and that is contained in all
pipelines, a whitening transformation mainly for use with SVMs and a singu-
lar value decomposition transformation for use with regression-based classifiers.
Possible evaluation statistics are e.g. precision, recall and ROC curves. For p-
value-adjustment, we provide McNemar’s test and a recently proposed adjusted
t-test [8] with multiple comparison adjustment of the p-values by Holm’s step-
down or Hochberg’s step-up method as in [9].

All classifiers, all preprocessors and all statistics pertaining to a certain clas-
sifier are controlled by a dedicated manager object, which enforces consistency.
Furthermore, every classifier encapsulates a parameter manager object control-
ling which parameter combinations are tested during parameter optimization.

Data input and output for training, testing and storing of the classifiers can
be customized by passing user-defined input and output function objects; we
use HDF5 as main storage format. For integration into a user interface, other
function objects may be passed that can report progress or status information
or listen for abort requests at regular checkpoints.

In order to further aid the clinical users in spectrum annotation, we developed
a graphical user interface in MeVisLab (http://www.mevislab.de) that displays
MRSI spectra from a selected slice in the context of its neighbor spectra, which
can then be labeled on an ordinal scale and imported into the classification li-
brary. Hence the classifier can be flexibly adapted to new experimental protocols:
Clinical end users only need to load the training data sets, manually annotate
the spectra in the GUI, save the annotations and start a training and testing
suite. Since in practice many spectra are not evaluable owing to excessive noise
or the presence of artifacts, we enable the users to define two independent labels
for each spectrum, which encode voxel class and signal quality. By training two
independent classifiers for both tasks (as in [5]), it is afterwards possible to judge
the reliability of the automated classification of new examples.

The library was validated with 1.5 Tesla MRSI data of prostate carcinomas
(both for voxel class and signal quality classification). The outcome was already
discussed in [7]: for signal quality prediction with 36864 training examples, cor-
rect classification rates (CCR) of 96.5 % – 97.3 % and area under the ROC curve
values of 98.9 % – 99.3 % could be achieved by the different classifiers; and for
voxel class prediction with 2746 training examples, CCRs of 90.9 % – 93.7 %
and AUCs of 95 % – 98 % were obtained.



4 F.O. Kaster et al.

4 Discussion

To our best knowledge, this is the first C++ library specifically designed for med-
ical applications which allows principled comparison of classifier performance and
significance testing. We believe that this will help automated quality assessment
and the conduction of clinical studies. This statistical characterization function-
ality sets our software apart from e.g. HealthAgents [6] or the system in [10].

The adaptation to 3 Tesla MRSI measurements of brain and prostate carcino-
mas is ongoing. Furthermore this software will eventually be integrated into the
RONDO software platform for integrated tumor diagnostic and radiotherapy
planning (http://www.projekt-dot-mobi.de). Stringent quality assessment will
be required for clinical application: the software has to be tested and reviewed
extensively, and the correctness of the spectral annotations must be confirmed
via histopathological assessments by several independent pathologists as in [1].

5 Acknowledgments

We acknowledge fruitful discussions with Ralf Floca and Ullrich Koethe. The
graphical user interface was initiated by Markus Harz. This research was sup-
ported by the Helmholtz International Graduate School for Cancer Research and
by the BMBF within the DOT-MOBI project (grant no. 01IB08002).

References

1. Garćıa-Gomez J, Luts J, Julià-Sapé M, et al. Multiproject-multicenter evaluation
of automatic brain tumor classification by magnetic resonance spectroscopy. Magn
Reson Mater Phy. 2009;22:5–18.

2. Provencher S. Automatic quantitation of localized in vivo 1H spectra with
LCModel. NMR Biomed. 2001 Jun;14(4):260–264.

3. Stefan D, Cesare FD, Andrasescu A, et al. Quantitation of magnetic reso-
nance spectroscopy signals: the jMRUI software package. Meas Sci Technol.
2009;20:104035.

4. Maudsley A, Darkazanli A, Alger J, et al. Comprehensive processing, display and
analysis for in vivo MR spectroscopic imaging. NMR Biomed. 2006;19:492–503.

5. Kelm B, Menze B, Neff T, et al. CLARET: a tool for fully automated evaluation
of MRSI with pattern recognition methods. Proc BVM. 2006; p. 51–55.

6. González-Vélez H, Mier M, Julià-Sapé M, et al. HealthAgents: distributed multi-
agent brain tumor diagnosis and prognosis. Appl Intell. 2009;30:191–202.

7. Kaster F, Kelm B, Zechmann C, et al. Classification of Spectroscopic Images in the
DIROlab Environment. In: World Congress on Medical Physics and Biomedical
Engineering. vol. 25/V of IFMBE Proc; 2009. p. 252–255.

8. Grandvalet Y, Bengio Y. Hypothesis Testing for Cross-Validation. Département
d’Informatique et Recherche Opérationelle, University of Montréal; 2006. TR 1285.

9. Demšar J. Statistical Comparisons of Classifiers over Multiple Data Sets. J Mach
Learn Res. 2006 Dec;7:1–30.

10. Neuter BD, Luts J, Vanhamme L, et al. Java-based framework for processing
and displaying short-echo-time magnetic resonance spectroscopy signals. Comput
Methods Programs Biomed. 2007;85:129–137.



Object-oriented library for MRSI classifier training 5

Fig. 1. Simplified UML class diagram of our library. Note that it comprises functional-
ity for classification and managing the associated parameters (lower left), preprocessing
and feature extraction (left), data input and output (top), and evaluation statistics
(right and bottom right). The functors for loading and saving data, and streaming
progress and status information (top part) allow the integration into user interfaces.
We recommend to view this figure in the electronic version of the article.


