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Abstract—Bilinear approximation of a matrix is a powerful paradigm
of unsupervised learning. In some applications, however, there is a natural
hierarchy of concepts that ought to be reflected in the unsupervised
analysis, e.g. neurosciences image sequences. Therefore, we propose a
decomposition of the matrix of observations into a product of more than
two sparse matrices allowing for both hierarchical and heterarchical
relations of lower-level to higher-level concepts. In addition, we learn the
nature of these relations rather than imposing them. Finally, the proposed
model yields plausible interpretations of the experimental neurosciences
data (pixel — neuron — assembly), and fully recovers the structure from
synthetic data that was modeled after the experiment.

1. INTRODUCTION

This work was stimulated by a concrete problem, namely the
decomposition of state-of-the-art calcium imaging sequences into
neurons, and assemblies of neurons [2]. Leveraging sparsity con-
straints seems natural, given that the neural activations are sparse in
both space and time. The poor z-resolution of the data results each
pixel can be assigned to more than one neuron. In addition, it is
anticipated that one neuron can be part of more than one assembly.

A standard sparse decomposition of the set of vectorized images
into a dictionary and a set of coefficients would not match prior
knowledge that we have entities at three levels: the pixels, the neu-
rons, and the assemblies, see Fig. 1. As a consequence, we propose
a multi-level decomposition that 1) allows enforcing (structured)
sparsity constraints at each level; 2) admits both hierarchical or
heterarchical relations between levels (Fig. 1); 3) can be learned
jointly, and 4) yields good results on real-world experimental data.

II. PROPOSED APPROACH

Given is a sequence of n noisy sparse calcium images which we
vectorize and collect in the columns of matrix X. We would like to
find the following:

o a dictionary D of go vectorized images comprising m pixels
each. Ideally, each basis function should correspond to a single
neuron.

o a matrix A’ indicating to what extent each of the go neurons is
associated with any of the ¢; neuronal assemblies. This matrix
encapsulates the quintessential structure we extract from the raw
data, viz., which lower-level concept is associated with which
higher-level concept.

o a coefficient matrix [U°]” and [U']7 that encode in its rows
the temporal evolution (activation) of the go single neuron and
the g1 neuronal assemblies across n time steps, respectively.

T

Decomposing X into constituent signals at different levels of
representation, e.g. neurons and assemblies, is inferred jointly by
minimizing the equation shown in Fig. 2. The 2y encourages sparsity
of the coefficient matrix; whereas {2p prevents the inflation of
dictionary entries to compensate for small coefficients, and induces,
if desired, additional structure on the learned basis functions [1].
However, the problem is not jointly convex, but becomes convex
w.r.t. one variable while keeping fixed the others if we assume that
the norms Qu, Qp, and Q4 are also convex. Hence, the main
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Fig. 1. Bottom left: Shown are the temporal activation patterns of individual
neurons (lower layer), and assemblies of neurons (upper layer). Neurons and
assemblies are related by a bipartite graph the estimation of which is a
central goal of this work. The signature of five neuronal assemblies in the
spatial domain is shown at the top. The bottom right shows the outline of all
found neurons superimposed on a maximum intensity projection across the
image sequence. All results shown in this figure issue from computations on
a synthetic sequence, with known ground truth.
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Fig. 2. Tllustration of the main equation.

optimization procedure is based on iteratively optimizing a group
of variables while fixing the others.

Our method achieves a sensitivity of 93% on average and dis-
criminates robustly individual cells for different levels of correlated
cell activity and of noise; whereas the accuracy of learning the latent
structure A' is 87%. In addition, our method is able to 1) identify and
monitor neuronal activity at single cell and assembly level, 2) infer
the assignment matrix behind the neuronal activity, and 3) distinguish
highly correlated cells.
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