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Abstract. In this post-genomic era, microscopic imaging is playing a
crucial role in biomedical research and important information is to be dis-
covered by quantitatively mining the resulting massive imagery databases.
To this end, an important prerequisite is robust, high quality imagery
databases. This is because defect images will jeopardize downstream
tasks such as feature extraction and statistical analysis, yielding mis-
leading results or even false conclusions. This paper presents a weakly
supervised learning framework to tackle this problem. Our framework
resembles a cascade of classifiers with feature and similarity measure de-
signed for both global and local defects. We evaluated the framework on
a database of images and obtained a 96.9% F-score for the important
normal class. Click-and-play open source software is provided.

1 Introduction

Modern biomedical research heavily relies on large scale experiments and con-
trolling the quality of the resulting data is crucial for any meaningful analysis.
Whereas this problem has been investigated thoroughly for “-omic” techniques
such as microarray [13], there has not been sufficient work on controlling the
quality of microscopic imagery databases [15], despite the significant role imag-
ing techniques are playing in this post-genomic era. Existing approaches de-
pend on manual inspection via visualization or semi-automated processing [5,1].
However, the increasing scale and resolution of biomedical experiments such as
high-content screening (HCS) [4] and high-resolution 3D connectomic data [8]
has raised urgent demand for scalable quality control approaches. We are seek-
ing for automated, efficient method for detecting defect images from large scale
image databases. Image defects can occur during sample preparation, such as
debris contamination, and also during image acquisition, such as out-of-focus
[5,1]. They will jeopardize downstream tasks including registration, segmen-
tation, tracking as well as statistical analysis. Usually defect images are rare
and exhibit large variability of appearance. For example, w.r.t. normal images
(Fig. 1A and E), defects can occur at the full image scale due to out-of-focus
(Fig. 1B, D and F), also at particular regions within an image due to debris
comtamination (Fig. 1C, G and H).

Many challenges arise for quality control in large scale microscopic imagery
databases. Firstly, supervised learning algorithms (support vector machine, ran-
dom forest, etc. ) [6] becomes inapplicable in practice. Because the rareness of
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Fig. 1. Examples of normal and defect images in a high-content screening imagery
database: A and E - normal images; B, D and F - out-of-focus; C, G and H - debris.

defect images makes it too time consuming to collect sufficient training samples,
which may require manual screening of the entire dataset. Secondly, it is also
difficult to directly model the defects because of the large variability in scale and
appearance [1]. Finally, the increasing quantity and resolution of images in such
databases prohibit any manual inspection and filtering, and require algorithmic
scalability as well as support of parallel computing [5].

We present a framework to address this important problem and we pursue
two goals: low labeling efforts and high scalability. We cast this problem as an
outlier detection problem [3] (i.e. defect images as outliers) and chose to develop
our framework based on the one-class SVM [18]. Briefly, one class SVM only
requires training samples from the normal class and, in some projected space by
kernalization, it finds the most compact “ball” to enclose those samples. Test
samples outside this ball (i.e. the decision boundary) will be classified as outliers.

Several outlier detection algorithms have been proposed in the literature, such
as statistical models [7], distance measure [9], density estimation [2] or space
partition [11]. We opt to choose one-class SVM for its capability of implicit
feature projection via the kernel trick [19], which is frequently needed when
handling image data. On the contrary, for example, isolation forest [11] partitions
the original feature space by decision trees and determines outliers as those
samples with a short path to the root. Despite their high scalability, they are
restricted to the original feature space and extension by kernalization is not
obvious. This encounters problems when handling image features, which are
usually histograms, and which require kernalized similarity measure (e.g. earth
mover’s distance based [17]).

2 Defects in Microscopic Images: Global vs. Local

We group common causes for image defects into two classes, depending on
whether they affect the image globally or locally. A typical cause for global defect
is out-of-focus imaging and typical examples of regional defects such as debris
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contamination (e.g. hair) [1]. We handle these two types of defects differently
with appropriate features and similarity measure, which allows for predicting
three classes (normal, globally defect and regionally defect) even when training
samples are only provided for the normal class.

For handling global defect, one important motivation is that it must be re-
flected in the statistics drawn from the entire image. For example, the formation
of images is the convolution of the real light with the point spread function
(PSF). When out-of-focus occurs, the PSF becomes wider, and this can be
seen from the intensity histogram drawn from the entire image (e.g. Fig. 2A
vs. Fig. 2B).
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Fig. 2. Examples of the intensity histograms of normal and defect images. From left
to right, the histograms corresponding to image A to C in Fig. 1. The red histogram
inside is the zoomed view showing the intensity range of interest (between 0 and 64).

The task becomes more difficult when regional defects occur, because they
exhibit considerable variability in scale, position and shape. A global statistic
is no longer informative, e.g. Fig. 2A (normal) very similar to Fig. 2C (regional
defect), and extracting information from fine regional details becomes necessary.
In addition, regional defects show significant variability in appearance, implying
the requirement for more features to achieve the required discriminative power.

3 Classification by One-Class SVM Cascade

To exploit the characteristics of global and regional defects and handle these
two classes properly, we propose the quality classification framework shown in
Fig. 3. Briefly, stage one operates on the full image level and aims at filtering out
globally defect images. Stage two and three work on patch level, coupled to form
a coarse-to-fine procedure for detecting regional defects. The overall framework
resembles a cascade of one-class SVM classifiers.

3.1 Global Out-of-Focus Detection by Histogram Comparison

To efficient compare two images with different focus, various methods have been
proposed in the computer vision community for natural image deblurring (see
[12] and references therein). We follow the same intuition – out-of-focus blur-
ring mainly affects the high frequency part (e.g. texture details) of an image. In
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Fig. 3. Workflow of the proposed one-class SVM cascade. Red and green arrows indi-
cate the flow of detected outlier and normal images/patches, respectively.

particular, we build a histogram of the Gaussian gradient magnitude to capture
the high frequency part of an image. This histogram is used as the input fea-
ture for constructing the first one-class SVM that detects out-of-focus images. In
particular, we first normalize the histogram and kernalize it using earth mover’s
distance (EMD) [17]. EMD describes the efforts required for transporting prob-
ability mass from one distribution (i.e. normalized histogram) to the other, and
has proven superior to the Euclidean distance measure [17] (though the later is
computationally much cheaper). Formally, given two normalized histograms (hi

and hj), the kernel for out-of-focus detection is

KEMD(hi,hj) = exp(−λEMDEMD(hi,hj)) (1)

Here, λEMD adjusts the scale of the EMD response. Note that, in order to have
a valid kernel for one-class SVM, the histogram must be normalized [14].

3.2 Regional Defect Detection from Patch Statistics

We have already shown the need for finer level analysis: regional defects are
not possible to capture from full image statistics. Moving from image level to
patch level is not direct: unlike out-of-focus, regional defects can occur at any
location and scale, and exhibit arbitrary appearance. Also, one has to consider
the increasing complexity: hundreds of patches may need be extracted per image
from a database of thousands of images yielding a new problem of size million.

We employs two techniques for regional defect detection. Firstly, we draw
basic statistics from low level features and use RBF kernel for patch similarity
meaure. Secondly, we construct a coarse-to-fine procedure for speedup.

Low Level Features and Patch Statistics We use low level features from to
characterize the images from different aspects including texture (structure ten-
sor), edge (gradient magnitude), and local extreme (eigenvalues of Hessian). For
each feature, the following statistics are drawn from the patch: mean, standard
deviation and quantiles (10%, 50% and 90%). For patch classification, we move
away from histogram and EMD kernel because of its high computational cost:
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EMD is more expensive than Euclidean distance (for RBF kernel) by several
orders of magnitude. .

On Feature Bagging and Classifier Ensembles The high dimensional patch
statistics is used as input features to the one-class SVM. Inevitably, some have
no positive contribution to the patch similarity measure. Unfortunately, we can-
not perform feature selection as in supervised learning. This problem is solved
using feature bagging and classifier ensemble [10]. Briefly, we sample subsets of
features (viz. bagging) and train a one-class SVM on each subset individually.
The intuition is: important features become more influential in a lower dimen-
sional feature subset, and accumulating votes from the ensembles brings more
robustness than a single one-class SVM trained on all features.

To illustrate the improvement in discriminative power from feature bagging,
we randomly sample 500 patches for each normal and defect class and plot their
RBF kernel in Fig. 4. We hope to have an ideal kernel (Fig. 4A) that makes all
normal samples (first 500 rows/columns) completely similar to each other and
fully distinct to defect samples (the remaining rows/columns). The kernel com-
puted using all features (Fig. 4B) does not exhibit the desired property because
the important features are averaged out by the dimension of the input. This is
improved when using feature bagging. We can see the improvement from the
average kernel computed with bagged features (Fig. 4C): the contrast between
the normal and defect samples is apparently enhanced, which implies improved
discriminative power. Note that, in the context of one-class SVM, we do not
have to make the defect samples all similar to each other because they can be
distributed arbitrary outside the decision boundary (ball).
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Fig. 4. Kernel matrices for 500 normal and 500 defect samples: A – ideal kernel; B –
kernel using all features; C – average kernel from feature bagging.

Coarse-to-Fine Filtering Procedure Observing that a significant amount
of image regions are “obviously” normal ones (such as background, regions with
sparse objects), we incorporate a coarse-to-fine filtering procedure for speedup.
The “fine” step (stage three in Fig. 3) operates on small patches (thus expensive).
The speedup is obtained at the “coarse” step, i.e. stage two in Fig. 3, which
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operates on larger patches. In particular, stage two “filters out” easy normal
image regions so that they can be skipped in the expensive stage three. Large
patch size may average out small defect regions and produce a false normal
patch. To prevent this, we made stage two more selective on determining normal
images by setting a high ν value to the one-class SVM[18].

4 Experimental Results

We evaluated our framework on an image database for mammalian cell culture
study. The new 9216-microwell cell array (in a 96 × 96 layout) [16] was used,
yielding one image per well (Fig. 1). An automated scanning microscope was
used with an overall imaging time of around 10 hours (4 seconds/image). Our
approach is wrapped into a click-and-play software implementation that is avail-
able to the public1.

It is important to select normal, training images with different characteristics
(e.g. cell density, illumination, etc.) such that the training features (histograms
or patch statistics) are not biased towards any particular type of normal images.
Also, it is helpful to train the system incrementally. That is, starting with some
training images, train and predict on a small subset of images; select representa-
tive samples from the wrongly predicted ones, add them to the training set and
retrain the system. We made two rounds of incremental learning and eventually
found 140 (out of 9216) training images. Overall, the framework took roughly
2.5 hours to complete the prediction on the entire dataset on a 4 core (2.8G-Hz)
machine. Training time is roughly 5 minutes per stage.

We define normal images as those that are useful for our cell segmentation
and counting task and generate manual ground truth accordingly. Table. 1 shows
the overall detection accuracy by our framework, depicted as a confusion ma-
trix (rows being the ground truth), and the per class precision/recall is given in
Table 2. The parameter settings that yields this result are biased to more tol-
erance of false positive rate, because it is more costly to mistake defect images
for normal images. Note that the definition of “normal” may change with the
task of the analysis. For example, slightly out-of-focus images are useful for cell
counting but useless for phenotype classification.

Normal Out-of-Focus Regional

Normal 7854 146 338

Out-of-Focus 1 426 28

Regional 19 47 357
Table 1. Classification confusion matrix.

Precision Recall F-score

Normal 0.997 0.942 0.969

Out-of-Focus 0.688 0.936 0.793

Regional 0.494 0.844 0.623
Table 2. Per class precision and recall.

Some examples of detected regional defects are shown in Fig. 5. Our frame-
work shows high accuracy on detecting regional defects, even though they exhibit

1 http://ilastik.org/
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Fig. 5. Examples of regional defects found by
our framework.
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Fig. 6. Location of out-of-focus images
on 96x96 well plate.

Fig. 7. Examples of errors in regional defect detection: misdetected (left two) and false
positive (right two).

strong variability in size, shape, texture and other characteristics. Fig. 7 shows
some errors by our framework. We notice that misdetection occurs when the
regional defect is not sufficiently strong (left two images).

Fig. 6 shows the detected out-of-focus images represented by their signed
distance to the classifier’s decision boundary in a 96 × 96 cell array layout.
Higher value indicates more severe out-of-focus error. As we can see from the
prominent strip in the center, some systematic error caused the microscopy to
malfunction during the entire acquisition time for row 45 and 46. This suggests
investigation and helps to avoid such systematic errors in future experiments.

Discussion: It is worth pointing out that training data preparation would be
too expensive for two-class learning. Firstly, defects exhibit huge variability in
appearance, which forces users to collect “defect” images by browsing through
huge databases. This task is tedious and becomes more so if there are few pos-
itive (defect) images, as is desirable from the experimental point of view. Sec-
ondly, we showed the necessity of patch level classification for detecting regional
defects. Two-class learning will require users to explicitly mark each defect re-
gion/patch, thus even more expensive. We avoid this excessive labeling efforts
in our approach.
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5 Conclusions and Outlook

This paper presents a framework for microscopic image quality control based on
one class learning. We studied the distinct properties of global and local defects
in microscopic images and proposed appropriate features and similarity measures
for them. At the same time we show that its possible to distinguish globally and
regionally defect images with a scalable cascade of one class classifiers using only
training images from the normal class.

In the future, we plan to integrate our method with the automated mi-
croscopy control. This offers the advantage that the detection results can give
feedback to correct image acquisition in place and in time. Also, given our generic
framework, we plan to extend our method to other biomedical imaging scenarios.
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