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Abstract

Protein identification by tandem mass spectrometry is based on the reliable processing of

the acquired data. Unfortunately, the generation of a large number of poor quality

spectra is commonly observed in LC-MS/MS, and the processing of these mostly

non-informative spectra with its associated costs should be avoided. We present a

continuous quality score that can be computed very quickly and that can be considered

an approximation of the MASCOT score in case of a correct identification. This score

can be used to reject low quality spectra prior to database identification, or to draw

attention to those spectra that exhibit a (supposedly) high information content, but

could not be identified. The proposed quality score can be calibrated automatically on

site without the need for a manually generated training set.

Turning this score into a classifier and by using features independent of the instrument,

the proposed approach performs equal to previously published classifiers and feature sets

and also gives insights into the behavior of the MASCOT score.
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Introduction

One of the hallmarks of proteomics is mass spectrometry-based protein identification

which uses peptide fragment information and protein sequence databases1,2. To identify

any substance with confidence, informative tandem mass spectra must be matched to

peptides in protein sequence databases of interest. Current automated procedures (e.g.

MASCOT3, SEQUEST4 or ProteinPilot19) assign peptide sequences contained in a

database to mass spectra regardless of the actual quality of the spectrum under

consideration. With “quality” we refer to the amount of useful information that can be

extracted from a product ion spectrum. Unfortunately, the generation of a large number

of bad quality spectra, which contain too little, irrelevant or ambiguous information, is

commonly observed in LC-MS/MS, and is especially prevalent in cases of samples with

limited amount of material (Fig. 1). Consequently, these spectra only slow down the

identification process.

The majority of poor peptide hits results from the fragmentation of chemical background,

or to a smaller extent from a low intensity of the signal when the selected precursor ion is

low in abundance or does not fragment efficiently in the mass spectrometer5. As a

database search is time-consuming, it is desirable to identify and filter out such spectra

prior to the search process.

A second, more interesting class of unmatched spectra consists of high quality spectra

that do not match to any sequence in the database according to the search parameters

used. In most cases, these spectra relate to peptides with unexpected enzymatic cleavage

sites or with unexpected chemical modifications that are not being considered during the

search. These spectra might reveal important biological information not annotated in the

database such as truncations, modifications, or splice variations1,2,6. In most cases, a

manual inspection of the spectra would allow to identify that kind of data. However, as
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Figure 1: Examples for multiply charged precursors resulting in good (left) and bad (right)
spectra. In general, the two groups comprise a variety of different types of spectra and thus
cannot be distinguished only by the characteristics exhibited by the two examples shown
here. This is why a machine learning approach is employed.

today’s mass spectrometers acquire thousands of product ion spectra in a single

LC-MS/MS experiment, manual inspection is not a viable option. In this paper, we

describe a method to separate high quality peptide spectra from the initial set. This

selection can be carried out

• prior to database searching to speed up the identification process, or

• on spectra which could not be identified with confidence during a database search,

in order to find those spectra exhibiting a (supposedly) high information content, so

that additional more time-consuming searches using modified search parameters

can be performed.

Technically, the idea is to employ a machine learning approach that relates a class label

to the quality of a product spectrum, which is described by a number of features tailored

to this specific task7−15. In contrast to prior work in this field, we use a regression to

predict the MASCOT score as a measure for spectral quality rather than applying a

binary classifier which only decides whether a spectrum is of good quality or not. Since
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this approach can rely on MASCOT scores in the training phase, it does not require the

tedious manual generation of training data sets. This property of automatic on-site

calibration is central for the robustness of the chosen strategy and is paired with a set of

features independent of total ion currents, i.e. of instrument settings such as trapping

times, automatic gain control target values and detector efficiencies.

Previous Work. Present approaches mainly focus on training binary classifiers

distinguishing good and bad spectra. Training and test sets are usually compiled using

the success of identifications on a mixture of known proteins, or by manually assessing

spectral quality. The different strategies can be coarsely divided into two groups:

• A posteriori approaches, when the classification is performed after identification. In

this case, the classifier’s decision is based on the output of the individual search

results7−10. By definition, they cannot serve as quality filters, but only give an

estimate for the reliability of a specific protein identification instead.

• A priori approaches that aim at classifying spectra prior to applying an

identification technique. Consequently, these procedures only use information

directly obtained from the spectrum of interest and can therefore be used both as

quality filters as well as a means for detecting supposedly false identifications.11−15

The method presented in this paper belongs to the latter class.

To our knowledge, Moore et al.11 were the first who tried to tackle the classification

problem. Their approach was based on the creation of a binary dataset using thresholds

on cross-correlation scores from SEQUEST searches. They then employed an evolutionary

strategy to train the feature weights of a linear function. Bern et al.12 classified spectra

using a set of features human experts would consult when manually assessing quality, and

trained a quadratic discriminant analysis (QDA) classifier on the outcome of those

features. Additionally, they used a rank-normalized histogram of mass differences as the
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input to a Support Vector Machine (SVM), which they found to perform better than

their so-called handcrafted features. The integration of rank-normalized intensities makes

their approach independent from absolute ion intensities, an important advantage in

standard proteomics experiments. Bern et al.12 also proposed a quality score based on a

linear regression which was trained on the number of b- and y-ions matched during a

database search. However, score and binary classifier were completely independent of

each other, which amounted to two separate methods for rating spectral quality.

Furthermore, the above number of correct matches is difficult to obtain.

Xu et al.13 assembled a set of manually assessed spectra, trained a QDA classifier on

general features associated with those spectra and then used the classifier’s output as a

score that, instead of monotonically increasing with spectral quality, exhibited an

unintuitive behavior that assigned low and high scores to poor spectra, while tagging

good ones with intermediate scores. They applied the classifier to a large number of yeast

lysate spectra, but did not carry out a validation of its performance on ground truth.

Salmi et al.14 used decision trees for rating the quality of ICAT-labeled data.

A recent study by Flikka et al.15 deals with data acquired on Q-TOF, TOF-TOF and

quadrupole iontrap instruments. It introduces a clustering technique prior to classifier

training in order to avoid a selection bias when certain classes of spectra are much more

abundant in the training set than others.

MASCOT Score Prediction as Quality Measure. All approaches mentioned above

have in common that they make use of a binary classifier; as a consequence, their users

cannot choose what they consider good and bad spectra without retraining. Once it has

been trained, a classifier will be adapted to a certain problem that defines the

characteristics of good and bad spectra. In order to obtain optimal results, retraining will

be necessary if the requirements regarding its desired behavior change. Of course,

common classifier implementations provide an implicit measure for the confidence of an
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assignment, usually in terms of a class probability. Preferable, however, would be a

continuous score that explicitly measures quality. Such a quality score would also allow

for a comparison with results from database searches, such as MASCOT scores, and to

find those spectra exhibiting a large deviation in the statements made by the two scores.

It would also allow for filtering out spectra that exhibit scores below a user -definable

threshold to both save processing time with regard to database searches, and to assist

human experts in giving them a selection of the high quality spectra with low MASCOT

scores, i.e.unassigned, but potentially interesting spectra.

In the following, we will describe a continuous a priori quality score which is based on

regression rather than binary classification. We have chosen the MASCOT score as

training label since it is considered a proxy for spectral quality by most human experts.

The labels that are generated in this manner are thus very cheap, involving no

time-consuming manual assignment of classes to a large number of spectra, making it

more efficient to set up such a score. Based on that, we trained a Random Forest17 (RF)

to predict the MASCOT score in an a priori fashion. We hypothesized that this

regression would generalize sufficiently well to assign high scores even to those spectra

which are erroneously assigned a low MASCOT score (candidates for further validation

by human experts).

Testing our hypothesis comprised the following steps:

• Spectra were tagged with a continuous, computer-generated label, the MASCOT

score, which represented the ground truth for training.

• Starting from a large number of features, we trained the regression and successively

reduced the initial feature set to optimize regression performance.

The following three steps involve different ground truths and are only necessary for

validating our method. They are not required for establishing the regression.
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• The regression performance of the resulting feature set is validated against a

manually labeled, four-class ground truth.

• This feature set, along with five other sets (four of them published before), is then

also compared in terms of its classification performance with a two-class gold

standard created by using ProteinPilot as independent protein identification tool.

Based on this, a feature set is assembled which ensures independence from absolute

ion intensities and degrading detector efficiencies, making it well suited for the

requirements arising in common mass spectrometric experiments.

• The practical usability is demonstrated for a dataset that was searched with an

incorrect MASCOT setting for the static cysteine modification employed.
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Materials & Methods

Automatic On-Site Calibration. The data used for this study stem from various

tryptic in gel digests, for which we used generic protocols as previously described by

Shevchenko et al.18 In short, proteins were separated by SDS-PAGE prior to in-gel

reduction and alkylation. Subsequently, the samples were digested overnight with

sequencing grade trypsin (Promega, Madison, WI, USA). After digestion, the gel plugs

were repeatedly extracted prior to vacuum centrifugation. The dried digests were

reconstituted in loading buffer prior to LC-MS/MS analysis using a linear quadrupole ion

trap. A LTQ (Thermo Scientific, San Jose, CA, USA) equipped with a microautosampler

and a Surveyor HPLC pump (both: Thermo Scientific) was used for the analyses.

Gradients from 5% to 40% buffer B (0.2% formic acid in acetonitrile) were used; the

length of the gradient was in the range of 10 to 60 minutes depending on the expected

sample complexity. An in-house written program was used to extract fragment ion

information from the raw data and convert them into mgf-files for subsequent protein

identifications using MASCOT. Thus, the foundation of our analysis was made up by a

large database comprising all resulting spectra. We then focused on multiply charged

precursor ions only. The reason for this was that we intended to use our method on

spectra acquired on FT and Orbitrap instruments, which can reliably detect the charge

states allowing the exclusion of singly charged ions from further analysis as they often

correspond to irrelevant chemical background.

The database of spectra was characterized by a large preponderance of data sets with a

low MASCOT score; in order to reach a more balanced representation in the training set,

a stratified sampling strategy was applied, selecting equal numbers of spectra out of

MASCOT score intervals of size one. Good coverage of the feature space is required in

order to avoid the selection bias mentioned in the introduction, so only unique peptide
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sequences were allowed in the chosen score intervals.

The group of spectra featuring very low MASCOT scores comprises heterogeneous

product ion spectra of bad and good quality, the latter because they had erroneously

been assigned a low score (false negatives) for various reasons discussed above. To avoid

deterioration of the model by inclusion of those false negatives, only data with a

MASCOT score of at least 10 was incorporated in the regression training and test sets.

In contrast, spectra being awarded a very high score usually no longer exhibit differences

in the quality as visually assessed by human experts. Instead, differences in their scores

are mainly caused by the presence of additional single ions that could be matched by

MASCOT. Given that behavior, the spectra with a MASCOT score higher than 80 were

excluded from training and testing, i.e. regression output will be limited to the interval

[10, 80]. We discuss and justify this procedure in the supplementary materials.

Taking into account all of the above considerations resulted in a total number of 70,000

spectra, grouped into score intervals containing 1,000 each. All spectra were randomly

assigned to either a training set of size 14,000 or to a test set of size 56,000, respectively.

Incidentally, to make the chosen approach as flexible as possible, no constraints on the

MASCOT search parameters (e.g. mass tolerances, modifications etc.) were imposed

when sampling the spectra from the database.

A Priori Score Prediction. We used R20 to train RFs as well as SVMs with linear

and radial basis function kernels on a number of feature sets (see below). As it turned

out, evaluation was considerably slower in case of the SVMs. In contrast, the simple tree

structures of a RF can be evaluated very quickly, which makes it optimally suited for fast

preprocessing. A RF is also easy to train (near optimal results with default parameters,

no overfitting when the forest size is increased) and provides an intrinsic way of assessing

feature importance. Additionally, it performed well in another similar study by our group

in which the data quality in magnetic resonance spectroscopic images21 was assessed. For
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all these reasons, we chose RF for further regression and classification in all subsequent

analyses. Its output will be referred to as the “quality score”. The training procedure

was invoked with standard parameters22, i.e. 500 trees (ntree) and p/3 randomly chosen

variables at each split (mtry), where p denotes the number of features.

As the regression input, a number of features comprising those proposed by Bern et al.12,

Moore et al.11 and Xu et al.13 were assembled (cf. table 1), and the obtained set was

expanded by average intensity, the percentage of total ion current (TIC) above the

precursor mass, the number of peaks greater than 1% TIC and overall peak density

(average number of peaks per Da). Then a backward selection was applied based on RF’s

importance measure17: the features with lowest importance were successively removed

from the set if their removal did not provoke a significant increase in out-of-bag mean

squared error (MSE; i.e. an increase greater than 4). In case two features had a very

similar importance, the one which was computationally more expensive was excluded

from the set. The result is referred to as the “fast subset”. It was combined with a

histogram of mass differences of up to 186.5 Da with a binning of 1 Da as proposed by

Bern et al.12, i.e. using rank-normalization; this feature set is termed the “composite

set”. Rank-normalization was chosen in order to make the histogram independent from

absolute ion intensities while maintaing interrelationships between peak heights, a

behavior which simple presence/absence features would not have accounted for.

Performance Evaluation. In the regression case, 400 spectra were manually assessed,

sampling from four characteristic regions of MASCOT scores vs. predicted quality scores

(see below). The spectra were taken out of the smallest possible square necessary to

obtain 100 spectra per location. They were independently rated by three experts

according to the classes excellent, good, intermediate and poor without prior knowledge of

the MASCOT or predicted quality score. The final label of a single spectrum was set to

the median of the expert votes. The resulting labels were then used to assess the
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compatibility of the regression results with what experts consider spectral quality.

In order to test classification behavior on a ground truth close to lab reality, an

additional biological sample was analyzed. We considered this step necessary to ensure

that our approach would be capable of handling common classification problems arising

in standard proteomics experiments. For this purpose, the protein content of an aliquot

of a human urine specimen was precipitated using a final concentration of 10%

trichloroacetic acid. The precipitate was dissolved in SDS loading buffer and fractionated

by SDS-PAGE. After Coomassie staining, the band corresponding to human serum

albumin was excised and analyzed as detailed above. The data were searched using

ProteinPilot 2.0. We decided in favor of ProteinPilot in order to obtain a ground truth

independent from MASCOT searches, since we already trained the regression on them.

This strategy thus avoids overly optimistic results and gives further confidence in the

classification results. Finally, all spectra were assigned to the two classes “good” or “bad”

according to their identification outcome: proteins were considered as being identified

when two or more peptides could be assigned with a confidence of > 99%. Consequently,

the corresponding peptide spectra were considered “good” in this case, and bad

otherwise. We opted for a binary classification task to represent the desired behavior of a

quick prefilter prior to database searching.

Using these binary labels, the performances of (i) the composite set, (ii) the fast subset,

(iii) the mass difference histogram and the features proposed by (iv) Bern et al.12, (v)

Moore et al.11, and (vi) Xu et al.13 were compared. In order to assess the quality of the

feature sets, Receiver Operator Characteristics (ROCs) of the six feature sets were

computed in two different ways:

• The regression previously trained on the database spectra was applied to the ones

described above. Then the corresponding ROC was created by varying a threshold

on the quality score for separating bad from good spectra.
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• A binary RF classifier was trained directly on the binary labels created with

ProteinPilot in order to investigate whether the proposed quality score can keep up

with conventional techniques. The corresponding ROC was then generated by

varying the probability threshold that had to be exceeded by an observation in

order to be considered a good spectrum. This was done using five-fold

cross-validation with ten iterations, and the median of the AUC was used to plot

the corresponding ROC.

After rating using the ProteinPilot identification outcomes, the (randomly balanced)

dataset comprised 1746 spectra, each of the two classes consisting of 873 spectra.

Ability to Uncover Good, but Unidentified Spectra. In many proteomics

applications the run time of the database search is less important than the identification

of as many spectra as possible. It can even be crucial to reveal spectra that are not

correctly matched by standard search parameters. In order to simulate this case, we ran

a MASCOT search on the sample described above with the static cysteine modification

set to “acrylamide”, and another search using the correct setting “iodoacetamide”. The

search parameters included deamidation, methionine oxidation, and pyroglutamic acid

formation as dynamic modifications. As a consequence, MASCOT was unable to find the

correct cysteine containg spectra1 during the first search. We then compared the results

of both searches to pick out these spectra, and applied our regression to it. Thus, each of

the spectra was assigned a quality score. We could then determine a sensitivity for this

problem by choosing a threshold for the quality score, defining all the spectra with scores

below it as bad and the other ones as good. By varying this threshold, we obtained the

false negative rate as a function of it.

Implementation Issues. The methods presented above made use of the R packages

randomForest 4.5-18, e1071 1.5-16 for training the SVMs and ROCR 1.0-2 to plot ROCs

and calculate AUCs. We also integrated the regression into our in-house data conversion
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software. A chart depicting the general workflow is shown in Fig. 2. It incorporates the

call of an external R process, which takes over the score prediction. The interface

between our preprocessing software and R is implemented by an exchange of binary files.

The quality score is finally written into the mgf-header of the corresponding MASCOT

search files.

	

		

	

raw file

preprocessing

feature extraction

regression

(external R process)

filtering

mgf generation

MASCOT search

Figure 2: Preprocessing scheme
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Results & Discussion

Selection of Features and their Relevance for Score Prediction. The feature

selection strategy initially resulted in the following subset of seven features: TIC (1), the

number of peaks (2), the percentage of TIC above the precursor mass (3), the average

peak intensity (4), the standard deviation of the peak intensity (5), the number of peaks

greater than 1% TIC (6) and overall peak density (7). Therefore, this set comprises

information about the ion intensity present in a spectrum (1, 2 & 4), noise (5, 6 & 7) as

well as the probability for a spectrum to originate from a multiply charged precursor ion

(3). Combined with the mass difference histogram, this amounted to a total number of

193 features for the composite set, as shown in table 1.

The variable importance17 of this composite feature set is depicted in Fig. 3. First of all,
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Figure 3: Variable importance17 for the composite feature set. The first 186 channels
describe the influence of the mass differences present in a spectrum up to 186.5 Da, whereas
the last seven features represent general features described in the text.

it suggests that the features human experts take into account (187-193, order as

described above) are more relevant than mass differences. However, it also provides

evidence that the presence of isotope peaks (∆ of 2 and 3) is a good measure for spectral

quality. An explanation for a ∆ of 4 to 6 awaits further experiments.

To a lesser extent and in accordance with our expectations, relevance is also given to
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certain amino acid residue masses (alanine at 71, valine at 99, (iso-)leucine at 113,

asparagine at 114, aspartic acid at 115 and glutamic acid at 129). Interestingly, the

presence of other amino acids than those stated apparently does not separate good from

bad spectra using our strategy.

The small peak at a mass difference of 44 corresponds to the polymer polyethylene glycol,

a frequently observed contaminant. It should be noted that a high importance does not

imply a high quality score. In the above example, the regression obviously inferred that

high intensities at this polymer-specific mass difference correlate with low MASCOT

scores and thus represent spectra that are not desirable. The ∆ of 28 Da can be

explained by the mass difference between a- and b-ions, whereas a ∆ of 18 Da most likely

corresponds to water loss. The mass differences of 15, 16, 26, 27 and 30 Da that achieved

a high importance are currently under investigation.

However, by considering the cases where a clear assignment was possible, it becomes

evident that the importance measure was able to find biologically relevant information in

the mass spectra the RF regression was trained on.

Results of the Score Prediction. Fig. 4 shows a comparison of the two scores for

training and test set, calculated using the composite feature set. Interesting is a saddle

point between the two density maxima at the lower left and the upper right corner,

respectively, visible in both the training (Fig. 4a) and test set (Fig. 4b). For the test set,

the marginal distribution of the two scores is depicted in Fig. 5. It shows that the

regression has a slope which is too flat, i.e. it makes predictions that are biased towards

the average score for most of the spectra located at the extremes of the chosen MASCOT

score interval. Also striking is a non-constant bias with respect to the bisecting line (Fig.

4b). The results of the two Support Vector Machines also showed very similar behavior,

and the same was also true for all feature sets examined (results not shown). This

anomaly is investigated next and is shown to be a fundamental relationship between the
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Estimation of Score Probabilities
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Figure 4: Two-dimensional kernel density estimation of predicted quality scores vs.
MASCOT scores: a) training set (14,000 spectra), b) test set (56,000 spectra). Letters
specify the positions at which manual assessment took place. The dashed line shows a
logarithmic fit of quality as a function of the MASCOT score.

MASCOT score and the quality of a spectrum.

Validation of the Score Prediction. To further validate the test set results, the four

regions marked with boxes in Fig. 4b were subject to manual scrutiny as described in the

Materials & Methods section. The results for this procedure are displayed in Fig. 6.

Groups with similar MASCOT and quality scores (a (true negatives), c (true positives))

were rated in very good agreement with their respective scores. Region b (false positives)

represents the group containing spectra with high MASCOT scores, yet low predicted

quality ones, and is difficult to analyze because the corresponding spot lies well outside

the populated regions (cf. Fig. 4b). As a consequence, the number of spectra drawn from

this region was reduced to 25. Even so, this procedure required including spectra up to a

quality score of 30, which meant including samples with spectra better than desired.
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Marginal Score Distributions
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Figure 5: Marginal score probabilities for the test set in Fig. 4b. The curves were flattened
using smoothing splines (for visualization only).

Because of that and due to the low number of spectra rated, this region eludes a valid

quantitative analysis, and conclusions are somewhat ambiguous. Nevertheless, no

excellent spectra were found at all, and the number of poor and intermediate ones clearly

exceeds the frequency of good spectra.

The predictions of spectral quality in the regions featuring low MASCOT and high

quality scores (d, false negatives) are corroborated by the independent human evaluation:

not a single spectrum was classified as poor and only very few as intermediate. This gives

compelling evidence that non-linear regression in conjunction with the composite feature

set is able to generalize very well with regard to spectral quality and is therefore well

suited to assist human observers in finding good spectra that are poorly interpreted by

MASCOT.

Discussion. Since we were interested in obtaining a measure for spectral quality rather

than exactly reproducing the MASCOT score, and because we designed our features to

capture this aspect of a spectrum, we did not expect the same, constant distribution for

the RF output as for the input. Considering the features to be a natural representation
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Figure 6: Results of the manual assessment that took place at the regions marked in Fig.
4b. The captions denote the coordinates in the density plot (MASCOT Score, quality
score). *: see text.

of spectral quality, the prominent non-linearity must originate directly from the

MASCOT scoring algorithm. The manual validation indicates that the resulting bimodal

distribution is compatible with what experts consider spectral quality, so the

regularization carried out by the regression is powerful enough to cope with imperfect

training labels.

Consequences. This important property of robustness against training label noise

allows for the training to be carried out on a large number of spectra in conjunction with

their MASCOT scores. Given such a database, it enables users to easily train a regression

according to the scheme presented, since the MASCOT search parameters used for

training are not restricted. Therefore, such a quality score facilitates efficient on-site

calibration and can be retrained every time it turns out to be necessary with the same

low effort.

19



Interpretation. In addition to its suitability for rating spectral quality, regression seems

to be an appropriate way to discover subtleties in the MASCOT score which otherwise

are not observable: Fig. 4b suggests that spectral quality (q) as a function of the

MASCOT score (m) behaves approximately logarithmically:

q(m) = 14 ln(1.7m − 18) − 7.5. In other words, the MASCOT score increases

exponentially with spectral quality, meaning that a slight increase in quality, e.g. caused

by an additional ion present, will cause a strong boost of the MASCOT score. As a

consequence, the rather intuitive claim leading to the limitation of the score interval at

the upper end is now justified from a data mining point of view.

To be precise, it is the nature of the chosen features which are responsible for the

logarithmic flattening of the quality score. Since they were designed to capture spectral

quality, they cannot reflect the results of the MASCOT scoring algorithm with its access

to a sequence database to an arbitrary precision. Especially at high scores, the MASCOT

score strongly depends on whether an additional ion present matches an entry in the

underlying sequence database or not. The result is a behavior that is very similar to the

intuitive perspective humans adopt for rating the quality of mass spectra, a property that

nicely matches the aim of creating a tool that provides results which are easy to interpret.

Additionally, in an approach similar to Moore et al.23 and Peng et al.24 using a reversed

database, we have found (results not shown) a MASCOT score of about 33 to represent

the optimal threshold for separating spectra corresponding to random matches from

those which contain desired information. In this respect, the density minimum at a score

of 30 revealed here (see Fig. 5) supports this result from a completely different viewpoint.

It should be noted that a) this threshold score of 33 applies to searches against

mammalian databases with 40.000 to 55.000 protein entries and b) the majority of the

data used in this study were derived from searches against mammalian databases.

Suitability as Classifier and Feature Set Comparison. The results of our
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regression-based classifier (which can be used to filter out bad spectra prior to the

identification process) are shown in Fig. 7a. Our composite set performs best with an

AUC of 0.91, incorporating both mass differences as well as features taken into account

by human experts. It performs considerably better than the mass differences and the fast

subset taken separately. The former was originally proposed in a work12 that

simultaneously assessed the performance of another set of features we are referring to as

“Bern et al.”.

According to Fig. 7a, accepting a false positive rate of 0.4 (i.e. 60% of the bad spectra

will be filtered out) amounts to a true positive rate of 0.983, i.e. less than 2% of the good

spectra get accidently removed. This case corresponds to a quality score threshold of

about 38 and performs better than or equal to results reported in the literature (Flikka et

al.15: 2%, Bern et al.12: 5%). We have therefore developed a method that can compete

with existing techniques while providing both easy on-site calibration as well as a

continous quality measure. We think it is important to remind the reader at this point

that our regression was trained on multiply charged precursors only. As a consequence

some of the misclassified spectra probably correspond to singly charged ions, which we

did not filter out. Our results therefore give a pessimistic estimate for the classifier

performance. The misclassification rate on a dataset comprising spectra arising from

multiply charged precursors only should then be even lower, although we haven’t formally

checked for this. Fig. 7b shows the classification performance obtained by directly

training a binary classifier instead of a regression. The results are a tad better, which

might be due to the fact that the the regression was trained on a vast number of spectra

in contrast to the classifier, which was trained and tested on spectra from a single sample

only, therefore potentially “overfitting” to peptides predominantly contained in that

sample.

Table 1 gives an overview of the feature sets used and their performances corresponding
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Regression vs. Classification
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Figure 7: Classification performance for six feature sets: a) our regression turned into
a classifier by varying the spectral quality score threshold; b) binary classifier (for
comparison).

to the different experiments. In both classification cases, our composite set exhibits the

highest AUC with values of 0.91 and 0.94, respectively.

Good, but Unidentified Spectra. As stated before, many proteomics applications

aim at matching as many spectra as possible to peptides, many of which might represent

novel forms of proteins that have never been annotated previously and therefore are not

contained in the underlying sequence databases. These spectra would be mostly assigned

low MASCOT scores despite having a high information content, that means we would

expect them to be assigned quality scores in a regime ensuring them to be marked as

high quality spectra. The simulation of this case by choosing false MASCOT settings for

the modification yielded the results depicted in Fig. 8. It shows how many of the spectra

searched with the wrong setting “acrylamide” are identified as “good”: plotted is the
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sensitivity as the function of the applied quality score threshold. This threshold defines

the border between good and bad spectra according to the user who chooses its value.

The higher the threshold, the stricter the classifier will select only the high quality

spectra. Consequently, the number of spectra marked as “good” will decrease with

increasing threshold. The question now is whether the performance of our method is

good enough for this type of application.
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Figure 8: Fraction of modifications identified as good spectra when varying the quality
score threshold. The higher the threshold, the lower the number of spectra rated “good”
(see text).

Comparing Fig. 8 with our overall results stated in the previous paragraph, one finds

that the score threshold of 38 roughly corresponds to 2% loss of good spectra during this

application, too. This means, that this threshold will reject only about 2% of the

meaningful spectra even if the MASCOT search parameters have been chosen in an

inappropriate manner, while filtering out 60% of the low quality spectra. Good, but

unmatched spectra can then be subject to manual inspection, searches with different
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parameters or de novo sequencing.

Extension to Instrument Independent Features. To conclude this study, we would

like to address an issue that usually is not paid attention to. In our composite set, we

have incorporated three features which explicitly take into account peak intensities.

However, the detector used in an LTQ mass spectrometer does not register single counts,

but is based on an electron multiplier. The efficiency of this device depends on the

voltage applied to the successive acceleration stages, which has to be adjusted over time

to compensate for the deterioration of the used materials. Furthermore, increased

trapping times and / or automatic gain control target values will result in higher product

ion intensities. These facts can severely bias the results of a regression trained on

different settings, and instead of attempting to normalize peak intensities to account for

this behavior, we considered it a better strategy to construct a feature set not containing

any explicit information about ion intensities at all. In fact, one can construct such a set

by simply omitting the TIC, the average peak intensity and the standard deviation of the

peak intensity from the composite feature set. The resulting features thus comprise the

mass difference histogram, the number of peaks, the percentage of TIC above the

precursor mass, the number of peaks greater than 1% TIC and the overall peak density.

Although this subset was not a result of our backward feature selection strategy

(probably due to correlations among the variables), the ROCs arising from the reduced

set (not shown) are almost identical to the ones of the intensity dependent composite set

(Fig. 7), and with a value of 0.906 the corresponding AUC turns out to be only slightly

less than before (0.913) in case of the regression. It is therefore well suited for application

in standard proteomics experiments, since it offers stability and portability between

different instruments.
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TIC • • log

no. of peaks • • • log

% of peaks above precursor mass • • •

mean intensity • •

SD of intensity • • •

no. of peaks > 1% TIC • • •

peak density • • •

histogram features • • •

Good-Diff fraction •

isotopes •

water losses •

intensity balance •

BPI log

% of peaks > 1% BPI •

% of peaks > 20% BPI •

no. of peaks > 5% BPI •

no. of peaks > 3% BPI •

no. of peaks > 2% BPI •

mean peak distance s.t.
intensity > 2% TIC

•

mean peak distance s.t.
1.5% TIC < intensity < 2% TIC

•

MSE 218 227 246 241 269 321 292

AUC (regression) 0.91 0.91 0.87 0.88 0.86 0.84 0.81

AUC (classification) 0.94 0.93 0.86 0.90 0.87 0.85 0.83

Table 1: Shown are the assignments of the features to the seven sets examined, the final
mean squared error (MSE) on the out-of bag sample after training the regression and the
respective areas under curve (AUC) for regression and classification. Abbreviations used
are TIC (total ion current), BPI (base peak intensity), SD (standard deviation) and log
(logarithm of the respective quantity).
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Conclusions

We have presented a score that assesses the quality of peptide product ion spectra in

proteomics using a non-linear regression technique. We have been able to show that this

score can be trained by using a database of spectra in conjunction with their respective

MASCOT scores, i.e. without a manually labeled training set. It has turned out that the

regression was not adversely affected by the false labels which are unavoidable when

using an entire database of spectra as training set. This makes the proposed quality score

well suited for on-site calibration, rendering it possible to easily adapt the quality score to

different instrumentation according to the scheme presented.

Furthermore, it has been shown that this method performs better than or equal to

classifiers presented in recent studies when it comes to the prefiltering of spectra prior to

database searches, while at the same time equipping researchers with a continuous

measure for spectral quality. By benchmarking several sets of features introduced in the

past, we found that the proposed set performs best, and it has become apparent that

only the combination of features capturing the visual appearance of a spectrum with

those used by peptide matching algorithms (i.e. a mass difference histogram12) allows for

a significantly increased classification performance.

Finally, a set of features has been introduced that does not require retraining the

regression after the trapping time or the settings of the electron multiplier have been

changed. It may even be possible to use a regression trained on the LTQ with a

completely different mass spectrometer, provided that fragmentation mechanisms are

comparable.

All this is done without incorporating any search results, so once trained, the regression

might as well be used in conjunction with other protein identification techniques, such as

SEQUEST or even a de novo sequencer, without any adjustments to the core of the
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algorithm.

Altogether, a precise, robust and flexible scheme has been introduced for both the

prefiltering of data as well as for assisting users in finding high-quality spectra that

cannot be assigned a corresponding peptide by automated procedures.
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