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Abstract

In structured prediction, it is standard procedure to discriminatively
train a single model that is then used to make a single prediction for each
input. This practice is simple but risky in many ways. For instance, mod-
els are often designed with tractability rather than faithfulness in mind.
To hedge against such model misspecification, it may be useful to train
multiple models that all are a reasonable fit to the training data, but at
least one of which may hopefully make more valid predictions than the
single model in standard procedure.
We propose the Coulomb Structured SVM (CSSVM) as a means to obtain
at training time a full ensemble of different models. At test time, these
models can run in parallel and independently to make diverse predictions.
We demonstrate on challenging tasks from computer vision that some of
these diverse predictions have significantly lower task loss than that of
a single model, and improve over state-of-the-art diversity encouraging
approaches.

1 Introduction

The success of large margin methods for structured output learning, such as
the structured support vector machine (SSVM) [1], is partly due to their good
generalization performances achieved on test data, compared to, e.g. maximum
likelihood learning on structured models [2]. Despite such regularization strate-
gies, however, it is not guaranteed that the model which optimizes the learning
objective function really generalizes well to unseen data. Reasons include wrong
model assumptions, noisy data, ambiguities in the data, missing features, insuf-
ficient training data, or a task loss which is too complex to model directly.
To further decrease the generalization error, it is beneficial to either (i) generate
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multiple likely solutions from the model [3, 4, 5] or, (ii) learn multiple mod-
els which generate diverse predictions [6, 7, 8]. The different predictions for a
given structured input may then be analyzed to compute robustness/uncertainty
measures, or may be the input for a more complex model exploiting higher-order
dependencies, as is done in re-ranking models, e.g. Yadollahpour et al. [9] aug-
ment their features with global ones for automatic re-ranking. Other successful
applications include prediction of diverse hypotheses for machine translation [10],
on-demand feature computation [11], or active learning methods [12, 13]. Fur-
thermore, an oracle may choose amongst all predictions that one which is closest
to the ground truth. This becomes handy for proof-reading tasks in order to keep
manual interactions at a minimum. It is particularly beneficial in structured
output spaces to present to the user not only similarly likely, but also diverse
proposal solutions. The set of diverse predictions may still contain a low-loss
solution, even if the most likely prediction of the single model has a large loss.
As a consequence, instead of minimizing the expected generalization error of a
single model in structured learning, (cf. Fig. 1(a)), it is favorable to minimize
the expected generalization error amongst multiple models, see Fig. 1(b,c).

Our main contribution is an algorithm termed the Coulomb structured sup-
port vector machine (CSSVM) which learns an ensemble of M models with dif-
ferent parameters, thanks to a corresponding diversity-encouraging prior. This
is qualitatively different from previous work which requires that the outputs of
the M models are diverse. In particular, we allow the M models in the ensemble
to make identical predictions (and hence perfectly fit the data) at training time.
Another benefit is that CSSVM can learn diverse models even if only a single
structured training example is available. In Sec. 3.4, we generalize our algorithm
to allow for structured clustering.

2 Related Work

One major research avenue is to generate at prediction time multiple (possibly
diverse) solutions from a single previously trained structured model [3, 4, 5]. In
order to find M similarly likely solutions, Yanover et al. [3] propose a message
passing scheme to iteratively add constraints forbidding the previous solutions.
Batra et al. [5] build on the same idea but incorporate these constraints directly
into the objective function. This yields a deterministic framework which tries
to find diverse solutions by requiring a minimum distance to the previous solu-
tions. Their idea is extended in [14] to jointly infer diverse predictions at test
time. Papandreou et al. [4], instead, perturb model parameters repeatedly with
noise from a Gumbel distribution, and subsequently solve for the maximum-
a-posteriori (MAP) solution to sample M plausible solutions. Their idea of
perturbing the data term is natural when data is assumed to be noisy.
Sampling M solutions could of course also be achieved using Gibbs sampling or
other MCMC techniques, however with very slow mixing time on general graphs;
more efficient sampling strategies have been proposed recently [15]. Recent work
aims at finding the M best modes of the probability distribution (local maxima)
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Figure 1: Structured SVM learning. “+” indicates a structured training
example whereas “−” in the same color are the corresponding structured outputs
with task loss ∆(+,−) > 0. (a) A standard linear SSVM maximizes the margin
between positive and all “negative” examples (decision boundary with its normal
vector in cyan). (b) Multiple choice learning [6] learns M SSVMs (here: 3) which
cluster the space (clusters for positive and negative examples are depicted in the
same color) to generate M outputs. (c) We propose the Coulomb Structured
SVM which learns an ensemble of M SSVMs through a diversity term which
maximizes the pairwise angles θij between their (linear) decision boundaries,
while seeking to best fit all training data.

directly [16, 17]. While promising, their algorithms are yet not applicable to
general graphs. Another recently discussed approach to sample diverse predic-
tions at test time are determinantal point processes [18].
Rather than learning one model and then sampling successively (possibly di-
verse) solutions from the model, recent developments [6, 7, 8] allow to train
multiple diverse models, i.e. diversity is already considered at training time.
Typically, only one ground truth solution is provided per training sample rather
than a diverse set, and thus diversity amongst the models can not be directly
measured by means of training data. There are multiple works which tackle this
challenge successfully: Gane et al. [8] learn (multi-modal) distributions over the
perturbations in Perturb-and-MAP models using latent variable models which
include inverse convex programs to determine relations between the model pa-
rameters and the MAP solution. Most similar to our work is [6, 7], where a set
of M SSVMs is optimized while trading diversity versus data fit. In the former,
diversity is encouraged through clustering: Each structured training example is
assigned to the learner which achieves the lowest task loss for this sample in
the current iteration. Their idea builds on the assumption that there are M
clusters present in the training samples, thus requiring at least M (implicitly)
diverse training samples. This requirement may be a crucial problem on small
training sets. Our approach, in contrast, can learn M diverse models even if
only one training example is present, as is often the case in CRF learning, e.g.
co-segmentation (Sec. 4i), [19, 20]. In their more recent work, Guzman-Rivera
et al. [7] extend their idea by augmenting the learning objective directly with a
convex term which explicitly rewards diversity in the outputs of different learn-
ers, as also done in [21]. In our approach, in contrast, the diversity prior is
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posed on the parameters of the M models, and thus, all learners might achieve
the same loss on the training samples while still providing diverse predictions on
test data, cf. Fig. 1(b,c).

3 Coulomb Structured Support Vector Machine

The goal of this work is to learn M mappings from one structured input to M
possibly diverse structured outputs from a training set D = {(xi,yi)}i=1,...,N .

3.1 Problem Description and Diversity Prior

For this purpose, we propose to learn an ensemble of M concurrent structured
SVMs, which amounts to the following optimization problem:

arg min
w1,...,wM

αΓ(W )︸ ︷︷ ︸
diversity

+ Ω(W )︸ ︷︷ ︸
generalization

+C ·RM (W,D)︸ ︷︷ ︸
data term

, (1)

where RM (W,D) = 1
MN ·

∑M
m=1

(∑N
i=1 L(xi,yi;wm)

)
is the empirical risk with

L(xi,yi;wm) being the structured loss of the i-th training example evaluated
by the m-th learner. Ω(W ) is the regularization term on the parameters W =
[w1, ...,wM ] (in SSVMs typically an L2 regularizer is used on each single wi),
and a bias term is omitted since it does not have an influence on the optimization
problem [22]. Diversity amongst the M learners is encouraged by the diversity
prior Γ(W ) on the parameters W , where α regulates the degree of diversity. In
this way, α = 0 reveals the standard SSVM formulation, since all M weights
converge to the same optimum.

For the ease of argument, let us now assume the training set is linearly sepa-
rable1 as in Fig. 1. Moreover, assume that feature selection yielded independent
features. Our illustration of the structured learning problem in Fig. 1 is analo-
gous to representations of flat classification problems where we regard the ground
truth labeling of the structured training samples as the single positive examples
and all other (exponentially many) labelings as corresponding negative exam-
ples. The objective in Fig. 1(a) is to find a weight vector w which separates the
positive from the negative examples and maximizes the margin [1].

We define the version space V (D) analogously as in flat classification [24, 25],
as

V (D) = {w ∈ W | R1(w,D) = 0}, (2)

where R1 is the empirical risk as in Eq. (1) with M = 1, and W is the space of
feasible weight vectors. In other words, the version space is the set of all feasible
weight vectors which yield zero loss on the training set D. For linear classifiers,
the weight vectors w ∈ W are linear combinations of the training points xi [25],

i.e. w =
∑N
i=1 cixi for coefficients ci, and the version space may be restricted

1Note that this is almost always true once we have a sufficient number of independent
features, see the function counting theorem [23].
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appropriately. Note that the error of a structured model induced from a weight
vector in version space may still be large for randomly chosen query points (i.e.
high generalization error) in spite of achieving zero loss on the training set.
Typically, version space is only summarized by a single point such as the center
of the largest inscribed sphere (the hard-margin SVM) or the center of mass
of the version space (the Bayes point machine [26]). To learn an ensemble of
classifiers, our goal is to distribute M weight vectors wm ∈ W, m = 1, ...,M ,
in version space such that the most diverse predictions on unseen points are ob-
tained. To this end, it is sufficient for structured models with energy functions
linear in w – similar to flat linear classification [27] – to only investigate weight
vectors on the unit sphere (i.e. ‖w‖2 = 1): At prediction time, labelings are
scored by the energy function of the structured model E(x,y) = w>f(x,y),
where f(x,y) is the joint feature function. Replacing w by λw, λ > 0, still
yields the same ordering of the labelings.
We hence have to solve an experimental design problem on parts of the unit
sphere to get an ensemble of diverse structured models, in other words – disre-
garding training data – we want to evenly distribute M points on the unit sphere.
The goal of experimental design [28, 29] is to select from a set of possible exper-
iments / configurations / parameter settings the subset with greatest expected
merit. In our case, the set of experiments to choose from is the sphere ‖w‖2= 1.
In other words, rather than sample the sphere uniformly, we need to bias our
experimental design towards parameters that produce low empirical loss. Hence,
we next introduce the repulsive diversity energy term Γ(W ) which makes Eq. (1)
a non-convex optimization problem, wich we optimize approximately.

3.2 Diversity through Coulomb Potential

Distributing M points evenly on the unit sphere is much studied in information
theory and is known as a spherical code [30]: Different variants include sphere
packing (maximize the minimal angle between any two parameter vectors) and
covering problems (minimize the distance between any point on the sphere and
the closest parameter vector). In three dimensions, the problem is known as
the Thomson problem2: The goal is to minimize the energy configuration of M
charges on a unit sphere while the charges repel each other with forces deter-
mined by Coulomb’s law. While yet unsolved exactly, approximate solutions
have been proposed in the literature, including spiral approximations [31], sub-
divisions of polyhedrons [32], or gradient descent methods [33, 34, 35] which
correspond to electrostatic repulsion simulations exploiting Coulomb’s law: Par-
ticles of equal charge repel each other with a force proportional to the square of
their pairwise distance, the Coulomb force. More generally, in the equilibrium

2Note that we want to approximate this problem in a high dimensional space instead of
only 3 dimensions.
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Figure 2: Optimization In each iteration of the subgradient algorithm, the
current weights w of the competing M learners (here: 2) are projected to the
unit sphere, w̄, their Coulomb forces (green) are computed, and the resultant
weight updates P(w̄ + αF̄ ) are projected from the unit sphere to the original
weight vectors w, yielding FC (pink). Independently, the negative gradient of
the regularized risk determines forces FRR (blue). Added together, FRR and
FC yield the update F of the weight vector (red).

state of the M particles p1, ...,pM on the unit sphere, the Riesz energy,

Es(p1, ...,pM ) =

M∑
i=1

M∑
j=1,j 6=i

1

‖pi − pj‖s2
s.t. ‖pi‖22 = 1 ∀i (3)

is minimal. In the following, we set s = 1 which yields the Coulomb energy
EC = E1. The Coulomb force which affects particle pi amounts to the negative
gradient vector of Eq. (3) w.r.t. pi [33, 36, 35] and is given by

F̄Ci = −∂EC
∂pi

(p1, ...,pM ) = −
N∑

j=1,j 6=i

pj − pi
‖pi − pj‖32

=

N∑
j=1,j 6=i

eij
‖pi − pj‖22

, (4)

where eij is the unit vector from pi to pj . Projecting the resultant of force F̄Ci
on pi back to the unit sphere by the projection P(p) = p

‖p‖ yields the projected

gradient descent update on pi, namely p′i = P(pi + F̄Ci ).

3.3 Optimization by an Electrostatic Repulsion Model

In the following, we will specify the diversity term Γ(W ) in Eq. (1) and minimize
it by utilizing the electrostatic repulsion simulation from the previous section.
As derived in Sec. 3.1, the magnitudes of vectors wm do not contribute to the
diversity term Γ(W ). Thus, we project the weight vectors to the unit sphere, i.e.
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w̄m = wm

‖wm‖ , and use the Coulomb energy EC as the diversity term3 in Eq. (1),

Γ(w1, ...wM ) = EC(w̄1, ..., w̄M ). (5)

Note that the weights in both the regularizer Ω(W ) and the risk RM (W,D) are
not constrained to the unit sphere.

In Sec. (3.2), we derived the projected Coulomb forces which act on the point
w̄m on the unit sphere. This update step can be projected to wm utilizing the
intercept theorem (cf. Fig. 2),

FCm = ‖wm‖22 · P(w̄m + αF̄Cm). (6)

Next, let us derive force FRRm which acts on particle wm according to the
regularized risk Ω(W ) + C · RM (W,D) in Eq. (1). The regularized risk in a
structured SVM can be minimized using subgradient methods [38] and the neg-
ative subgradient for the learner m amounts to the force FRRm , i.e. the direc-
tion to go in the next optimization step when only considering the regular-
ized risk. The L2 regularized risk of one learner is given by R1(wm,D) =
1
2‖wm‖22 + C

N

∑N
k=1 L(xk,yk;wm). When choosing the structured hinge loss

L(xk,yk;wm) = maxy∈Y
(
∆(yk,y)−w>mf(xk,y)

)
+ w>mf(xk,yk), where

∆(yk,y) is the task loss, f the feature function, and (xk,yk) are the training
examples; then the subgradient gmk for training example k is given by

ŷm = max
y∈Y

(
∆(yk,y)−w>mf(xk,y))

)
+ w>mf(xk,yk),

gmk = f(xk,yk)− f(xk, ŷ
m), (7)

i.e. the regularized risk force on particle wm is FRRm = − 1
N

∑N
k=1 g

m
k .

Finally, all forces acting on wm can be summed to the total force Fm which
determines the next update of wm: Fm = FRRm + FCm . In other words, defining
ηt as the step size at iteration t and gml as in Eq. (7), then the update of wm is
given by

w′m ← wm − ηt
(
wm +

C

N

∑N

k=1
gmk − FCm

)
, or: (8)

w′m ← wm − ηt
(
wm + Cgml − FCm

)
, (9)

where the latter is the update in the stochastic subgradient algorithm with a
random l ∈ {1, ..., N}. Note that element [w′m]i may be projected to zero to
guarantee submodular energies during training as proved in [39]. For initial-
ization of the CSSVM, we train one SSVM to get the optimum w∗. Then M
random perturbations of w∗ give starting points for w1, ...wM .

3Note that we assume electrostatic charges on the parameters, and not the training samples
as done in [37].
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3.4 Extension: Structured Clustering

Our model suggests a straightforward extension to structured clustering: In the
stochastic subgradient update given in Eq. (8), a random training sample is cho-
sen for each learner to update the weight vector. Instead of random selection, a
steered selection of training samples for each individual learner would increase di-
versity. Similarly to the structured K-means block-coordinate descent algorithm
proposed in [6], we assign training examples to individual learners: After each
subgradient iteration in Sec. 3.3, the task losses ∆(ym,yi;wm) between predic-
tion ym and ground truth yi are computed for each learner m, m ∈ {1, ...,M},
and normalized over all learners, i.e. πmi = ∆(ym,yi;wm)∑M

k=1 ∆(yk,yi;wk)
,
∑
m π

m
i = 1.

Training example i is then assigned to any of the M learners according to
some indicator vector σ(πi), where [σ(πi)]m = 1 if training sample i is assigned
to learner m, 0 otherwise. In Table 1, we propose different alternatives for
the mapping σ(·). The subgradient update step in Eq. (8) is then modified
accordingly:

w′m ← wm − ηt
(
wm +

C∑N
j=1 [σ(πj)]m

N∑
j=1

[σ(πj)]m · gmj − FCm
)
. (10)

4 Experiments and Results

To evaluate the performance of our approach, we run experiments on three chal-
lenging tasks from computer vision: (i) co-segmentation, (ii) foreground/back-
ground segmentation, and (iii) semantic segmentation. We use the iCoseg [40]
database for (i) and (ii) and PASCAL VOC 2010 [41] for (iii). Note that for
clearer comparison with previous work, we focus on the evaluation of our first
stage model usually used in a two stage pipeline. The proposed method can be
combined with any second stage model [10, 11, 42, 12, 13, 43, 44].

We implemented our algorithm in Python using the PyStruct [45] framework.
The code is made available on https://github.com/martinsch/coulomb_ssvm.
On all three tasks, we are comparing our results with the state-of-the-art diver-
sity inducing methods Multiple Choice Learning [6] (MCL) and Diverse Multiple
Choice Learning [7] (DivMCL), the Matlab implementations of which as well as
their features/splitting criterions for the iCoseg dataset in task (ii) were kindly
provided by the authors. The energies for tasks (i) and (ii) are submodular, and
we thus use graph-cut as inference method; for the multi-label problem in (iii),
we utilize TRWS [46].

Generating M diverse outputs is particularly useful in early stages of cas-
caded approaches, where at a later stage, e.g. a human or a second complex
model may choose the best of M predictions according to a higher-order loss
function. The goal of our approach is, hence, to generate M diverse predictions
some of which ought to achieve better task loss than the prediction of the single
max-margin model. We therefore stick to the evaluation criterion as applied in
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Figure 3: Top: Hamming losses on the respective datasets of the iCoseg database
averaged after cross-validation (lower is better): Each fold consists of exactly one
image. We train our model, MCL [6], and DivMCL [7] on one fold, validate on
three other folds, and take the remaining Nc − 4 folds as test folds, the errors
of which we report. For each test example, we compute the M task losses
of the predictions to the ground truth, report the minimum as the pick best
error (line), and mark the averages of the second, third, etc. best errors in the
graphs. In other words, the line represents the losses which an oracle achieves
when selecting always the best out of the M predictions. Note that the average
error when always selecting the prediction with highest task error (i.e. the worst
prediction), is constantly lower in our model than in the competing MCL and
DivMCL. Bottom left: Frequency of how often model #i, i ∈ {1, ...,M},
generates the best test prediction; here M = 10, speed-skating dataset. Note
that in our algorithm, there is no dominant model and each of the M models
achieves the pick-best error on a reasonable number of test samples, whereas in
MCL and DivMCL the pick-best losses are attributed to only one or few models,
respectively. Bottom right: Frequencies of task losses achieved among all test
folds and models. All models in our CSSVM ensemble yield predominantly low
losses whereas in Div-/MCL many predictions are useless.
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prior works, where an oracle chooses the best out of M predictions. In this way,
we can evaluate the usefulness of such an approach for cascade models. We relate
to this loss as pick best error, i.e. the lowest task loss among the M predictions.

(i) Co-Segmentation The design of the proposed CSSVM allows to learn
an ensemble of diverse models on very small training sets, in fact, even on
training sets which consist of one structured training example only. To demon-
strate the usefulness of our approach on such tasks, we run experiments on a
co-segmentation dataset. The goal in co-segmentation in general is the simulta-
neous segmentation of two images each containing similar objects [47]. In our
experiments, we assume that a model can be learned on the annotations of one
image to predict the segmentation of similar images. We choose six categories
from the iCoseg database and use the superpixels and features from [7], their 12-
dim. color features for the nodes and a contrast-sensitive and -insensitive Potts
term for the edges.
The results for MCL, DivMCL, and our model are depicted in Fig. 3. For each
category, we vary the number of models in the ensemble M from 1 to 10, where
M = 1 may be viewed as the baseline and corresponds to the training of a stan-
dard SSVM. We perform a full Nc-fold crossvalidation on each category, where
Nc is the number of images in category c, and report the test losses of all M
models. We choose the regularization and diversity trade-off parameters of each
method on a hold-out validation set consisting of three images per category.
Note that these losses are computed on superpixel level rather than pixel level
which makes for a fair comparison since all three models are using the same
superpixels and features. In these datasets, Nc’s are in the range of 10 to 33,
dependent on the dataset. Obviously, we use strategy “all” from Tab. 1 for these
experiments.
It should be noted that, if we took the same implementations, exactly the same
losses for all three competing models for M = 1 would be obtained (since all
three models are direct generalizations of SSVM). The deviations here are proba-
bly due to different optimization strategies, e.g. different minima on a plateau or
not enough iterations for the subgradient method (Div-/MCL use cutting-plane
optimization instead).
On all six datasets, our method clearly improves over the baseline of only one
SSVM (M = 1) and achieves better pick-best errors for large M than MCL and
DivMCL do, with the exception of the speed-skating category. We show for this
category exemplarily, however, that our algorithm learns M models which are
all performing similarly well while in DivMCL only few models are strong, and
in MCL, there exists only one strong model since diversity is only encouraged by
assigning the training samples (here: 1) to specific models (shown for M = 10
in bottom left of Fig. 3). The phenomenon that our method yields significantly
better average errors across all predictors in the ensemble is also reflected in the
histogram of all losses from the full cross validation, as provided in Fig. 3 bot-
tom right. The fact that most of the predictions achieve low loss in the proposed
CSSVM is a strong advantage when the model is used in a cascade model since
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DivMCL (Test)
MCL (Test)
Ours (all) (Test)
Ours (best) (Test)
Ours (sampled) (Test)
Ours (stochastic) (Test)

Figure 4: Foreground/background Segmentation (iCoseg). Average pick-
best error (Hamming distance, lower is better) on the set of all categories. Shown
are the test errors with one standard deviation (error bars are slightly perturbed
on the x-axis for illustration purposes). Our training sample assignment strate-
gies are denoted as in Tab. 1.

all predictions are good candidates to be selected as the best solution.
Example images for M = 10 are presented in Fig. 5. Note that for CSSVM,
all models in the ensemble achieve similar training performances while yielding
high diversity on the test images. By design, diversity on the training samples
is not rewarded but models are distributed diversely in version space as argued
in Sec. 3.1 in order to achieve a low generalization error on unseen data when
the predictions of all M models are considered jointly. This is in contrast to the
competing methods, where diversity among the models is also enforced on the
training set.

(ii) Foreground/background Segmentation In this experiment, we use all
these categories together (166 images in total) and use the same split criterion
for the 5-fold cross validation as in [7]. We train the models on one fold, select
regularization and diversity trade off parameters on two validation folds and
report the test error on the remaining two folds. Fig. 4 presents the results for
MCL, DivMCL, and our model with different sample assignment strategies as in
Tab. 1. Since this dataset consists of different categories, it seems natural that
the models which cluster the training data by assigning training instances to
distinct models (as in Div-/MCL, Ours-sampled, and Ours-best) perform better
than the models which try to fit all M models to the entire dataset (Ours-all,
Ours-stochastic). Our model achieves similar accuracies as the state-of-the-art
method DivMCL in this experiment.
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[σ(πi)]m = Description Abbrev.
1 Assign the sample i to every

learner m ∈ {1, ...,M}, i.e.
Eq. (8).

all

1

[
m = arg min

m′
{πm′

i }
]

Assign the sample i to the
learner m which achieves the
best task loss.

best

1
[
m = m̂(π1

i , ..., π
M
i )
]

Sample a learner index m̂
from the distribution defined
by q1

i , ...q
M
i and assign the

sample i to learner m̂; here,

qmi =
1−πm

i∑
j(1−πm

j ) ,
∑
m q

m
i = 1.

sampled

1
[
i = ĵm

]
Sample one training example in-
dex ĵm ∈ {1, ..., N} for each
learner m ∈ {1, ...,M}, i.e.
Eq. (9).

stochastic

Table 1: Possible mappings for the assignment of training samples to individual
learners

(iii) Semantic Segmentation We also evaluate our algorithm on the PAS-
CAL VOC 2010 benchmark dataset for object class segmentation (challenge 5).
The dataset consists of an official training set and validation set comprising 964
images each, which contain 21 object classes. We use the SLIC superpixels and
Textonboost potentials [48] publicly available from [45]. Due to the lack of a
publicly available test set, we are selecting the parameters of all three models on
the official validation set and report these validation errors in Tab. 2 using the
PASCAL VOC evaluation criterion, the Jaccard index. For structured learn-
ing, all models use a loss weighted by the inverse class frequency present in the
training data. The baselines for this experiment are given by an arg max opera-
tion on our features (“unaries only”), a linear SVM on the unary features, and a
structured SVM (M = 1). With these publicly available features, these baselines
achieve average accuracies of 21.6%, 27.4%, and 29.1% which is much lower than
the current best results reported on this challenge. In this experiment, however,
we want to focus on how much a baseline algorithm can be improved thanks to
a diverse ensemble, and not indulge in feature and pipeline tuning.

By training M = 6 diverse models and selecting the best predictions amongst
them according to the ground truth, all three competing methods yield signifi-
cantly higher pick-best accuracies than a single SSVM. We can even improve the
accuracy from 29.1% to 37.6% with the assignment strategy “best” (cf. Tab. 1).
This massive relative improvement underlines the usefulness of a diverse ensem-
ble approach. MCL (35.0%) and DivMCL (34.5%) yield inferior performance.
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IMG GT SSVM Coulomb Structured Support Vector Machine
1 2 3 4 5 6 7 8 9 10

Figure 5: Foreground/background Co-segmentation (white/black, respec-
tively). The single training image in each dataset is marked in yellow, the best
prediction is framed in green. Note that all M = 10 models of CSSVM fit the
training images similarly well, whereas high diversity amongst the M models is
present in the predictions of the test set. GT stands for ground truth.

5 Conclusion

We propose an algorithm termed the Coulomb structured support vector machine
which learns an ensemble of multiple models in order to yield diverse predictions
on test data. The diversity prior is imposed on the set of model weights rather
than on the outputs of training samples as in previous approaches. This allows
for the training of diverse models even on a single structured training example.
The CSSVM trades off diversity, large margins, and a data term during training
in order to optimize the minimum expected generalization error of the entire
ensemble. The coupling between the M models is effective only at training but
not at test time. As a consequence, predictions can be made in parallel without
communication overhead in contrast to [5]. Our algorithm learns multiple strong
predictors in an ensemble on the entire dataset, other than [6, 7] where predic-
tors ’focus’ on the different clusters in the data, if present. We demonstrate
on numerous real world datasets that the M diverse outputs of the proposed
ensemble method include predictions with significantly lower task loss compared
to only one model. Moreover, our approach of inducing diversity significantly
improves over state-of-the-art methods on very small training sets while staying
on par with the state-of-the-art methods on bigger training sets. The usefulness

13



Method

b
a
ck

gr
o
u

n
d

ae
ro

p
la

n
e

b
ic

y
cl

e

b
ir

d

b
oa

t

b
ot

tl
e

b
u

s

ca
r

ca
t

ch
ai

r

co
w

d
in

in
gt

a
b

le

d
og

h
or

se

m
o
to

rb
ik

e

p
er

so
n

p
la

n
t

sh
ee

p

so
fa

tr
a
in

tv
m

o
n

it
o
r

Average
Accuracy

Unaries only 80.2 25.0 0.1 10.6 14.3 13.8 32.1 44.0 30.0 4.9 9.5 4.4 11.9 15.4 27.5 35.5 10.5 19.8 12.0 28.6 22.3 21.6
Linear SVM 80.0 36.6 2.8 17.3 23.0 25.6 40.4 48.7 27.6 8.3 19.5 10.5 13.3 21.9 34.4 36.4 16.9 22.8 17.0 37.0 34.3 27.4
SSVM (M=1) 79.9 39.9 2.1 18.5 27.5 28.4 43.2 49.2 28.7 8.4 21.6 12.3 14.1 23.7 35.2 37.2 22.0 23.6 18.3 38.9 39.4 29.1
MCL (M=6) 82.0 49.1 1.0 31.5 21.2 31.4 55.3 57.7 37.0 12.0 33.0 27.9 28.0 28.8 40.9 39.4 15.1 32.1 23.2 42.4 46.5 35.0
DivMCL (M=6) 82.2 30.3 0.5 25.7 26.4 30.4 51.1 56.3 42.7 7.9 33.5 22.9 45.4 27.3 45.6 43.3 21.3 39.5 17.4 42.9 32.2 34.5
Ours (M=6, all) 83.4 44.4 1.7 37.4 34.1 34.2 47.7 54.9 42.8 8.9 34.4 22.8 40.4 24.7 33.2 44.5 25.7 29.1 20.3 40.1 41.3 35.5
Ours (M=6, stochastic) 83.5 40.1 2.4 25.1 23.0 28.5 57.4 51.8 35.3 8.4 33.7 18.9 31.3 24.9 37.9 42.0 22.7 37.8 24.3 44.4 51.3 34.5
Ours (M=6, best) 83.2 48.8 3.2 38.3 28.4 33.3 58.1 60.3 51.1 7.7 34.5 21.6 34.6 32.0 39.3 43.4 17.7 27.7 26.6 48.3 51.3 37.6
Ours (M=6, sampled) 83.9 42.4 1.7 27.6 27.5 33.1 55.9 53.0 46.6 7.6 34.1 25.6 34.6 26.1 41.6 45.6 27.4 32.6 25.8 46.5 48.4 36.6

Table 2: Pascal VOC 2010 Validation Accuracy (higher is better). We tune
a popular conditional random field [45] as baseline structured models (top rows).
We here focus on the relative improvement that different diversity strategies can
achieve (bottom rows), rather than tweaking the baseline model itself.

for machine learning tasks beyond computer vision is evident.
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