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Abstract. We present novel variational approaches for segmenting and
cosegmenting images. Our supervised segmentation approach extends the
classical Continuous Cut approach by a global appearance-based data
term enforcing closeness of aggregated appearance statistics to a given
prior model. This novel data term considers non-spatial, deformation-
invariant statistics with the help of the Wasserstein distance in a single
global model. The unsupervised cosegmentation model also employs the
Wasserstein distance for finding the common object in two images. We
introduce tight convex relaxations for both presented models together
with efficient algorithmic schemes for computing global minimizers. Nu-
merical experiments demonstrate the effectiveness of our models and the
convex relaxations.
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1 Introduction

The segmentation problem for k classes consists of finding a partition (Ω1, . . . , Ωk)
of a domain Ω, which means Ω1, . . . , Ωk ⊂ Ω, Ωi ∩ Ωj = ∅ for i 6= j and⋃k
i=1Ωi = Ω, such that an energy E(Ω1, . . . , Ωk) is minimized. A commonly

used energy functional comes from the minimal partition problem:

E(Ω1, . . . , Ωk) =
1

2

k∑
i=1

Per(Ωi;Ω) +

k∑
i=1

ˆ
Ωi

di(x)dx , (1)

where Per(Ωi, Ω) is the perimeter of the set Ωi in Ω and di ∈ L1(Ω), i ∈
{1, . . . , k}. By minimizing the above functional, k sets are found such that their
boundaries are short and the areas they cover are dictated by which potential
function di has the lowest value. See [5, 12, 16] for treatments of this problem,
including relaxations, discretizations and extensions of the minimization prob-
lem (1). In the case of two classes this is the well-known Continuous Cut segmen-
tation model, see [8]. This model can be exactly solved by variational methods,
see [9].

Often the potential functions di(x) = − log(pi(I(x))) are chosen as the nega-
tive log-likelihood of some probability density pi modelling the data. Using such
potentials di poses in general the following problems:
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Fig. 1: Inadequacy of local costs for segmentation. Figure (a) shows the
result of the Continuous Cut segmentation, Figure (b) the result of our approach
and Figure (c) the resulting and prior foreground color histograms. The blue
areas in Figures (a) and (b) denote the areas determined to be foreground by
the respective algorithms. The ground truth foreground is the penguin, while the
background is the white area behind it as well as the “EMMCVPR” inscription.
We set di(x) = − log(pi(I(x))) in the Continuous Cut model with accurate
distributions pi for the two classes. White and black color can be found in fore-
and background, hence local potentials di for both classes are not discriminative
or may lead to wrong segmentations. Although the local potentials di used in
the Continuous Cut model indicate that the “EMMCVPR” inscription should
be foreground, it is labelled correctly as background, because the regularization
strength is set high. However the white belly of the penguin is labelled wrong,
because white is more probable to be background and the regularizer is not able
to fill in the correct information. In contrast, our approach correctly determines
fore- and background, because it works on the appearance histograms of the
whole segmentation and enforces them to be close to the prespecified ones as
can be seen in Figure (c).

1. For some probability densities pi the resulting potential functions di may
not be discriminative or even misleading for some x ∈ Ω. See Figure 1 for
an illustration.

2. For individual components of the resulting partition, the corresponding ap-
pearance measures may not match well the model distributions pi.

3. In unsupervised settings like cosegmentation, which is the task of finding the
same object in two different images, we have no knowledge of the probability
distribution coming from the object we wish to cosegment. Consequently, no
probability models pi or potential functions di are available and must be
inferred as part of the optimization problem.

These problems more or less persist, even if we use more elaborate potential
functions. We resolve this issue by making our data term dependent on the whole
segmentation.
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We propose to solve the first and second of the stated problems by introducing
a global term which directly works on global appearance measures. By using such
a term, we force each of the subsets Ωi of the partition (Ω1, . . . , Ωk) to have an
appearance measure which is near a prespecified one. To approach the third
problem, we introduce a closely related global term, which depends on both
appearance measures of the common object in the two images and ensures that
they are similar.

1.1 Related Work

Segmentation Foreground/background segmentation with the Wasserstein dis-
tance was already proposed in the two papers [15] and [7].

Peyré et al. introduce in [15] a data term based on the Wasserstein distance
and an approximation thereof for reasons of efficiency. The model proposed there
is not convex, so it may get stuck in local minima. By contrast, we derive a fully
convex model and work directly with the Wasserstein distance.

The work of Chan et al. in [7] boils down to the Continuous Cut model.
The novelty is the computation of the local costs d1 and d2 from (1). They
are computed by comparing patches around pixels to a foreground and a back-
ground histogram with the Wasserstein distance. The model remains convex, as
it amounts to solving a Continuous Cut, so global minimizers can be computed
very efficiently with existing methods. Our approach differs in that we use the
Wasserstein distance (i) on arbitrary images opposed to grayvalue images and
(ii) as a truly global data term that depends on the segmentation. We point out
however that the limitation to grayvalue images in [7] is only made for com-
putational reasons as the one dimensional Wasserstein distance is very fast to
compute and is not an inherent limitation of the algorithm in [7].

Cosegmentation Rother et al. introduce in [18] the cosegmentation task into
the literature. To solve the problem, they propose to find a MAP configuration
of an MRF with pairwise potentials for spatial coherency and a global constraint
to actually cosegment two images. The resulting MRF is not easy to optimize
however, and the authors employ a trust region algorithm, which they call trust
region graph cut. The algorithm they employ is not guaranteed to find a global
optimum, may get stuck in local optima and is dependent upon initialization. In
comparison, we solve a convex relaxation that is not dependent upon initializa-
tion and gives a reasonably tight global optimum of the relaxed problem.

Vicente et al. give in [19] an overview over several models for cosegmentation.
They all have in common that they seek the object to be cosegmented to have
similar appearance histograms. The approaches considered in [19] fall into two
categories: (i) the histogram matching term may not be very general or (ii) may
be difficult to optimize. Approaches falling into category (ii) are solved with
EM-type algorithms which alternatingly compute appearance models and then
match according to them. Our approach can match appearance measures very
flexibly and leads to a single convex model, hence solving both of the problems
of the approaches encountered in the paper [19].
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Another approach to cosegmentation is presented in [20], where object pro-
posals for the objects to be cosegmented are computed and taken as labels in
a graphical model. This approach is different from ours, as it relies heavily on
object proposals, which are computed with sophisticated but mathematically
less explicit methods from the realm of computer vision. For these proposals a
big array of complex features is computed. These features are used to compare
objects in different images and find the matching ones. Our model does not need
object proposals to be computed but finds the cosegmented objects in a math-
ematically more explicit variational manner by minimizing one single convex
energy function. Still, sophisticated features can be introduced in our model as
well, however this is not the focus of this paper.

1.2 Contribution

We present

– A new variational model for supervised segmentation with global appearance-
based data-terms, see Section 2,

– a new variational model for unsupervised cosegmention of two images based
on the similarity of the appearance measures of the respective cosegmenta-
tions, see Section 3,

– convex relaxations for both models together with efficient numerical schemes
to minimize them, see Section 4,

– experimental validation of the proposed approach, see Section 5.

1.3 Notation

For vectors or vector valued functions u =
(
u1, . . . , uk

)>
we will denote its i-th

entry by ui. Throughout the paper let Ω ⊂ Rl be the image domain, typically
Ω = [0, 1]2. We will denote images by I, I1, I2 : Ω →M. Images will take values
in a measurable space (M, Σ). M denotes the values an image can take, while
Σ ⊂ 2M is a σ-algebra over M. We also assume we are given a measurable
similarity function c :M×M→ R. An example is the k-dimensional euclidean
space with the Borel σ-algebra: (M, Σ) = (Rl,B(Rl)), c(v1, v2) = ‖v1 − v2‖p.
For gray-value images we have l = 1 and for color images l = 3.

For v ∈M consider the dirac measure δv(A) =

{
0, v /∈ A ∈ Σ
1, v ∈ A ∈ Σ .

Given a measurable subset Θ ⊂ Ω of the image domain and an image I :
Ω →M, consider the measure µIΘ : Σ → R+ which records the values which I
takes on the subset Θ:

µIΘ =

ˆ
Θ

δI(x)dx . (2)

Please note that the right hand side of (2) is a measure-valued integral, hence
again a measure. It follows that for a measurable set A ∈ Σ, we have µIΘ(A) =´
Θ
1{I(x)∈A}dx , which is the area in Θ ⊂ Ω where I takes values in A ⊂ M.



Image Segmentation and Cosegmentation with the Wasserstein Distance 5

Therefore, the measure µIΘ captures the appearance of the image region Θ ⊂ I.
See Figure 2 for an illustration.

In the discrete case, i.e. Ω = {1, . . . , n}, M = {1, . . . ,m}, the appearance
measure µIΘ is the histogram of the image values on the subset Θ: µIΘ(A) =
#{x ∈ Θ : I(x) ∈ A} . The general setup however allows to state the model in
a continuous setting and makes notation easier.

x
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1 I(x) = 1
2 (sin(6x) + 2x)

A

Θ

µIΘ(A)

Fig. 2: Illustration of the con-
struction of the appearance mea-
sure µIΘ(A) for a subregion Θ =
[0, 0.72] ⊂ Ω = [0, 1] and a sub-
set of values A = [0.4, 0.6] ⊂ M =
[0, 1]. The blue parts of the curve
I(x) = 1

2 (sin(6x) + 2x) do not con-
tribute to µIΘ(A) while the red ones
do. Note that Definition (2) applies
also to vector-valued and more gen-
erally to M-valued images.

For a convex formulation of our models we introduce the space of functions

Ek =
{
u ∈ BV (Ω)k : u(x) ∈ {e1, . . . , ek} a.e. x ∈ Ω

}
, (3)

where ei are the unit vectors in Rk and BV (Ω) is the space of functions of
bounded variations, see [2] for an introduction to this topic.
Ek is not a convex set and therefore it is not amenable for use in minimization

problems in practice. Hence we consider the convex hull of Ek:

∆k =
{
u ∈ BV (Ω)k : u(x) ∈ conv{e1, . . . , ek} a.e. x ∈ Ω

}
, (4)

which is the space of functions having values in the k-dimensional unit simplex.

1.4 Wasserstein Distance

Given two measures µ1, µ2 : Σ → R+ with µ1(M) = µ2(M), the Wasserstein
distance W (µ1, µ2) ∈ R of these two measures is computed by evaluating the cost
of an optimal rearrangement of µ1 onto µ2 with regard to a similarity function c
on M. Specifically, consider the space of all rearrangements of µ1 onto µ2, that
is all measures on M×M with marginals µ1 and µ2:

Π(µ1, µ2) = {π a measure on M×M :
π(A ×M) = µ1(A)
π(M×B) = µ2(B)

∀A,B ∈ Σ} .

(5)
Measures in Π are also known as coupling measures or transport plans in the
literature. We will stick to the name coupling measures. The Wasserstein distance
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is defined as the infimum over all possible rearrangements with regard to the cost
c:

W (µ1, µ2) = inf
π∈Π(µ1,µ2)

ˆ
M×M

c dπ , (6)

It can be shown that under mild assumptions on c the infimum is attained and
the distance is finite, see [21] for an in-depth treatise of the Wasserstein distance.
The Wasserstein distance is a metric on the space of probability measures for c
a metric on M, hence it gives a reasonable distance for measures for c properly
chosen.

The minimization problem (6) has linear objective and constraints and is
therefore a linear optimization problem, which means it is globally solvable.
Moreover it is jointly convex in both of its arguments under mild conditions as
well, so it is naturally usable in a convex variational setting, see Theorem 4.8
in [21]

Finally, the Wasserstein distance offers much flexibility in modelling simi-
larity and dissimilarity of measures by choosing an appropriate cost function c
in (6).

2 Variational Model for Supervised Segmentation

We will combine into a single variational problem the spatial regularization from
the minimal partition problem (1), appearance measures from subsets of the
image domain constructed by (2) and the Wasserstein distance (6) for comparing
the resulting measures to obtain a new model for segmenting images.

We assume in this setting that one image I : Ω → M and k probability
measures µi over M are given. For a partition (Ω1, . . . , Ωk) of Ω we enforce
the measures µIΩi to be similar to the prespecified measures µi by using the
Wasserstein distance (6).

Replacing the data term with the potential functions di in the minimal par-
tition problem (1) by the Wasserstein distance yields

Eseg(Ω1, . . . , Ωk) =
1

2

k∑
i=1

Per(Ωi, Ω) +

k∑
i=1

W
(
µIΩi , |Ωi| · µ

i
)
. (7)

The additional multiplicative factor |Ωi| in the second argument of the Wasser-
stein distance above is needed to ensure that measures of equal mass are com-
pared, as otherwise the Wasserstein distance is ∞. This is due to the fact that
the space (5) of coupling measures Π is empty for measures of differing masses.

Minimizing (7) over all partitions (Ω1, . . . , Ωk) of Ω results in partitions,
which have regular boundaries due to the perimeter term, and the appearance
measures of the partition µIΩi being similar to the given appearance measures

µi. Note that the measures µIΩi depend on the partition through Ωi.
As for the minimal partition problem in [5, 9, 12, 16], we replace the sets Ωi

by indicator functions ui = 1Ωi and minimize over them.
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Proposition 1. Let ui = 1Ωi . Then (7) is equal to

Jseg(u) = 1
2

∑k
i=1

´
Ω
|Dui| dx+

∑k
i=1W

( ´
Ω
ui(x)δI(x)dx,

´
Ω
ui(x)dx · µi

)
,

(8)
where the Total Variation

´
Ω
|Dui| dx is to be understood as

ˆ
Ω

|Dui| dx := sup

{ˆ
Ω

ui · div(g)dx : g ∈ C1
c (Ω), ‖g‖∞ ≤ 1

}
. (9)

Minimizing (7) over all partitions (Ω1, . . . , Ωk) such that each Ωi has a finite
perimeter is equivalent to minimizing (8) over u ∈ Ek given by (3).

Proof. A partition (Ω1, . . . , Ωk) corresponds to a vector-valued function u ∈ Ek
bijectively by Ωi ⇔ ui = 1Ωi . By the Coarea formula Per(Ωi, Ω) =

´
Ω
|Dui| dx

holds, see [2]. The Wasserstein term is equal, since

µIΩi =

ˆ
Ωi

δI(x)dx =

ˆ
Ω

ui(x)δI(x)dx and |Ωi| =
ˆ
Ω

ui(x)dx . (10)

Thus, Jseg(u) = Eseg(Ω1, . . . , Ωk), which proves the first claim.
The equivalence of both minimization problems stems from the fact, that

sets of finite perimeter correspond bijectively to indicator functions of finite
variation, see again [2], and partitions correspond bijectively to vector-valued

functions such that
∑k
i=1 u

i = 1 and u ∈ {0, 1}k, hence

inf
u∈Ek

Jseg(u) = inf
(Ω1,...,Ωk) is a partition

Eseg(Ω1, . . . , Ωk) , (11)

which proves the second claim.

The functional Jseg(·) from (8) is convex, as the Total Variation term is
convex and the Wasserstein term is so as well by Theorem 4.8 in [21]. However
Ek is a nonconvex set, so taken together minimizing minu∈Ek Jseg(u) is not a
convex problem. Thus, for practically finding a minimizer of (8), we have to
relax the domain over which we optimize. The following problem is convex, as
∆k is the convex hull of Ek:

inf
u∈∆k

Jseg(u) . (12)

Remark 1. It is possible to introduce additional local costs di : Ω → R without
compromising convexity of (8), i.e. to minimize

inf
u∈∆k

Jseg(u) +

k∑
i=1

ˆ
Ω

di(x)ui(x)dx . (13)

Numerically it comes at a marginal cost to do so. However we chose not to use
local costs to demonstrate most directly the power of the global Wasserstein
cost.
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Remark 2. (8) is the Continuous Cut model when we choose k = 2, two points
v1, v2 ∈ M and µ1 = δv1 and µ2 = δv2 , as then we can replace the Wasserstein
distance by multiplication with a local data term. The resulting model is the
minimal partition problem (1) for two classes. [9] shows that a global minimizer
of the non-relaxed problem can be obtained by thresholding.

3 Variational Model for Unsupervised Cosegmentation

Let two images I1, I2 : Ω →M be given and let M and c be as above. Suppose
an object is present in both images, but we have no information about the ap-
pearance, location or size of it, Thus, we consider the fully unsupervised setting.
The task is to search for two sets Ω1, Ω2 ⊂ Ω such that Ω1 and Ω2 are the
areas occupied in I1 resp. I2 by the common object. Let µI1Ω1

and µI2Ω2
be the

appearance measures of the common object in images I1 and I2 respectively. We
know that both appearance measures should be very similar. Therefore we will

use the Wasserstein distance W
(
µI1Ω1

, µI2Ω2

)
as a penalization term for enforcing

similarity of the appearance measures µI1Ω1
and µI2Ω2

.
Consider the energy

Ecoseg(Ω1, Ω2) =

2∑
i=1

Per(Ωi, Ω) +W
(
µI1Ω1

, µI2Ω2

)
+

2∑
i=1

P · |Ω\Ωi| (14)

where P > 0 and P · |Ω\Ωi| penalizes not selecting an area as the common
object. This latter term is called the ballooning term in [19] and is needed to
avoid the empty cosegmentation. Minimizing (14) results in two sets Ω1 and
Ω2 which have a short boundary due to the perimeter term and such that the
appearance measures µI1Ω1

and µI2Ω2
are similar. Note that neither µI1Ω1

nor µI2Ω2

are known but completely depend on the segmentation.
The main difference between the segmentation model (7) and the cosegmen-

tation model (14) is that in the segmentation model the second argument in the
Wasserstein distance is fixed while we allow it to vary in the cosegmentation
model.

By the same arguments as in Section 2 and Proposition 1, we can establish
a similar correspondence between (14) and a suitable convex formulation in the
space of indicator functions.

Proposition 2. Let ui = 1Ωi . Then (14) is equal to

Jcoseg(u
1, u2) =

∑2
i=1

´
Ω
|Dui| dx+W

(´
Ω
u1(x)δI1(x)dx,

´
Ω
u2(x)δI2(x)dx

)
+
∑2
i=1 P ·

´
Ω

(1− ui(x)) dx
.

(15)
Minimizing Ecoseg(Ω1, Ω2) (14) over all sets Ω1, Ω2 ⊂ Ω with finite perimeter is
equivalent to minimizing Jcoseg(u

1, u2) over all {0, 1}-valued functions of finite
variation.
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As in Section 2, Jcoseg is convex, whereas the space of {0, 1}-valued functions
is not. Relaxing to functions ui : Ω → [0, 1] yields a convex relaxation.

Note that due to aggregating the appearance in the two measures µI1Ω1
and

µI2Ω2
in a translation-, rotation- and deformation-invariant way, the resulting

cosegmentation energy also exhibits these properties.

Remark 3. (14) implicitly defines the size constraint |Ω1| = |Ω2|, since the
Wasserstein distance requires both measures to have equal mass. Weakening
this constraint is beyond the scope of this paper.

4 Numerical Implementation

It is common to solve convex large-scale non-smooth problems with first order
algorithms like [3, 6, 10]. To efficiently solve our models with such schemes, it
is necessary to split our energies into suitable convex funtions, such that the
proximity operators for each function can be computed efficiently. Our splitting
results in 2+k convex non-smooth functions for the segmentation functional (8)
and 3 such functions with an additional linear term for the cosegmentation func-
tional (15). We use the Generalized Forward-Backward Splitting Algorithm [17],
which can handle an arbitrary number of convex functions in a flexible way.

In practice our image domain is discrete. Here we assume Ω = {1, . . . , n}2.
The gradient operator will be approximated by forward differences.

We can rewrite the energy function (8) for the segmentation problem as
follows by splitting variables for the gradient operator:

Jseg(u, g) = χ{∇u=g} + χ{u∈∆k} + ‖g‖+

k∑
i=1

W i
seg(u

i) , (16)

whereW i
seg(u) = W

(∑
x∈Ω u(x)δI(x),

(∑
x∈Ω u(x)

)
µi
)

are the Wasserstein terms
in (8) and χTrue = 0, χFalse = +∞ stands for the indicator function. The energy
(15) for the cosegmentation problem can be split as follows:

Jcoseg(u, g) =

2∑
i=1

{
χ{∇ui=gi} + ‖gi‖

}
+ 〈d, u〉+ χ{u∈[0,1]|Ω|} +Wcoseg(u

1, u2) ,

(17)
where Wcoseg(u1, u2) = W

(∑
x∈Ω u

1(x)δI1(x),
∑
x∈Ω u

2(x)δI2(x)
)

is the Wasser-
stein term in (15) and 〈d, u〉 takes care of the balloning term.

Solving (8) and (15) with the Generalized Forward-Backward Splitting al-
gorithm from [17] requires solving efficiently the proximity operators for each
convex function in (16) and (17). The proximity operator for a function G at
point u0 is defined by

proxG(u0) = argminu
1

2
‖u− u0‖2 +G(u) . (18)

Proximity operators for all the convex functions in (16) and (17) except for the
Wasserstein term can be computed very efficiently by standard methods:
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– proxδ{∇u=g}(u
0, g0) is the projection onto the set {∇u = g} and can be

computed with Fourier transforms.
– prox∆k(u0) is the projection onto the simplex and can be computed in a

small finite number of steps with the algorithm from [14].
– prox‖g‖(g

0) amounts to computing the shrinkage operator.

See again [17] concerning how these proximity operators are combined.
The Wasserstein proximity operator can be computed efficiently with the

technique detailed below.

4.1 Dimensionality Reduction for the Proximity Operator of the
Wasserstein Distance

In general, computing the proximity operator of the Wasserstein distance can be
expensive and requires solving a quadratic program with |Ω| + |M|2 variables.
However due to symmetry we can significantly reduce the size of the quadratic
program to |M|2 variables, such that the Wasserstein proximation step is inde-
pendent of the size of the image.

In practice we will solve the problem on an image grid Ω = {1, . . . , n}2 and
the number of values a pixel can take is usually significantly smaller than the
number of pixels (e.g. 256 values for gray-value images and for color pictures we
may cluster the colors to reduce the number of distinct values as well, while the
number of pixels |Ω| = n2 can be huge). Hence, we may assume |Ω| � |M|.

In the following we only discuss the segmentation case due to space con-
straints.

Due to the representation of the Wasserstein distance (6), the proximity
operator proxW i

seg
(u0) = argminu‖u−u0‖2+W i

seg(u) of the Wasserstein distance

in the segmentation problem (16) can be written equivalently as

argmin{u,π}
∑
x∈Ω(u(x)− u0(x))2 +

´
M×M c(v1, v2) dπ(v1, v2)

s.t. π(M×A) =
∑
{x∈I−1(A)} u(x) ∀A ⊂M

π(B ×M) =
(∑

x∈Ω u(x)
)
µi(B) ∀B ⊂M

π ≥ 0

(19)

Note that the Wasserstein distance term above is invariant to permutations
of values inside each set {I−1(v)} ∀v ∈ M. The quadratic term

∑
x∈Ω(u(x) −

u0(x))2 dx also possesses similar symmetries. This enables us to reduce the num-
ber of variables as follows:

Let nv = #{I−1(v)} be the number of pixels which take the value v ∈ M
and let µ0 =

∑
x∈Ω u

0(x)δI(x). Consider the problem

argminπ∈P(M×M)

´
M nv ·

(
π(M×{v})− µ0({v})

)2
dv +

´
M×M c(v1, v2) dπ(v1, v2)

s.t. π(B ×M) = π(M×M) · µ1(B) ∀B ⊂M
π ≥ 0

(20)
The relation between the two minimization problems (19) and (20) is:
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Lemma 1. The minimization problems (19) and (20) are equivalent in the fol-
lowing sense: For I(x) = v ∈ M the optimal solutions û of (19) and π̂ of (20)
correspond to each other via the relation

û(x) = u0(x) +
π̂(M×{v})− µ0({v})

nv
. (21)

Lemma 1 allows for efficiently solving (19) via (20) and (21).

5 Experiments

To show the performance of our method we have restricted ourselves to only
consider colors as features. Hence the features alone are not very distinctive, but
the whole energy function makes our approach work. Our label space M is the
CIE 1931 color space and our cost function c will be derived from the euclidean
distance on the above color space. More sophisticated features can be used in our
variational models with no additional computational cost in the minimization
procedure. Choosing such features however goes beyond the scope of this paper,
that is purely devoted to the novel variational approach, rather than to specific
application scenarios. Also, more sophisticated regularizers can be employed as
well, e.g. one could vary weights in the total variation term or use nonlocal
versions of it, see [11] for the latter.

5.1 Segmentation

In our experimental setting we assume that we have probability measures µ1, µ2

at hand for the foreground and background classes, which we employ in the global
Wasserstein data-term. We could in addition determine potential functions to en-
hance segmentation results and solve model (13), e.g. by di(x) = − log(pi(I(x))),
where pi is the density of µi. We chose to not use the latter to show the
strength of the global Wasserstein term alone and the tightness of our relaxation.
See [5, 9, 12, 16] for numerical examples of segmentation results with potential
functions alone.

For the foreground and background appearance measures we chose a part of
the foreground and background of the image respectively and constructed prior
appearance measures µ1, µ2 from them. In a preprocessing step, we clustered the
color values of the image by the k-means method [13]. The number of prototypes
was set to 50. The quadratic problem in the prox-step (20) of the Wasserstein
distance is thus a 50× 50 convex quadratic problem and efficiently solvable. We
conducted four experiments with textured objects, for which it is not always
easy to find discriminative prototypical vectors, but where the color histogram
catches much information about the objects’ appearance, see figure 3. Note for
example that the cheetah’s fur has the same color as the sand in the image,
but the distribution of the black dots and the color of the rest of the fur is still
distinctive. The fish has black regions, exactly as in the background, but the
white and black pattern is distinctive again, so a reasonable segmentation can
be obtained.
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Fig. 3: Supervised segmentation experiments with global segmentation-
dependent data term using the Wasserstein distance. Note that because the
results correspond to global optima of a single convex functional, undesired parts
of the partition are solely due to the – in our case: simple color – features and
the corresponding prior appearance measures.

5.2 Cosegmentation

For cosegmentation we first subdivide the image into superpixels with SLIC [1].
Then we modify the cost function c as follows: For each superpixel in image 1
we consider k nearest superpixels in image 2 and vice versa. For these pairs we
let c be the euclidean distance. For all other pairs of superpixels we set c to ∞.
Obviously, the optimal transport plan will be zero where the distance c is ∞,
hence we may disregard such variables. By this procedure we reduce the problem
size and computational complexity substantially while not reducing the quality
of the solution. The prox-step proxWcoseg

(u1, u2) can be further reduced with a
technique similar to the one presented in Section 4.1.

Four experiments can be seen in figure 4. The foreground objects were taken
from the dataset [4]. We rotated these objects, translated them and added dif-
ferent backgrounds. As the Wasserstein term does not depend upon location and
spatial arrangement of the pixels contributing to the cosegmentation, we could
find the common objects independently of where and in which orientation they
were located in the images without explicitly enumerating over all different pos-
sible such configurations, but by solving a single convex optimization problem to
its global optimum. Note that in this unsupervised setting, no prior knowledge
about the objects is used.

In both experimental settings our method produced functions ui which were
nearly indicator functions except on some parts of the boundaries. Empirically,
our relaxation seems to be quite tight.
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Fig. 4: Unsupervised cosegmentation: foreground regions in two images are sep-
arated at arbitrary locations where the Wasserstein distance between the cor-
responding histograms is small. This distance depends on the unknown seg-
mentation, and both are consistently determined by a single convex variational
problem. No prior knowwledge at all was used in these unsupervised experiments.

6 Conclusion

We presented new variational models for segmentation and cosegmentation. Both
utilize the Wasserstein distance as a global term for enforcing closeness between
suitable appearance measures. We also derived convex relaxations of the models
and presented efficient numerical methods for minimizing them. Both models
can be easily augmented by using different regularizers or additional data terms
and any features known from the literature.

Acknowledgements The authors would like to thank Marco Esquinazi for
helpful discussions.
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