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Abstract. Stroke is a major cause of adult disability and rehabilitative
training is the prevailing approach to enhance motor recovery. However,
the way rehabilitation helps to restore lost motor functions by continuous
reshaping of kinematics is still an open research question. We follow the
established setup of a rat model before/after stroke in the motor cortex
to analyze the subtle changes in hand motor function solely based on
video. Since nuances of paw articulation are crucial, mere tracking and
trajectory analysis is insufficient. Thus, we propose an automatic spa-
tiotemporal parsing of grasping kinematics based on a max-projection of
randomized exemplar classifiers. A large ensemble of these discriminative
predictors of hand posture is automatically learned and yields a measure
of grasping similarity. This non-parametric distributed representation ef-
fectively captures the nuances of hand posture and its deformation over
time. A max-margin projection then not only quantifies functional de-
ficiencies, but also back-projects them accurately to specific defects in
the grasping sequence to provide neuroscience with a better understand-
ing of the precise effects of rehabilitation. Moreover, evaluation shows
that our fully automatic approach is reliable and more efficient than the
prevalent manual analysis of the day.

1 Introduction

Generation and control of movements are fundamental requirements to inter-
act and respond to the environment. Complex hand functions such as grasping
depend on well-orchestrated and precisely coordinated sequences of motor ac-
tions. When a stroke occurs, they are often impaired and the subject suffers from
lost skilled motor functions. Studying motor impairment and establishing new
therapeutic strategies, is a key challenge of neuroscience typically conducted in
rodents to provide, as demonstrated in [1,2], information about the human model
too. Often a tedious visual inspection of the grasping function is the only means
to determine outcome levels after stroke. To tackle this challenge, we propose a
fully automatic approach for analyzing the kinematics of grasping. These charac-
teristic patterns of hand deformation are significantly more intricate than mere
trajectories shown in Fig. 1. Our goal is not only to identify if motor function
is impaired, but also how exactly the limb paresis affects grasping.
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Fig. 1. Side view (cutout) of a rat performing single
pellet grasping in a Plexiglas box with opening at
the side. The paw trajectory of a successful grasp is
superimposed (time running from blue to red).

To accurately represent and detect paws we extend the powerful exemplar-
based paradigm by max-projection of randomized versions of an exemplar
classifier. A large set of these paw classifiers is then aggregated to define sim-
ilarities between hand postures and group them. Grasping is characterized by
the deformation of the paw over time. Since we also need to represent the vastly
different abnormal grasps of impaired animals, neither priors on the smoothness
of kinematics, nor explicit models for a grasp are appropriate. Therefore, we pro-
pose a non-parametric representation that is based on robust matching of grasp
sequences. Using this compact model, max-margin multiple-instance learning
yields a classifier that not only recognizes impaired grasping but also identifies
fragments of a grasp that are characteristically altered due to the injury.

This study analyzes the recovery of motor function in Long-Evans rats per-
forming single pellet grasping [3] before and after a photothrombotic stroke de-
stroys the corresponding sensorimotor cortex of the grasping paw. We compare
recovery under i) a rehabilitative therapy (Anti-Nogo neuronal growth promot-
ing immunotherapy followed by rehabilitation [4], denoted green group), ii) for a
cohort without treatment (red), iii) and a control of sham operated rats (black).

Due to its importance for understanding and analyzing motor function, there
has been considerable effort on analyzing grasping behavior. A main focus has
been on studying hand trajectories [5,4], thus ignoring the crucial, intricate kine-
matics of hand motion [1], which involve the temporal deformation of fingers and
the overall shape of the hand. Representing, detecting, and distinguishing the
fine articulation of small, hairy, fast moving fingers of a rat paw under self-
occlusion, noise, and variations between animals pose tremendous challenges for
evaluation. Consequently, previous studies mainly rely on tedious manual iden-
tification of hand posture in individual video frames [5,1,2]. In large evaluations,
motion analysis is often simplified by applying reflective motion capture mark-
ers [6] or even electromagnetic tracking gloves [7]. However, these techniques are
typically used on human or primate subjects but are not applicable to rats, due
to the small size of their paws and distraction that attached devises impose. In
[8] human hand is tracked by relying on depth from structured light, which is too
coarse and slow for the fast moving, small rat paws. Moreover, [8] discard appear-
ance and solely depend on weak contour information and articulation models of
normal hands, which are not appropriate for abnormal locomotion after stroke.
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a) proposed max-projected randomized classifiers

b) exemplar classifiers

Fig. 2. a) Subset of our pooled classifiers proposed in Sect. 2.2. For each classifier
(blue) we show the five best detections on query videos (magenta). Note the subtle
difference that the model captures, such as pronation (1st row left), supination (2nd
row left), or the different stages of hand closure (1st, 2nd row right). b) Baseline:
Subset of classifiers trained by exemplar Support Vector Machine (SVM) [9] without
our pooling. The matches are significantly less specific than the proposed approach.

2 Approach

2.1 Creating Candidate Foreground Regions

To focus our analysis on hand motor function we first extract a large set of
candidate foreground regions. Following [10] we decompose frames of video into
a low-rank background model and a sparse vector corresponding to foreground
pixels. Candidate regions xi ∈ X are then randomly sampled from the estimated
foreground of a set of sample videos to initialize the subsequent learning of
classifiers and compute their HOG features (size 10× 10). K-Nearest Neighbors
density estimation then reveals rare outliers, which are then removed from X .

2.2 Robust Exemplar Classification

We seek a representation of rat paws that i) facilitates detection and tracking
of hands in novel videos and ii) exposes the subtle differences in hand posture,
while being robust to noise, illumination differences, and intra-class variability.

Max-projected Randomized Exemplar Classifiers: To measure the simi-
larity to a sampled region xi, we train a discriminative exemplar classifier wi,
using xi as positive example. Since X likely contains other samples similar to
xi, we cannot use all remaining samples in X as negatives for training or per-
form hard negative mining [9]—too much overlap with the single positive makes
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Fig. 3. Left: Paws are represented using the proposed non-parametric representation
of hand posture. A distance preserving embedding then maps all detected hands onto
2D and straight lines connect successive frames within a single grasp. Time is encoded
as blue to red for healthy animals and cyan to yellow for impaired 2 days post stroke.
For one healthy and one impaired grasping sequence selected frames (marked as 1,2,..
and A,B,.. along the sequence) are shown bottom right. On top right the grasping
trajectories of all grasps are depicted relative to the position of the sugar pellet at the
origin. The non-parametric representation of postures helps to accurately distinguish
impaired grasping patterns from healthy ones and emphasizes characteristic abnormal
postures within individual grasps, such as D vs. 4.

learning unreliable. Thus we train in Eq. 1 an ensemble of K exemplar classifiers
wk

i with their offsets bki , k ∈ {1, . . . ,K}, using randomly selected negative sets
X k

i ⊂ X \xi. The soft margin parameter C = .01 was chosen via cross-validation.

min
wk

i ,b
k
i

∥wk
i ∥2+Cmax

(
0, 1−⟨wk

i , xi⟩−bki
)
+

C

|Xk
i |

|Xk
i |∑

j=1

max
(
0, 1+⟨wk

i , xj⟩+bki
)
. (1)

To compensate for the unreliability of individual classifiers, we aggregate them
using a max-projection that selects for each feature dimension the most confident
classifier wi(•) := maxk wk

i (•). The scores of these max-projected randomized
exemplar classifiers wi are then calibrated by a logistic regression [9].

Dictionary of Paw Classifiers: Now we reduce the large candidate set X (size
1000) and create a dictionary D ⊆ X to canonically represent hand postures of
previously unseen rats. The randomized exemplar classifiers provide a robust
measure of pair-wise similarity s(xi, xj) := 1

2

(
⟨wi, xj⟩ + ⟨wj , xi⟩

)
. Redundant

candidates are merged by Normalized Cuts to obtain a dictionary D (size 100)
that is sufficiently diverse and rich non-parametric representation of all viable
hand-postures.1 See Fig. 2 for examples and a comparison to standard exemplars.

1 A coarser discretization is possible by discarding elements with small contribution.
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Fig. 4. Representation of hand posture for all frames of a successful (left) and a failed
grasping sequence (right). On each query frame (rows) all classifiers (columns) from
the dictionary of characteristic hand configurations of Sect. 2.2 are evaluated. In this
representation successful grasps typically first exhibit activations of pronation, followed
by a characteristic opening and closing (t=4..10, left) and retraction of the closed hand.

In a new video all classifiers wi from dictionary D are applied densely. Averaging
the scores of the top scoring k classifiers and taking the location with the highest
score yields the final paw detection and its trajectories over time, Fig. 3.

Non-parametric Representation of Hand Posture: On a novel paw sam-
ple x the joint activation pattern of all {wi}i∈D yields an embedding e :=
[⟨w1, x⟩, . . . , ⟨w|D|, x⟩]. Moreover, novel hand configurations can now be related
by comparing their embedding vectors, since similar samples give rise to similar
classifier activations. To visualize a hand posture, the high-dimensional embed-
ding is mapped to a low-dimensional projection using the t-SNE method [11].

2.3 Spatiotemporal Parsing

While hand posture is a crucial factor, its deformation during a grasp is even
more decisive. We represent an M frame long grasp j as a sequence in the
embedding space Sj := [ej1, . . . , e

j
M ]. Measuring the similarity of grasps based

on their embeddings requires a sequence matching since they are not temporally
aligned. We thus seek a mapping π : {1, . . . ,M} )→ {0, . . . ,M ′} that aligns Sj

of length M with Sj′ of length M ′ (0 denotes outliers), cf. Fig. 5. Their distance

is then defined in the embedding space as d(Sj , Sj′) :=
∑M

i=1 ∥e
j
i − ej

′

π(i)∥. A
matching π(•) should penalize outliers and variations in the temporal order,

min
π

M∑

i=1

∥eji − ej
′

π(i)∥+ λ
M−1∑

i=1

1
(
π(i) > π(i + 1)

)
, s.t. |π(i)− i| ≤ B, ∀i, (2)

where 1(·) denotes the identity function. The constraint in Eq. 2 prevents matched
frames to be more than B frames apart from each other. The second sum in
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Fig. 5. Sequence matching: Sequence A is matched to B by permuting and warping
this sequence into π(B) using the approach of Sect. 2.3. Frames are numbered and the
permutations π(•) are shown on the right.

Fig. 6. Novel grasps are represented by automati-
cally explaining them with a compact set of pro-
totypical grasping sequences (Sect. 2.3), yielding
an embedding. For all animals of the black (sham
control), green (therapy), and red (no treatment)
cohort the mean representation of all graspings of
a trial session is visualized by distance preserving
projection to a 3D subspace. The mean representa-
tions of successive trial sessions are then connected
to show recovery within each cohort (time runs
from dark to light, from 4 weeks before stroke to 4
weeks after). Note that black and green cohort show
similar final recovery, whereas red ends up close to
its state 2 days post stroke, indicating only little
recovery (the red loop at right is actually elevated
and far away from the others).

Eq. 2 allows for more flexible matching than the standard string matching or
dynamic time warping. Substitution zi,i′1,i′2 := 1

(
π(i) = i′1 ∧ π(i + 1) = i′2

)
in

Eq. 2 transforms the sequence matching problem to an integer linear program
(ILP),

max
z•∈{0,1}

M−1∑

i=1

M′∑

i′1,i
′
2=0

zi,i′1,i′2ψi,i′1,i
′
2
, s.t.

M′∑

i′1,i
′
2=0

zi,i′1,i′2 = 1 ∧
M′∑

i′1=0

zi,i′1,i′2 =
M′∑

i′3=0

zi+1,i′2,i
′
3
,

(3)

where ψi,i′1,i
′
2
is the sum of all terms in Eq. 2 that correspond to zi,i′1,i′2 = 1. IBM

ILOG CPLEX software is applied to solve Eq. 3 (tenth of a second for sequences
of 30 frames).

Due to a large number of grasping actions in our dataset, it is computationally
prohibitive to match a novel sequence to all others. Thus we reduce redundancy
as in Sect. 2.2 and construct a dictionary Dseq := {S1, . . . , SQ} with canonical
grasping sequences that then explain novel grasps yielding a spatiotemporal
parsing. Measuring the distances of a new sequence S′ to all prototypical ones
in Dseq yields the sequence-level embedding E′ := [d(S′, S1), ..., d(S′, SQ)], after
aligning grasps by our sequence matching to compute distances.
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2.4 Automatic Grasping Diagnostics

Multiple instance learning (MIL) [12] is utilized to train an SVM on few success-
ful pre-stroke grasps against failed grasps from directly after stroke using the
representation from Sect. 2.3. Since even before stroke there are failed attempts,
the pre-stroke grasps are randomly aggregated in bags (20 attempts per bag) and
the successful positive training samples are inferred using MIL. To diagnose a
novel grasping sequence S′, the MIL trained linear SVM is applied before trans-
forming the classifier scores into the probability of a grasping sequence being
abnormal. To automatically discover what made a grasp fail and how impaired
motor function manifests, we back-project the kernel-based sequence represen-
tation onto frames that are indicative for grasping failure, i.e., the parts of the
sequence that have highest responsibility for yielding a bad SVM score, Sect. 3.

3 Experimental Results

Recording Setup: For the three cohorts of 10 rats described in Sect. 1, grasping
has been filmed from the side, cf. Fig. 1, with a Panasonic HDC-SD800 camcorder
at 50fps, shutter 1/3000, ∼8 hours of video in total. Recording sessions were -4,
-2, 2, 3, 4 weeks before/after stroke, each with 100 grasp trials per animal per
session, yielding in total 15000 individual grasps for evaluation of our analysis.

Grasping Diagnostics: In an initial experiment we computed paw trajectories
during grasping, Fig. 3 (top right). However, since the unilateral stroke has
most impact on the fine motor skills of the hand rather than the full arm,
its implications for grasping are only truly revealed by the detailed analysis of
hand posture, Fig. 3 (left). From a neurophysiological view, this unsupervised
analysis reveals characteristics of impaired grasping such as incorrect supination
(D vs. 4), evident by the large distances between healthy and impaired kinematics
especially around the moment of pellet capture (C,D). The difference in hand
posture around this moment is also evident around t=4..10 in Fig. 4.

Fig. 6 visualizes the recovery of all animals within one cohort by averaging
over all their grasp trials conducted at the same time pre/post stroke. This
unsupervised approach highlights the positive effect of the rehabilitation during
the recovery process. Based on the same sequence representation, the classifier
of Sect. 2.4 predicts if grasps are healthy or impaired in Fig. 8. This analysis
not only underlines the positive outcome of the therapy, but also compare our
prediction of fitness of a grasp against a manual labeling provided by 5 experts.
They accurately annotated sequences as 1, .5, 0 if they were successful, partially
successful (correct up to final supination), or failed. Statistical hypothesis testing,
Tab. 1, shows that our automatic prediction compares favorably with manual
annotations (p-value between .002 and .02, two-tailed t-test capturing deviations

Fig. 7. Examples of hand postures that
deteriorated grasping fitness (yellow) vs.
those that improved it (magenta).
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Fig. 8. Prediction of grasping fitness using a) manual analysis by neuroscientists, b)
our approach, c) baseline SVM approach

Table 1. Comparing predictions of our approach Fig. 8b) and of the baseline approach
(no randomized pooling and sequence matching) 8c) against the manual annotation of
neuroscientists 8a). Overall our approach significantly improves upon the baseline.

Our Approach Baseline SVM
Cohort p-value RMSE R2 p-value RMSE R2

Sham control (black) 0.002 4.06 0.927 0.401 13.6 0.18
No treatment (red) 0.004 11.8 0.896 0.003 11.1 0.909
Therapy (green ) 0.019 14.2 0.779 0.161 23 0.425

in both directions from the ground truth) and are significantly more robust than
a baseline approach without the proposed randomized pooling and sequence
matching. Finally we also retrieve frames of an impaired sequence that mostly
deteriorated the grasp by causing bad alignments in sequence matching, Fig. 7.

4 Conclusion

To analyze grasping function and its restoration after stroke we have presented a
fully automatic video-based approach. Details of hand posture are captured by a
non-parametric representation based on a large set of max-projected randomized
exemplar classifiers. The spatiotemporal kinematics of grasping is then explained
by a robust sequence matching. With this representation an unsupervised and a
supervised approach have been presented to automatically analyze the recovery
after stroke and predict the impairment of individual grasps. This approach has
the potential to open up new possibilities of studying motor restoration over
time and evaluating the efficiency of therapeutic interventions after stroke.2

2 This research has been funded in part by the Ministry for Science, Baden-
Wuerttemberg and the Heidelberg Academy of Sciences, Heidelberg, Germany.
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