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Abstract

Active Learning (AL) is increasingly important in a broad range of agpigns. Two main AL princi-
ples to obtain accurate classification with few labeled datagdiremenbf the current decision boundary
and explorationof poorly sampled regions. In this paper we derive a novel AL schératebalances
these two principles in a natural way. In contrast to many AL strategieshveie based on an estimated
class conditional probability(y|z), a key component of our approach is to view this quantity as a ran-
dom variable, hence explicitly considering thecertaintyin its estimated value. Our main contribution
is a novel mathematical framework for uncertainty-based AL, andr@sponding AL scheme, where the
uncertainty inp(y|x) is modeled by a second-order distribution. On the practical side, we sbamto
approximate such second-order distributions for kernel densityifitat®n. Finally, we find that over a
large number of UCI, USPS and Caltech-4 datasets, our AL scheneveslsignificantly better learning
curves than popular AL methods such as uncertainty sampling and-edustion sampling, when all use
the same kernel density classifier.

1 INTRODUCTION

In many applications, including computer vision and ndtlaaguage processing, unlabeled data abounds
while procuring labels for training is costly. Pool-baseatdive learning (AL) schemes judiciously select
those among the unlabeled points that are deemed most iatisenand thought to help achieve a steeper
learning curve. The prospect of reduced labeling effortdmsred intense efforts to improve AL. On the
theoretical side, several works considered the sample lexitypand potential benefits of AL, see (Beygelz-
imer et al., 2009; Balcan et al., 2010; Hanneke, 2011). Orptiaetical side, various works suggested
concrete AL schemes, recently e.g. (Huang et al., 2010;i@igdand Gupta, 2010), with large gains over
random labeling in various applications, see (SettlesQPdr a comprehensive review.

In this paper we focus on pool based AL. We first review a p@éneakness common to many popular
AL methods, and then derive a new pool-based AL scheme. Im&hased setting, one typically starts
with a small (possibly empty) set of labeled samples {x;,y;}¢_,, and a large pool of unlabeled samples
U= {xj}};ul. Most pool-based AL schemes rely on a classifier — or moreigehyc a regressor — that
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Figure 1: Active learning on the XOR problem. Small black $gis are unlabeled data, large colored
symbols are the labeled ones. (a) Class-conditional pitityadnd decision boundary estimated by kernel
density classification, with labeled data in only 3 out of 4drants. (b), (c) Training utility values (TUV)
of uncertainty sampling and the proposed DEAL, lighter coépresenting a higher TUV. Uncertainty sam-
pling prematurely concentrates on local refinement of tleeoi decision boundary. DEAL keeps exploring
before reverting to refinement. (d) Resulting learning esrv

outputs not only a predicted class laljedt a new sample, but also an estimatgy|z) of the conditional
class probabilitie®r[Y = y|X = z] for all classeg;. Then, sequential one-step lookahead AL schemes
compute a Training Utility Value (TUV) for any unlabeled sale and query the label of the sample with
largest TUV.

One popular and successful AL strategy is uncertainty sagnfUS) which iteratively selects the sample
whose current class prediction is least confiléBaum, 1991; Hwang et al., 1991; Seung et al., 1992; Lewis
and Gale, 1994).

Another common strategy is to query that sample whose iiius the training set may contribute most
towards a “confident” classification. Here, confidence issuead by the entropy of the class conditional
probabilities, or the expected estimated risk (MacKay 2t 8y and McCallum, 2001; Zhu et al., 2003): the
more assertive the resulting classifier, the better, atugitd these algorithms. A variant in the regression
context has been proposed in (Boutilier et al., 2003).

Yet another popular AL strategy is to select samples thaimike the uncertainty in the estimated
parameters of a classifier, e.g. by maximally reducing thisioe space of a SVM (Tong and Koller, 2002)
or by minimizing the variance of the parameter estimates uftinomial logistic regression (Schein and
Ungar, 2007).

A common theme to all these AL schemes is their use of poiithagtsp(y|z), possibly combined with
density estimateg(x), but without consideration of the inherent random unceti@s in these guantities.
By definition, p(y|x) is estimated from the finite, and often small, currently labesetC.? Hence, at any,
p(y|x) is a random variable, which may have small bias and variamsere regions, but high uncertainty
in others.

In this paper, we propose to capitalize on this seeming flad, ta put the unavoidable uncertainty
in the estimateg(y|z) at the very heart of a novel AL scheme: Distributional Estenéactive Learning
(DEAL). First, in Section 2 we propose to quantify the unagrty in the estimateg(y|z) via a second-

INote that this can be defined in many possible ways, in paatiénlmulti-class settings.
2And, in the case of semi-supervised active learning, alsa ffee unlabeled séx.



order distribution see Eq. (1). Next, in Section 3 we show how such a second-diskeibution can be
approximated for kernel density classification; and in Bactt we show how such distributions can be
used, in a principled mathematical framework, for uncatiabased AL. In Section 5 we show empirically
that with a baseline implementation using kernel densigsification, DEAL performs significantly better
than two highly popular AL schemes and random sampling incaotlgh benchmark on more than 40
classification problems from the UCI (Frank and Asunciorl,®@nd USPS (LeCun et al., 1990) databases,
and on an image classification task using the Caltech-4 elatas

Our approach is somewhat related to the minimization of datgy in Gaussian process regression for
space-filling experimental design (Sacks et al., 1989) hénrhachine learning community, several works
devised efficient approximations for the intractable pastalistribution in Gaussian process classification
models (Nickisch and Rasmussen, 2008). In particularetdesributions were used to compute Bayesian
predictive distributions (Snelson and Ghahramani, 2008)ch for classification arpoint estimatesf the
class conditional probabilities. Gaussian processes waise used for active learning, though there the
authors suggested to label those samples whose normaleggihns smallest (Kapoor et al., 2007). Thus,
even though second-order distributions were derived foist@ regression and Gaussian processes, to the
best of our knowledge, these have not been used in AL forifitzg#on. In this paper we thus emphasize
the importance, use, and potential benefit of second-ordetkditions in AL classification problems. As
discussed in Section 6, second-order distributions maypstantial use beyond AL.

2 CLASSIFIER UNCERTAINTY AND ACTIVE LEARNING

In statistical pattern recognition, agreement prevads étclassifier should not be forced to make a prediction
unless reasonably confident about it. This principle is fiped by introducing an auxiliary “doubt” class
that the classifier can always vote for, at a fixed cost (Rip2908). In the generic case of a symmetric
loss function, minimizing the expected risk leads to an algm that, given a sample, votes for the class
with highest conditional probabilityj = arg max, p(y|z), provided that the expected loss of this decision
is smaller than the fixed cost of the “doubt” class.

The “doubt” class captures the uncertainty of a predicfianlocations: where no class is clearly dom-
inant. Even if the class conditional probabilities are pettiy known, this type of “first-order” uncertainty
is still present wherever two classes overlap in featureespAs a direct consequence to AL, if the current
labeled set makes it quite clear that two classes are equalhable at some region in feature space, it is
futile to attempt reducing this first-order uncertainty bguesting more labels there!

In practicep(y|z) is unknown, and thus estimated from a finite training sets Tiduces &econdkind
of uncertainty: not only how confident are we in the predidtdukl , but also how accurate is our point
estimatep(y|x). An inaccurate point estimate may result in a misleadingsifeer that errs and votes for
the wrong class, with a class conditional probability mathiat is deceptively large. Asking for the label of
additional training samples in such regions can result in@sive change in the current decision boundary.
Hence, samples with highly uncertain class conditionabahility estimates should be prime candidates of
a good AL criterion. A point in case is the classical XOR pagh| illustrated in Fig. 1. Starting with 10
labeled data in only 3 out of 4 quadrants (an event whose pilityds ~20% with 10 randomly selected
labeled data), nearest-neighbor type classifiers giveraneous prediction at the remaining quadrant, with a
deceptively large margin. Consequently, AL schemes bas@tdxr) do not sample points in the remaining
quadrant. This overconfidence of AL schemes was also notéBdnam et al., 2004), who suggest to label
at random once in a while.

Motivated by the above insights, in this paper we derive arsélheme that incorporates this randomness



in p(y|z) in a natural way. The key ingredient in our scheme s&e@ond-order distribution
Ga(q) = Pr[p(y = 1]z) <] 1)

which measures our uncertainty in the point estimitgz). Before deriving the DEAL scheme, we first
show how such a second-order distribution can be estimatatié kernel density classifier.

3 SECOND-ORDER DISTRIBUTIONS FOR THE KERNEL DEN-
SITY CLASSIFIER

Kernel density classification is a prototypical non-paraiiogenerative classifier. While with limited train-
ing data this classifier will likely have a lower accuracy gared to modern discriminative classifiers, we
choose it since itisfi) conceptually simple and easy to implemdiit) usable in all the active learning cri-
teria that we wish to benchmark atd:) representative of an entire class of more advanced methidiite
beyond the scope of this paper, second-order distributiansalso be derived for discriminative classifiers,
and then used in our AL scheme.

For simplicity, in the rest of this paper we focus on the bynelassification problem, with class labels
y € {—1,+1}. To derive second-order distributions for the unknown<la®babilitiesp(1|z) = Pr[Y =
1]X =xz], we use Bayes rule

p(z[1)m
x|=1)7_1 + p(z|1)m 2)

with m,, the prior probability for clasg. In kernel density classification, the unknown class desssi(x|1)
andp(z|—1) are replaced by their Parzen window estimates. To derivenskeorder distributions, we thus
need to approximate the distribution of these point estat

Let K be a normalized { K(u)du = 1) isotropic kernel. Then the kernel density estimate

p(llz) = o

paly=y) = 3 K(r-w) 3)

TiYi =y

is a random variable. With only a single observation fronssia(n, = 1), the exact distribution of this
random variable is given by

Prp(zly) < 2] = / 1(K(u— 2) < ) pluly)du 4)

This distribution depends on the location of the queryon the kernel functioriC and on the unknown
densityp(z|Y = y). Qualitatively, for nonnegative and monotonically decaykernelsk’, the resulting
density must be zero far < 0 and forz > K(0). Forn,, i.i.d. observations from clags the distribution of
the class density kernel estimate is given lay,&old convolution of the probability density that corresypls

to Eq. (4).

Since the exact densify(z|Y = y) is unknown (otherwise no learning would be necessary), werte
to an approximation of the distribution ¢fx|y). Key requirements are that the approximate distribution
be continuous, infinitely divisible, have no mass:at. 0 and its derivative should decay to zerozas+
oco. A good candidate meeting these criteria is the Gamma loligioin which, with its shape and location
parameterg: andd, is also sufficiently rich to faithfully model a variety oftsations that arise in practice.
A standard estimate of mean and variance of the kernel gestitnate (Frdle et al., 2004, chap. 3) allows



to apply the method of moments and obtain the shape paramgter n,p(x|Y = y)/C, and location
parametet,, = C/n,, whereCy = [ K?(z)dz.

When the class priar, is estimated by the ratio, /n, we obtain the following approximate distribution
for the random variablg(x|y)

Poly)iy ~ T (§+ B2ED, G 1) (5)

Here,d is a small positive constant added both to regularize Egn(®w-density regions, and to guarantee
that the shape parameter of the Gamma distribution islIgtpoisitive, even when no labeled observations
are available yet for clagg

With 6 := Cs/n, inserting Eq. (5) into Eqg. (2) gives

(6 + k1, 0)
(6+k7179) +F(6+k179)

PY =) ~
= Beta(d + k1,0 + k_1) = Beta(a, 3) (6)
In particular, for ad-dimensional isotropic Gaussian kernel with bandwikltlive obtain

k, = 24/2 Z exp (—Hx—mi||2/2h2) . (7)

TiYi=Yy

4 DISTRIBUTIONAL ESTIMATE ACTIVE LEARNING (DEAL)

Our novel AL scheme requires a method (for instance the oseritbed in the previous section, or a Gaussian
process classifier) that outputs a second-order distobdti, (¢), Eq. (1).

Our point of departure in deriving our AL scheme, is the faflog key observation (Friedman, 1997):
The performance of a classifier, as measured by its misfitzg&in error, depends only on the location of
its decision boundary, and not on the precise estimateseafahditional class probabilities. In particular,
inaccurate point estimategy|z) may still yield the optimal Bayes classifier as long as thesuitein the
same decision boundary.

A second-order distribution can thus help assess the @iogrtin the currently estimated decision
boundary. In more detail, given a second-order distriloutigth densitygx(q):d%Gw(q), we can extract a
point estimate for the posterior probability

1
p(1]z) = / q9:(q)dq (8)
0
and a corresponding classifier, which for a symmetric loastian is simply
F(p(1]z)) = sgr(p(1]z) — 1/2). 9)

The goal of classification is to build a classifiethat minimizes the overall risk

R= [ Riz, flple)ds (10)
where the local risk at is
Rlz, f] =By [L(y, /)l = > Ly, /(Y = y|x). (11)
y==+1



In general, the exact local risk atis unknown, as we do not know the exact posterior probaslitiy|z).
Replacing these by their estimates gives

Rlz, f(p(12)] =" L(y. f(p(1|2))) plylz). (12)

y+1

Note that this formula does not take into account the inttereoertainty in the estimaiy|x). For exam-
ple, a second-order distributi@r, (¢) with some spread and expectation of 1/2 implies fatx) couldbe
much different from 1/2! In such cases, Eq. (12) is hencelpyrssimistic.

A second-order distribution mitigates the over-pessimissuch regions. A more balanced estimate of
the risk that takes into account a second-order distribugo

ER[z]=E,[R[z, f(9)]]= / Rlz, f(9)] 9:(q)dg (13)

The intuition behind this estimate is as follows: if the sed@rder distribution has significant mass near
both limits of its domain (i.e., it has a high density for veduwfq = p(y|x) close to 0 and 1), then it may be
possible to construct a classifier with low riskaatby querying additional labels in its neighborhood. As an
extreme example, consider a second-order distributiop(ioe=1|x) given by Bernoulli(0.5), which implies
that the conditional probability of class +1 is either 0 ofThen, B[z] = 0.5, but ER[z] = 0. This fact is
taken into account by Eq. (13) but not by Eq. (12).

It is easy to prove that for any densigy(q), from whichp(1|z) and f are derived via Egs. (8) and (9),
R[z] > E\R[x}. Moreover, equality holds iff the entire mass of the secordkpdistribution lies on one side
of the decision threshold, or if it is a Dirac distribution®®. Interestingly, in these two cases it is of no
benefit to query the label at

These properties suggest that the differeﬁ{:ﬁ —ET%[:c] is a good indicator for the potential importance
of acquiring a label at;, though other choices seem possible. Consequently, talkioginto account that
theoverallrisk is a density-weighted mean of the local risk (see Eq))(1@ propose the following training
utility value (TUV): e

TUV (z) = (R[x] — ER[m]) -p(x) (14)

wherep(x) is some (non-parametric) estimate of the density.afhe weighting by the total density con-
centrates the learning effort on those regions of featuagesgphat are actually relevant. Table 1 describes
the pseudo-code of a single iteration of DEAL. Of course diesity estimatg(z) need be computed only
once at the start of the AL process. Fig. 2 compares the TUVBAIDto criteria used in experimental
design and for US.

5 RESULTS

We compare the empirical performance of DEAL to that of randsampling (RS), uncertainty sampling
(US) (Lewis and Gale, 1994) and error reduction samplingSEfRoy and McCallum, 2001). For a mean-
ingful comparison, all methods use the same kernel denkissiier, with an isotropic Gaussian kernel
whose bandwidth is chosen according to the normal referarieg(Scott, 1992, chapter 6). The density
p(x) in Eq. (14) is also estimated by kernel density estimatich tie same kernel and bandwidth selection
rule.

As is well known, non-parametric kernel density estimatidth a limited number of samples may be
highly inaccurate in high dimensions (Scott, 1992, chapjerTherefore, we first project the data to dits



Table 1: One iteration of DEAL

Algorithm DEAL

Input: Labeled ser, unlabeled set/.
Output: Selected sample € U/
and its labely(z)

Algorithm:
1: compute density estimaféx)
2:forallz € U do

- compute second-order distribution

of (¥ =1|z) by Eq. (6)

- computeT’UV (x) by Eq. (14)

3: query labely of z € U with largestTUV

Exp. Design DEAL
@ @ @
+5 +5 +5
af( (1+3 af( u+3 af( u+5

Figure 2: Training utility values, as a function of the twoaaetersy/(« + ) anda + 3 in a second-order
distribution of typeBeta(«, 3), for space-filling experimental design (Sacks et al., 1988}ertainty sam-
pling and DEAL. Roughlyy and s measure the local amount of evidence for either class (By§7)). Not
taking sample density into account, the most interestingtpdor DEAL are those with little evidence for
either class as yet (A), followed by points with evidencelfoth classes (B), followed by points with strong
evidence for one and little for the other class (C). In castirdS merely takes into account the distance from
the decision boundary, pretending EAB). Space-filling experimental design prefers unexplaesons,
regardless of their estimated class conditional proliasliso that (B:(C).

leading principal components, where the dimengiémchosen according to the resampling via permutation
scheme of (Zhu and Ghodsi, 2006), with the minimum numbeoofmonents set to two.

We always start with an empty sétof labeled points. In case of RS, US and ERS, the first quenytpoi
are selected randomly until there is at least one label foh €tass. In case of DEAL, its deterministic
strategy can be applied from the very beginning, with the lixdsel requested for the point with the highest
density estimate. In all our experiments, we &et 0.5, consistent with Jeffreys’ prior for the Bernoulli
distribution (Jeffreys, 1946).

5.1 UCI DATA SETS BENCHMARK

We considered 32 of the most frequently used UCI date s&ach dataset was preprocessed as follows:
(1) Categorical variables with more than two outcomes wereatga by #outcomesl indicator variables,

SWe excluded datasets with only categorical variables, ti significant missing data. We did not exclude datasets onhwir
AL scheme did not perform well.



(#4) missing values in categorical variables were treated agarate outcome(iii) missing values in
continuous inputs were replaced by the respective mean(iahthe data was normalized to unit variance
in each dimension. If a dataset had more than two classeslasses were joined to create binary problems
such that the new classes were approximately equally abtinda

All results are obtained from 10-fold cross validation (C\/g., nine tenths of the data were used in
active learning, with one tenth reserved for testing. Taraye out the randomness of the initial labeling
for RS, US and ERS, all experiments are repeated 5 times &br @ahe 10 CV folds. Fig. 3(a) shows the

Pendigits USPS Zip Data

Accuracy
Accuracy

20 40 60 5 50 100 150
Number of labels Number of labels
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Figure 3: Learning curves for two data sets (“Pendigits” dd8PS, Grouping 10”) where DEAL works
well. Note that DEAL does not outperform the competing mdthon every single data set, but on average
across multiple data sets (see tables). The top horizangaid the asymptotic performance of the classifier,
at the end of the complete learning curve (estimated by ID&W for UCI and on separate test set for the
USPS data).

learning curve for the Pendigits dataset. All others appetre supplementary material.

To reward both initial steepness of the learning curve amty e@nvergence to a high accuracy, we
propose to measure performance by the area under the lgammive. All curves are truncated when the
worst method achieves 90% of the accuracy of the classifiéred with the completely labeled training
datd, but at the latest after 200 iterations. As we compare orgyréative performance of different AL
strategies for the same classification algorithm, this mreais equivalent to the one proposed in (Baram
et al., 2004) and also used in (Schein and Ungar, 2007). Butsdor all data sets are presented in Table 2.

We compare the performance of the different strategiescasmmended in (Desar, 2006). The Fried-
man test, which uses the mean performance ranks of Tablel@syap-value ofp = 2.53 x 10~? for the
null hypothesis of equal performance of all strategies. deanparing all classifiers to each other, we use
the two-tailed Nemenyi test. At % significance level its threshold for differences in Mean Ranl.004.
This means that DEAL performs significantly better than eefcthe other strategies. The performances
of the other methods do not differ significantly from eacheotleven at the(0% level (corresponding to a
threshold 010.739).



Table 2: Average accuracy of the compared AL strategies 2oda@a sets from the UCI database with
preprocessing as described in text, wheiie the total size of the data set asidhe dimension of the PCA
subspace. The mean rank is computed based on ordering foenpemce of the AL strategies for each data
set. The best and second best methods are indicated by lldrd italics, respectively. The mean rank
test statistic is used for the statistical hypothesis t@sseribed in the text.

Dataset f,d) RS | US | ERS | DEAL
Anneal (898,17) | .813 | .849 | .802 | .857
Audiology (226,9) | .664 | .650 | .680 | .666
Autos (205,14) | .653 | .638 | .614 | .678
Balance S. (625,2)| .717 | .705| .716 | .715
Breast C. (286,16)| .644 | .656 | .640 | .617
Breast W (699,2) | .807 | .835| .820 | .855
Dermatol. (366,4) | .802 | .841 | .789 | .878
Diabetes (768,2) | .684 | .682 | .687 | .695
Ecoli (336,3) 796 | .793 | .793 | .852
Glass (214,4) .646 | .688 | .669 | .668
Heart C (303,8) | .733 | .722 | .748 | .753
Hepatitis (155,7) | .782 | .796 | .781 | .801
Hyperth. (3772,11)| .863 | .889 | .865 | .919
lonosphere (351,5) .782 | .802 | .817 | .841
Iris (150,2) .793 | .809 | .807 | .924
Led 24 (1000,2) | .667 | .643 | .667 | .695
Letter (20000,5) | .631 | .627 | .632 | .652
Liver (345,2) 530 | .541 | 516 | .539
Lymph (148,9) 671 | .712 | .681 | .692
Optdig. (5620,18) | .819 | .849 | .791 | .887
Pendigits (7494,5)| .783 | .804 | .783 | .861
Primary Tu (339,9)| .652 | .650 | .647 | .696
Satimage (6435,3)| .777 | .819 | .790 | .852
Segment (2310,3)| .830 | .741| .737 | .871
Sonar (208,8) 695 | .714 | .699 | .725
Soybean (683,20)| .786 | .811 | .764 | .831
Vehicle (846,4) | .720 | .736 | .721 | .734
\ote (435,8) .803 | .799 | .812 | .841
Vowel (990,16) | .671 | .540 | .627 | .694
Waveform (5000,2)| .767 | .793 | .787 | .787
Wine (178,3) .831 | .847 | .856 | .895
Yeast (1484,2) | .571| 562 | .577 | .592
Mean Rank 3.09| 256 | 297 | 1.38

5.2 USPS ZIP DATA

To obtain challenging classification tasks with convoludiegision boundaries, the digit images from the
USPS corpus (LeCun et al., 1990) were grouped into two cdassearious ways, see Table 3. All images
were projected to thé = 39 leading principal components, with 7291 samples eligiblesictive learning

4Defined as the average of the 10-fold CV accuracies, eachavdtfierent set of 9/10 of the data fully labeled.



Table 3: Average accuracy of the compared AL strategies@dlifferent groupings of the USPS Zip Data

with preprocessing as described in text. The best and sdmstdnethod are indicated using bold font and
italics, respectively. The mean rank is computed based @erimg the performance of the AL strategies for
each grouping.

Grouping RS us ERS | DEAL
{1,2,3,4,5} | 0.777 | 0.807 | 0.829 | 0.832
{0,1,2,3,4} | 0.786 | 0.808 | 0.831| 0.837
{1,3,5,7,9} | 0.782| 0.819| 0.832 | 0.830
{0,1,7,8,9} | 0.774| 0.811| 0.817 | 0.830
{1,3,4,5,9} | 0.793 | 0.810 | 0.828 | 0.838
{1,2,3,7,8} | 0.782| 0.797 | 0.825| 0.833
{0,1,6,8,9} | 0.777 | 0.813 | 0.824 | 0.846
{0,5,6,7,9} | 0.777 | 0.805| 0.815| 0.830
{0,2,4,5,8} | 0.750 | 0.805| 0.815| 0.821
{3,4,5,6,9} | 0.791| 0.799 | 0.825| 0.840
Mean Rank | 4.000 | 3.000 | 1.900| 1.100

and an independent set of 2007 samples held out for testippges.
As Table 3 shows, DEAL performed best in 9 out of the 10 grogginFig. 3(b) shows one learning
curve, all others are in the supplementary material.

5.3 CALTECH-4

‘ Caltech-4, {1, 2} vs. {3, 4} Caltech-4, {1, 3} vs. {2, 4} Caltech-4, {1, 4} vs. {2, 3}
1, 1 1
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Figure 4: Left: Example images of the 4 object categories atech-4 (airplane, car, face, motorbike).
Right: Learning curves for three possible groupings of tleatggories. DEAL performed best in all cases
and US second best. Interestingly, ERS is not better thaneRS(kee also Table 4). The top horizontal line
is the asymptotic accuracy of the classifier, with all tnaindata labeled (estimated by 10-fold CV).

Caltech-4 is a well established standard benchmark forcobbptegorization (Fergus et al., 2003) and
has also been used in AL (Kapoor et al., 2007). This dataseists of 4 different image groups: airplanes
(category 1; 800 images), rear views of cars (2; 1155), &dates (3; 435) and motorbikes (4; 798). Fig. 4
shows one example from each category. We represent the snbggbe “Color and Edge Directivity De-
scriptor” (CEDD) (Chatzichristofis and Boutalis, 2008). eTtesulting 144-dimensional features were then

10



Table 4: Average accuracy of the compared AL strategies &bff@ent groupings of the Caltech-4 data set
with preprocessing as described in text. The best and sdmsidnethod are indicated using bold font and
italics, respectively.

Grouping RS us ERS | DEAL
{1,2} vs.{3,4} | 0.818] 0.846 | 0.807 | 0.877
{1,3} vs.{2,4} | 0.799 | 0.829 | 0.803 | 0.840
{1,4} vs.{2,3} | 0.803| 0.836 | 0.797 | 0.872

Mean Rank 3.333| 2.000 | 3.667 | 1.000

projected to the 17 leading principal components. To crefalenging two-class problems with convoluted
decision boundaries, we grouped the 4 categories in thresitpe ways.

Table 4 presents the resulting performances, based ond @f6with 5 repetitions (see Section 5.1). It
shows that DEAL performs best for all groupings. Moreover this dataset, US is the second best strategy,
probably because the problem is not as challenging as thBati, that originally consists of 10 categories.
Interestingly, ERS performs worse than random samplingandut of three tasks.

6 DISCUSSION

In this paper we derived a new AL strategy, which considetsonty the density and distance of an unla-
beled sample to the decision boundary, but also the numHabefed points in its neighborhood. All this
information is taken into account by requiring that the uhdeg classifier provide a distributional estimate
at each unlabeled point, leading to a natural definitionsofrdining utility value.

Information similar to that contained in a second-ordetritigtion isimplicitly used by methods that
minimize the expected estimated risk (MacKay, 1992; Roy Mo@allum, 2001; Zhu et al., 2003). These
AL schemes indirectly measure the uncertainty of a pointrege, by perturbing the current classifier with
hypothetical new labels and investing where the potergidiction in estimated risk is greatest.

In contrast, DEAL makes this dependence on the uncertaxptycit. Not only is it simple to implement,
it also empirically outperformed error reduction samplingcertainty and random sampling schemes on a
large collection of UCI, USPS and Caltech data sets. Notedha cannot expect a single strategy to
perform best on all data sets. For instance, if the decistam@ary is simple, strongly favoring exploitation
over exploration (as in uncertainty sampling) may be thé sieategy. For more challenging classification
problems with complex class boundaries, balancing exptorand refinement, as DEAL does, seems a
crucial ingredient for active learning.

While our AL scheme is general and applicable to any classH#routputs second-order distributions,
in this paper we focused for simplicity on its implementatieith kernel density classification. As we shall
describe in a future publication, second-order distrdmgican be derived for other classifiers, most notably
random forest (Breiman, 2001). Encouragingly, with randorast as the base classifier, not only are lower
classification errors achieved, but also the advantage &LD&ver the other AL strategies continues to
hold.

Finally, we note that second-order distributions are noitéd to AL. In the presence of few training
data, they may be used to extend the “doubt” class to alsadegboorly explored regions with high uncer-
tainty. While beyond the scope of this paper, second-ordriloitions are also useful for outlier detection,
in applications such as optical inspection, where not déds are known in advance when training the
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classifier. These extensions, as well as generalizing ousdkleme to multi-class problems, and deriving
second-order distributions for other (discriminativegsdifiers, are interesting topics for future research.
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