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Abstract. Graphical models with higher order factors are an impor-
tant tool for pattern recognition that has recently attracted considerable
attention. Inference based on such models is challenging both from the
view point of software design and optimization theory. In this article, we
use the new C++ template library OpenGM to empirically compare in-
ference algorithms on a set of synthetic and real-world graphical models
with higher order factors that are used in computer vision. While infer-
ence algorithms have been studied intensively for graphical models with
second order factors, an empirical comparison for higher order models
has so far been missing. This article presents a first set of experiments
that intends to fill this gap.

1 Introduction and Related Work

Graphical models have been used very successfully in pattern analysis, usually
as probabilistic models in which the graph expresses conditional independence
relations on a set of random variables [1, 2]. Graphical models are not restricted
to probabilistic modeling and have also been used more generally to represent
the factorization of arbitrary multivariate functions (w.r.t. a given operation)
into factors that depend on subsets of all variables [3]. Factor graphs [3,4] are
a common way of representing this factorization. In this article, we focus on
functions which depend on discrete variables that can attain only finitely many
values.

The optimization of such functions is important to perform MAP estimation
(inference) under the assumption of a probabilistic model as well as to find con-
figurations with minimal energy in non-probabilistic models. In several special
cases the optimization problem can be solved in polynomial time (in the number
of variables), in particular if the graphical model is acyclic [1] or if the energy
function is (permutation) submodular [5-7]. However, if the model does not be-
long to either of these classes, exact optimization is NP-hard in the general [6].

For several years, research efforts focused mainly on functions which decom-
pose into factors that depend on at most two variables. However, in order to
model more complex problems, higher order factors have recently become an ac-
tive field of research [8-11]. While second order factors are conceptually simple,
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higher order factors are challenging from the view point of optimization theory
and implementation.

At least two types of algorithms exist : message passing algorithms (e.g. Loopy
Belief Propagation (LBP) [1,12,13] and Tree-Reweighted Belief Propagation
(TRBP) [14, 15)) and search-based algorithms (e.g. A* search [16], Iterated Con-
ditional Modes (ICM) [17], and a generalization if ICM called the Lazy Flipper
[18]). While message passing algorithms implicitly approximate the objective
function, search-based algorithms either restrict the search space or else have
a runtime that is in the worst case exponentially large in the number of vari-
ables. All these algorithms output upper bounds on the global minimum (when
used for minimization). TRBP in addition affords a lower bound on the global
minimum.

For the sake of comparability, it is essential that these different algorithms are
used with the same underlying data structures. While data structures for factors
that depend only on binary variables are simple, consisting mostly of low-level
functions close to machine code, similar data structures which allow the variables
to have different domains are non-trivial and require unavoidable overhead. To
quantify the effect from using different data structures on the absolute runtime
of a particular algorithm, the same algorithm needs to be run with different
underlying data structures.

We developed the extendible C++ template library OpenGM for this com-
parison. OpenGM allows the programmer to use different inference algorithms
and different factor data structures interchangeably. While the experiments in
this article are restricted to graphical models with discrete variables (binary and
non-binary), OpenGM is general enough to also work with parameterized factors
that depend on continuous variables. In contrast to Infer. NET [19] which has
been published without source code under a fairly restrictive licence and libDAI
[20] which is open source and published under a General Public Licence that
forces the user to publish derived code under the same licence (so-called copyleft
terms), the OpenGM source code will be published under the MIT licence that
imposes almost no restrictions and does not contain copyleft terms.

We show in this article that the examined algorithms perform very differently,
depending on the structure of the graphical model, both in terms of the upper
bound on the global minimum as well as in terms of absolute runtime. Moreover,
we show that the absolute runtime crucially depends on the data structures that
are used to represent factors. In contrast to the Middleburry MRF Benchmark
[21] and the quantitative comparison in [22], our comparison includes graphi-
cal models with higher order factors, different topologies, and different variable
domains.

2 Optimization Problem and Algorithms

The models considered in this article are given in factor graph notation. A factor
graph G = (V, F,E) is a bipartite graph that consists of three sets: a set of
variable nodes V', a set of factor nodes F, and a set of edges E C V x F that
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connect variables to factors. For each factor node, ne(f) :={a €V : (a, f) € E}
denotes the set of all variable nodes that are connected to the factor.

With each variable node a € V, a variable z, € X, is associated. For a
set of variable nodes A C V, Xy = ®a€ 4 Ao denotes the Cartesian product
of the respective variable domains. Corresponding sequences of variables are
written as 4 = (24)aca. Moreover, with each factor node f € F, a function
@y Xne(ry — R is associated. Together with some commutative and associative
operation (addition throughout this article), the factor graph describes a function
over X := Xy :

T(@) =Y or(@ne(p) - (1)

feFr

We will consider the following discrete optimization problem:

x* = argmin Z (pf(xne(f)) (2)
reX fEF

where, for all a € V, X, = {1,...,L}.

Five algorithms to tackle this problem are compared in this article, the mes-
sage passing algorithms LBP and TRBP as well as the search-based algorithm
A* search, ICM, and the Lazy Flipper.

Motivated by Pearl’s Belief Propagation algorithm [1] which is exact for
tree structured models, LBP [12,13] is one of the toady’s standard methods.
It applies the message passing rules for acyclic graphs to graphs with cycles,
without providing any convergence guarantees. Even if this method is rather
heuristic, it shows quite good performance in real-world applications.

The more mathematically sound message passing algorithm TRBP was pre-
sented by Wainwright [14] who considers a convex relaxation of the problem
by a tree-decomposition. The resulting message passing algorithm can be seen
as a fixed point iteration on this convex outer relaxation. In subsequent work
[15], Kolmogorov proposed a sequential version (TRW-S) which is guaranteed to
converge to fix-points satisfying the so-called week tree agreement.

Very recently, several methods [16,23] have been suggested which solve dis-
crete minimization problems in computer vision by branch and bound search.
We implemented the methods presented in [16] which transform the optimization
problem (2) into a shortest path problem on a graph whose size is exponential in
the size of the graphical model. The shortest path problem is then solved by A*
search using a tree-based approximation of the original graph to approximate the
further cost while searching. This algorithm is guaranteed to converge to global
optima and performs well on some classes of models. However, the worst-case
runtime is exponential in the number of variables.

ICM [17] is a simple algorithm that keeps all variables except one fixed in each
step and adjusts the free variable such that the objective function is minimized.
The variables are visited repeatedly in a certain order until no alteration of a
single variable can further reduce the value of the objective function.
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The Lazy Flipper [18] is a generalization of ICM for models with binary
variables. It extends the ICM search to subsets that contain more than one
variable. The Lazy Flipper is more efficient than exhaustive search (by an amount
that can be exponential in the number of variables) because the search space is
restricted to a set of variables which are connected via factors in the graphical
model and which have not been visited in previous iterations. The maximum size
of subsets can be supplied as a parameter to the algorithm. When set to infinity,
the Lazy Flipper is guaranteed to converge to a global optimum. Its runtime is
exponential in the worst case.

3 Empirical Comparison of Inference Algorithms

For a comparison of the algorithms, we consider both synthetic and real-world
graphical models with discrete variables that appear in computer vision appli-
cations. Synthetic models have the advantage that several instances of the same
model can be generated which allows us to decide whether differences in perfor-
mance and runtime are significant.

3.1 Synthetic models

We characterize models by their graph structure, the number of variables, the
number of values each variable can attain, the order of factors, and the distribu-
tion of factor values. For simplicity, we let the number of values be equal for all
variables and let each model contain only factors of the orders 1 and M. Two
different graph structures are considered, each with two different orders:

1. Fully connected models with second and third order factors, respectively,
consisting of 8 variables each of which can attain 20 different values. These
models are often used in part based object detection [16].

2. Grid graph models with first order factors as well as second and fourth order
factors, respectively, which are frequently used in image segmentation. A
grid with 40 times 40 (1600) variables is used, each variable attaining 2 and
5 different values, respectively. For the grid-based models, the additional
parameter A € [0, 1] controls the coupling strength between first and higher
order factors according to

J@) = (=N (@) + A ¢5(@ne(s) 3)

fEF,Ine(f)|=1 fEF,Ine(f)|>1

The four different graph structures for the synthetic models are depicted in
Fig. 3.1 for a small number of variables. The factors of all models are sampled in-
dependently, an assumption which may not hold in real data. Two different types
of factors are considered: The values of uniform factors are sampled uniformly
from the interval [0, 1]. For log-uniform factors, values v are sampled uniformly
from the interval (0,1], and the values of factors set to —log(v). This results in
very selective factors which in this form often appear within part based models
[16, 23]. For each model, an ensemble of 10 instances is generated.
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Xy ¥ =

(a) FULL?(4, ) (b) FULL3(4, c) GRID?(9 d) GRID*(9, )

Fig. 1. Graph structures of the synthetic models with less variables.

3.2 Real-World Models

In addition, we consider 100 graphical models obtained from the 100 natural
test images in the Berkeley Segmentation Dataset [24] that are used to remove
excessive boundaries from image over-segmentations. These real-world models
have on average 8800 binary variables, 5700 third order and 100 fourth order
factors. Each variable corresponds to a boundary between segments, indicating
whether this boundary is to be removed (0) or preserved (1). Unary factors relate
these variables to the image content while non-submodular third and fourth
order factors connect adjacent boundaries, supporting the closedness and smooth
continuation of preserved boundaries.

3.3 Results

In the tables below, the mean upper bounds E(J) on the minimum energy and
the mean runtimes E(¢) (in seconds) over these ensembles are shown. Runtimes
are measured on one core of an Intel Pentium Dual Core at 2.00 GHz. In addition,
we note in the tables how often each algorithm outputs the smallest upper bound
on the minimum energy among the compared algorithms. When algorithms use
a data structure that is specialized for binary variables, this is marked with a 2
at the end of the algorithm name.

Results for the fully connected synthetic models are shown in Tab. 1. While
A* search guarantees global optimality, LBP, TRBP, and ICM show inferior
performance. The Lazy Flipper cannot be applied because these models have
non-binary variables.

Results for the synthetic grid models are shown in Tab. 2-5. The Lazy Flipper
consistently outperforms LBP, TRBP, and ICM in terms of quality. Surprisingly,
LBP performs overall better than TRBP. While the use of an optimized data
structure for binary variables results in a speed-up factor of 2 for LBP, TRBP,
and ICM, the change is marginal for Lazy Flipper because the Lazy Flipper
spends most of the time on graph traversal, while LBP and TRBP sum up and
minimize multi-dimensional factors during message passing and ICM mostly
evaluates factors for certain assignments of values to the variables. It is hard
to make any general claims on the runtime of LBP and TRBP since they do
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not convergence, and so the runtime usually depends linearly on the maximal
number of iterations.

Results for the real-world segmentation models are shown in Tab. 6. The
Lazy Flipper consistently outperforms LBP and ICM in terms of energy and
runtime. Due to the irregularity of the model, the construction of a meaningful
set of spanning trees is non-trivial. TRBP is therefore not applied.

We run 400 LBP and TRBP iterations on the fully connected models and on
GRID?(1600, 2), 1000 iterations on GRID?*(1600, 2), 300 iterations on the irregu-
lar segmentation models, and 100 iterations, otherwise, with a message damping
of 0.3 for all models. Message passing is terminated when the maximal change
in all messages is less than 1076, For the fully connected models, all spanning
trees are considered for TRBP. For the grid graphs, we set the probability that
a factor appears in a sub-tree to the reciprocal of its order. The heuristic for A*
search is based on a fan-graph rooted in the last node. The Lazy Flipper is run
with a maximal subgraph size of 6.

Table 1. Results for fully connected models with 8 variables and 20 labels: On the 2nd
order model FULL?(8,20) A* search outperforms LBP and TRBP in terms of energy
and runtime. LBP sometimes also ends up in a global optimum for 2nd order models.
On the 3rd order model FULL?(8,20), A* search still calculates the global optima,
contrary to all other algorithms.

2nd order 3rd order

uniform log uniform log

E{J} E{t} best E{J} E{t} best E{J} E{¢t} best E{J} E{t} best
LBP 8.21 0.88 40% 12.70 1.06 20% 24.14 197.69 0% 51.69 197.38 0%
TRBP 10.19 1.54 0% 21.36 1.58 0% 25.55 99.00 0% 55.52 76.63 0%
ASTAR 4.82 0.82100% 6.12 0.55 100% 14.19 20693 100% 20.05 16881 100%
ICM 10.37 0.00 0% 20.29 0.00 0% 22.58 0.00 0% 4045 0.00 0%

4 Conclusion

This article presents an empirical comparison of inference algorithms on graph-
ical models with higher order factors. The experiments show that search-based
algorithms such as A* search and the Lazy Flipper are powerful tools which can
outperform message passing algorithms in these settings. While the set of exper-
iments is far from being exhaustive, it demonstrates the flexibility and modular-
ity of the OpenGM library, in particular the exchangeability of data structures
and inference algorithms. More inference algorithms as well as specialized data
structures can therefore be examined in the future.

Acknowledgement: This work is connected to the Heidelberg Research Training
Group (GRK 1653) on Probabilistic Graphical Models (http://graphmod.iwr.uni-
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Table 2. Results for the binary second order grid model GRID2(1600, 2) consisting
of 40 times 40 variables. For smaller coupling strength A = 0.25, LBP and TRBP
perform comparable with the Lazy Flipper. For larger coupling strength, the Lazy
Flipper consistently outperforms LBP and TRBP in comparable runtime.

uniform
A=0.25 A=0.75
E{J} E{t} best E{J} E{t} best
LBP  754.76 7.3090% 995.6531.60 0%
TRBP 754.78 18.44 80% 995.62 39.65 0%
LF 754.76 10.36 90% 993.68 10.77 100%
ICM 790.51 2.67 0% 1303.53 2.77 0%
LBP2 754.76 3.40 90% 995.65 14.58 0%
TRBP2 754.78 8.24 80% 995.62 17.66 0%
LF2 754.76 10.00 90% 993.68 10.56 100%
ICM2 790.51 1.37 0% 1303.53 1.42 0%

log
A=0.25 A=0.75
E{J} E{t} best E{J} E{t} Dest
LBP  1229.87 17.04 30% 1599.70 31.35 0%
TRBP 1229.89 23.58 20% 1594.76 39.74 0%
LF 1229.60 10.31 90% 1588.69 10.87 100%
ICM  1379.28 2.70 0% 2542.86 2.82 0%
LBP2 1229.87 7.90 30% 1599.70 14.48 0%
TRBP2 1229.89 10.47 20% 1594.76 17.54 0%
LF2 1229.60 10.03 90% 1588.69 10.61 100%
ICM2 1379.28 1.38 0% 2542.86 1.46 0%

heidelberg.de/). Authors acknowledge corresponding support by the German
Research Foundation (DFG).
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Table 3. Results for the binary 4th order grid model GRID*(1600, 2) consisting of 40
times 40 variables. Compared to the 2nd order model, the energy functions are much
more challenging which results in a 17-times longer runtime for the Lazy Flipper.
Similar to the 2nd order model, the Lazy Flipper outperforms LBP and TRBP, even
for the weakly coupled models.

uniform
A=0.25 A=0.75
E{J} E{t} best E{J} E{t} best
LBP  562.19 142.68 0% 497.22 142.90 0%
TRBP 570.41 161.19 0% 555.47 142.37 0%
LF 558.44 170.07 100% 449.93 222.45 100%
ICM  589.86 1.85 0% 700.53 1.85 0%
LBP2 562.19 64.55 0% 497.22 64.68 0%
TRBP2 570.41 71.60 0% 555.47 62.63 0%
LF2 558.44 167.28 100% 449.93 217.22 100%
ICM2 589.86 1.01 0% 700.53 1.03 0%

log
A=0.25 A=0.75
E{J} E{t} best E{J} E{t} best
LBP  874.94 142.77 0% 786.36 142.00 0%
TRBP 891.07 161.69 0% 888.04163.44 0%
LF 863.72 170.50 100% 683.87 238.41 100%
ICM  975.74 1.88 0% 1339.57 1.93 0%
LBP2 874.94 64.68 0% 786.36 64.08 0%
TRBP2 891.07 71.77 0% 888.04 71.98 0%
LF2 863.72 164.88 100% 683.87 231.82 100%
ICM2 975.74 1.01 0% 1339.57 1.05 0%

Table 4. Results for the 2nd order grid models with 5 labels, GRID2(16OO, 5). For this
non-binary problem, we compare LBP, TRBP and ICM. For small coupling strength,
LBP and TRBP perform comparable; LBP shows significantly better performance for
larger coupling strength.

uniform —log—
A=0.25 A=0.75 A=0.25 A=0.75
E{J} E{t} best E{J} E{t} Dbest E{J} E{t} best E{J} E{t} best
LBP 514.5510.71 10% 706.35 10.75 100% 710.62 10.70 60% 1035.78 10.87 100%
TRBP 514.22 13.70 90% 772.77 13.71 0% 711.08 13.73 40% 1164.19 13.67 0%
ICM  591.13 8.27 0% 1235.02 8.30 0% 1024.98 8.22 0% 2426.99 8.58 0%
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Table 5. Results for the 4th order grid models with 5 labels, GRID*(1600, 5). LBP
outperforms TRBP when both run the same number of iterations.

uniform
A=0.25 A=0.75
E{J} E{t} best E{J} E{t} best
LBP 344.87 271.34 100% 354.92 271.24 90%
TRBP 414.42 284.81 0% 368.98 284.87 10%
ICM 390.75 5.96 0% 636.23 5.96 0%

log
A=0.25 A=0.75
E{J} E{t} best E{J} E{t} best
LBP 452.70 271.48 100% 467.57 271.61 100%
TRBP 547.41 285.03 0% 527.51 284.66 0%
ICM 622.89 598 0% 1226.44 6.06 0%

Table 6. Results for the irregular 4th order segmentation models with binary variables.
The Lazy Flipper consistently outperforms LBP and ICM in terms of energy and
runtime. Due to the irregularity, the construction of a meaningful set of spanning trees
is non-trivial. TRBP is therefore not applied.

E{J} E{t} Dbest
LBP 1053.16 99.67 0%
LF 870.52 26.12 100%
ICM 2360.76 79.23 0%
LBP2 1053.16 48.51 0%
LF2 870.52 25.34 100%
ICM2 2360.76 55.48 0%
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