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Abstract

The minimum graph cut and minimum s-t-cut problems

are important primitives in the modeling of combinatorial

problems in computer science, including in computer vision

and machine learning. Some of the most efficient algorithms

for finding global minimum cuts are randomized algorithms

based on Karger’s groundbreaking contraction algorithm.

Here, we study whether Karger’s algorithm can be success-

fully generalized to other cut problems. We first prove that a

wide class of natural generalizations of Karger’s algorithm

cannot efficiently solve the s-t-mincut or the normalized cut

problem to optimality. However, we then present a simple

new algorithm for seeded segmentation / graph-based semi-

supervised learning that is closely based on Karger’s orig-

inal algorithm, showing that for these problems, extensions

of Karger’s algorithm can be useful. The new algorithm has

linear asymptotic runtime and yields a potential that can be

interpreted as the posterior probability of a sample belong-

ing to a given seed / class. We clarify its relation to the

random walker algorithm / harmonic energy minimization

in terms of distributions over spanning forests. On classi-

cal problems from seeded image segmentation and graph-

based semi-supervised learning on image data, the method

performs at least as well as the random walker / harmonic

energy minimization / Gaussian processes.

1. Introduction

Minimum graph cuts have been applied to machine

learning problems for a long time. They have been used in

natural language processing [33] and especially in computer

vision, for example in segmentation [39, 34, 2], restora-

tion [13], and energy minimization more generally [21].

Nowadays, they still form an important part of many deep

learning pipelines, for example for segmentation [41, 28,

29, 25, 26], image classification [31], and recently also neu-

ral style transfer [42].

For finding global minimum cuts (defined together with

all other terminology in Section 2), Karger’s contraction al-

gorithm [16, 19] started a wave of randomized algorithms

solving this problem efficiently [17, 8, 10, 27].

Thanks to these randomized algorithms, global mincuts

can, somewhat surprisingly, be found more efficiently than

s-t-mincuts. An interesting question is therefore to what

extent randomized algorithms can be applied to other graph

cut problems, and in particular whether Karger’s algorithm

can be fruitfully extended. An especially important cut

problem are s-t-mincuts. While approximating them is pos-

sible in nearly linear time in the number of edges [20, 35]

and has also been studied using randomized algorithms

based on graph sparsification [1], it is to our knowledge still

an open question whether Karger’s algorithm can be modi-

fied to efficiently find s-t-mincuts.

In Section 3, we give a definitive answer to this ques-

tion by proving that a large class of extensions of Karger’s

contraction algorithm can in general not exactly solve the s-

t-mincut problem efficiently. Our result also applies to the

normalized cut problem [36], which, like the s-t-mincut,

plays an important role in image segmentation.

However, extensions of Karger’s algorithm can still be

useful if applied in the right way. In Section 4, we

show how a straightforward extension of Karger’s algorithm

can be used successfully for seeded segmentation / semi-

supervised learning tasks. We interpret this extension as a

forest sampling method and observe its similarities to the

random walker algorithm [11] for seeded graph segmen-

tation. In semi-supervised learning, the same algorithm is

known as harmonic energy minimization [43] or Gaussian

Processes, so the same observations apply.

The main contribution of this paper is purely concep-

tual. Still, in Section 5 we show in two classical experi-

ments that the proposed algorithm compares well against

the random walker / harmonic energy minimization, per-

haps the most influential algorithm in seeded segmentation

/ semi-supervised learning to date. Since our method has

an asymptotic time complexity of only O(m) on a graph
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with m edges, it can be seen as an efficient alternative to the

random walker algorithm / harmonic energy minimization,

while also giving a probabilistic output.

Related work The most closely related work is the typi-

cal cut algorithm [9], which uses an ensemble of cuts gen-

erated by Karger’s algorithm for clustering without seeds.

In contrast, the method described here uses cuts generated

by a slight variation of Karger’s algorithm to solve seeded

segmentation problems. In this setting, there is a very natu-

ral way to get a segmentation from the ensemble of cuts, as

well as a natural stopping point for the contraction, which

for the typical cut is a free parameter.

2. Background

All graphs considered in this paper are undirected and

connected and have non-negative edge weights. We write

such a graph as a tuple G = (V,E,w) of a set of vertices

V , an edge set E and a weight function w : E → R≥0. We

denote the number of vertices by n := |V | and the number

of edges by m := |E|. We also write we for the weight

w(e) of an edge e ∈ E and wuv for the weight of the edge

between vertices u, v ∈ V . If no edge is present, wuv is

defined as zero. w(A,B) :=
∑

a∈A,b∈B wab is the sum of

edge weights connecting two subsets A,B ⊂ V .

A graph cut is a partition of the vertices V of a graph

into two disjoint non-empty subsets A and B such that V =
A ∪ B. The cut set of such a cut is the set of all edges with

one endpoint in A and one in B. The sum w(A,B) of the

weights of all edges in the cut set is called the weight or cost

of the graph cut.

We will describe three different cut problems here: the

global minimum cut, the s-t-minimum cut and the normal-

ized cut.

A (global) minimum cut of a graph – or mincut for short

– is a cut with minimal cost. In other words, the minimum

cut problem is given by

argmin
partitions (A,B) of V

w(A,B) . (1)

An s-t-cut of a graph G is a graph cut that separates two

given vertices s 6= t ∈ V . In the s-t-mincut problem, the

goal is to find an s-t-cut with minimal cost, i.e.

argmin
partitions (S,T )

w(S, T ) such that s ∈ S, t ∈ T . (2)

For convenience, we define an s-t-graph as a tuple (G, s, t)
of a graph and two vertices s 6= t ∈ V.

We also mention here the notion of α-minimal cuts. A

global cut (A,B) is α-minimal if its cost is within a factor

α of the global minimum cut,

w(A,B) ≤ α min
partitions

(A′,B′)

w(A′, B′) , (3)

where α is some positive real number > 1. The same con-

cept can of course be applied to define an α-minimal s-t-
cut as an s-t-cut that has a cost within a factor α of the

s-t-mincut.

The normalized cut [36] generates more balanced cuts

than the minimum cut objective, which makes it particularly

well suited for image segmentation. It minimizes

ncut(A,B) :=
w(A,B)

w(A, V )
+

w(A,B)

w(B, V )
(4)

over the partitions (A,B) of the graph. Note that since

w(A, V )
(def)
=
∑

a∈A,v∈V wav , this term counts the internal

weights of A twice. Solving the normalized cut problem ex-

actly is NP-complete, but the solution can be approximated

with a spectral method [36].

2.1. Karger’s contraction algorithm

Karger’s algorithm is a Monte Carlo algorithm for find-

ing global minimum graph cuts, meaning that it has a fixed

runtime but is not guaranteed to find the best cut. It is

based on contractions of edges in a graph. Given a graph

G = (V,E,w) and two vertices v1, v2 ∈ V , the contracted

graph G/{v1, v2} is obtained as follows:

1. v1 and v2 with all their edges are removed and a new

vertex u is added.

2. For each edge {vi, x} ∈ E with x /∈ {v1, v2}, a new

edge {u, x} with the same weight is added, for i =
1, 2.

3. If u now has several edges to the same vertex, they are

merged into one by adding their weights.

Karger’s algorithm simply repeatedly chooses an edge at

random and contracts it until only two vertices remain. The

remaining edges then define a cut set. Each edge is chosen

for contraction with probability proportional to its weight.

The precise algorithm is described in algorithm 1.

Of course, this algorithm does not always produce a min-

imum cut. To increase the success probability, the algorithm

is run several times and the best cut is returned. This can be

sped up by sharing computations between runs [18, 19] but

doing so does not affect any of the arguments in this paper,

so we will ignore it.

The reason why Karger’s algorithm is useful for finding

minimum cuts is the following theorem, which says that –

compared to the success probability of 2−n+1 that uniform
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Algorithm 1: Karger’s contraction algorithm

Input : graph G
Output: contracted graph with 2 vertices

while G has more than 2 vertices do
choose an edge {u, v} with probability

proportional to its weight;

G← G/{u, v};

return G;

sampling of cuts would give – Karger’s algorithm finds a

minimum cut with relatively high probability on a single

run. This means that a polynomial number of runs is enough

to find a minimum cut with high probability.

Theorem 1 ([16]). The probability of finding any given

mincut with Karger’s algorithm is at least
(

n
2

)−1
.

The key idea of the proof is that the cost of a global min-

imum cut is only a small fraction of the sum of all edge

weights because it is always possible to cut out only the

vertex with the lowest degree, which gives an upper bound

of 2
n

∑

e∈E we for the cost of any minimum cut. So be-

cause the contraction probabilities are proportional to the

edge weights, it is – at least initially – unlikely that an edge

which is part of a minimum cut set will be contracted.

We will show that an analog of Theorem 1 does not exist

for s-t-mincuts or normalized cuts, even for a wide class of

extensions of Karger’s algorithm. These algorithms would

need to be run an exponential number of times in some cases

to obtain a high success probability.

2.2. Random walker / harmonic energy minimiza-
tion

Both global minimum cuts and the normalized cut prob-

lem are unsupervised approaches to clustering: they take

only a graph as input, without any annotations.

In contrast, in the seeded segmentation / semi-supervised

learning problem, labels are given for some vertices, the

seeds. The goal is to assign fitting labels to the remain-

ing vertices. This problem can occur in different contexts:

in image segmentation, each vertex corresponds to a pixel,

while in graph-based semi-supervised learning, each vertex

represents one sample and the seeds are the labeled samples.

One method for solving the seeded segmentation prob-

lem is the random walker algorithm [11], also known as

harmonic energy minimization [43] or Gaussian Processes

in graph-based semi-supervised learning. To choose a la-

bel for some vertex v, it imagines a random walker on the

graph starting on v. This random walker chooses an edge

to traverse with probability proportional to the edge weight

at each step. It stops once it reaches one of the seeds. We

write prw(v ∼ l) for the probability that the random walker

reaches a seed with label l when starting from v, which we

also call the random walker potential. Each vertex is as-

signed to the label for which this probability is highest.

Actually simulating such a random walker for each ver-

tex would be intractable. But the probabilities prw(v ∼ l)
can be calculated by solving a linear system containing the

Laplacian of the graph [11, 43]. This means finding an ap-

proximate solution is possible in nearly-linear time in the

number of edges using fast Laplacian solvers [37, 22, 23, 4].

The random walker can also be interpreted as a forest

sampling method. We write Fs for the set of spanning

forests of the graph where each tree spans all seeds of a

given category, and the non-intersecting trees together span

the graph. Any such forest defines a label for each vertex v.

We can define a Gibbs distribution over these forests by

p(f) =
1

Z

∏

e∈f

we =
1

Z
w(f) (5)

for a forest f ∈ Fs with weight w(f) :=
∏

e∈f we. The

partition function is given by Z :=
∑

f∈Fs

w(f). It can

then be shown [12, 7] that the probability with which a

forest sampled from this distribution assigns a vertex v
to the label l is precisely the random walker probability

prw(v ∼ l).

3. Impossibility results

In this section, we present a framework that greatly gen-

eralizes Karger’s algorithm to what we call general contrac-

tion algorithms. We then show that algorithms from two

natural subsets of this class of algorithms cannot be used to

efficiently find s-t-mincuts or normalized cuts.

General contraction algorithms are described formally in

algorithm 2. Like Karger’s algorithm, they sample and con-

tract edges until two vertices remain. But the contraction

probabilities may now depend on arbitrary graph properties,

rather than being proportional to the edge weights.

Algorithm 2: The general contraction algorithm.

When s / t is contracted with another node, the new

node becomes the new s / t. The score functionW
distinguishes different contraction algorithms.

Input : graph G, optionally with seeds s and t
(depending on the algorithm)

Output: contracted graph with 2 vertices

while G has more than 2 vertices do

A← weighted adjacency matrix of G;

choose an edge e with probability proportional

toW(e;A, s, t);
G← G/e;

return G;
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Any contraction algorithm is fully defined by specifying

the score W(e;A, s, t) it assigns to an edge e in a graph

with weighted adjacency matrix A and seed indices s and

t (where e is a two-set {i, j} of vertices). The weighted

adjacency matrix contains the edge weights, i.e. Aij = wij

is the weight between vertices i and j.

Karger’s algorithm is clearly the special case with

W(e) = we, or more explicitly,W({i, j};A, s, t) = Aij =
Aji. As another example, we can define the following mod-

ification of Karger’s algorithm:

W({i, j};A, s, t) =

{

0, {i, j} = {s, t}

Aij , otherwise
. (6)

This contraction algorithm, which we call the s-t-
contraction algorithm, never contracts edges connecting s
and t and therefore always samples an s-t-cut. It is rela-

tively easy to show that this particular extension of Karger’s

algorithm finds s-t-mincuts with only very low probability

on some graphs (we will shortly give a simple proof). How-

ever, the framework of general contraction algorithms also

includes choices that always find s-t-mincuts, such as

W(e;A, s, t) :=

{

0, e ∈ C

1, otherwise
(7)

for the cut set C of some s-t-mincut. Of course this spe-

cific method is impractical because calculating the weights

requires already knowing an s-t-mincut, but it demonstrates

that contraction algorithms can in principle find s-t-mincuts

with high probability. What is a priori unclear is whether

any practical contraction algorithm can do so.

To answer this question, we introduce two natural and

very general classes of contraction algorithms, for which we

can formally prove impossibility results: continuous con-

traction algorithms and local ones.

Definition 1. A continuous contraction algorithm is a gen-

eral contraction algorithm (see algorithm 2) whose scoreW
is a continuous function of the adjacency matrix A.

Intuitively, this means that slight changes in the weights

of a graph lead to only slight changes in the contraction

probabilities for continuous contraction algorithms. Since

the same results hold for finding s-t-mincuts and normal-

ized cuts, we state them together:

Theorem 2. For any continuous contraction algorithm,

there is a family of s-t-graphs (graphs) on which it finds

an s-t-mincut (normalized cut) with only exponentially low

probability in the number of vertices.

The full proof of Theorem 2 and all other results can be

found in the supplementary material. The idea of the proof

is to take a graph in which there are exponentially many

different s-t-mincuts (normalized cuts). Then there must be

at least one such cut that is chosen with exponentially low

probability. If the weights are perturbed slightly to make

this cut the unique s-t-mincut (normalized cut), the proba-

bility of sampling it will remain low. The reason that this

proof does not apply to global minimum cuts is that there

are at most
(

n
2

)

global minimum cuts in any graph, as The-

orem 1 implies.

We now come to our second impossibility result, that for

“local” contraction algorithms.

Definition 2. The neighborhood N(e) of an edge e =
{u, v} ∈ E is the subgraph of G induced by the neigh-

bors of u and v. It consists of the vertex set VN(e) :=
{x ∈ V |x is neighbor of u or v} and of all edges from E
connecting pairs of vertices from that set.

We treat two neighborhoods N(e1), N(e2) as the same

if there is a graph isomorphism f : VN(e1) → VN(e2) that

also preserves s and t if applicable, i.e. f(s) = s, f(t) = t.

Definition 3. A general contraction algorithm is local

if the score W(e;A, s, t) can be written as a function

W(N(e), G).

Informally speaking, a local contraction algorithm as-

signs scores based only on local properties of the edges and

on global properties of the entire graph. It does not have

access to properties of the individual edges that depend on

their placement in the graph.

For this class of algorithms, we can prove a similar result

as for continuous contraction algorithms:

Theorem 3. There is a family of s-t-graphs (graphs) on

which any local contraction algorithm finds an s-t-mincut

(normalized cut) with only exponentially low probability.

s

2

t

1

Figure 1: Graph where the s-t-contraction algorithm per-

forms badly. The thick edges have a higher weight.

To illustrate the idea of the proof, consider the graph

shown in Fig. 1. This graph can be used to prove Theo-

rem 3 for the s-t-contraction algorithm (instead of for local

contraction algorithms in general) as follows: If we choose

4605



a weight of 1 for the thin edges and 2 for the thicker edges,

then there is a unique s-t-mincut. To find this cut, only thick

edges may be contracted during all n− 2 contractions. But

the probability of choosing a thick edge for contraction is

always only 2
3 . So the overall success probability is

psuccess =

(

2

3

)n−2

(8)

If we scale up the graph in Fig. 1, this success probability

diminishes exponentially in the number of vertices.

The general proof for all local contraction algorithms

(see supplementary material) uses the same idea of a graph

with many parallel paths between s and t, each of which

has to be contracted correctly independently. Those paths

are more complex than in Fig. 1 and chosen such that it is

impossible to decide whether an edge belongs to the s-t-
mincut based only on local properties.

The same proof idea implies that local contraction al-

gorithms cannot even approximate the s-t-mincut beyond

some threshold with high probability:

Corollary 4. The probability of finding an α-minimal s-t-
cut of the graphs from Theorem 3 is exponentially low for

all local contraction algorithms if α < 2.

The threshold of 2 does not carry a deep meaning. It

just comes from the particular graph we used for the proof

and the statement may hold for a larger threshold. Note that

this result is only stated for s-t-mincuts, not for normalized

cuts. Since normalized cut costs are always in [0, 2], the

proof does not transfer as it did for the other theorems.

4. Seeded contraction algorithm

The results from the previous section show that sampling

cuts using local or continuous contraction algorithms and

then taking the smallest cut out of the population sampled

this way does not necessarily give a minimum cut. How-

ever, this population can be used in other ways. In this

section, we describe a new method for seeded graph seg-

mentation that can be interpreted as computing the mean of

the sampled cuts, rather than the single smallest cut. We

also describe theoretical similarities between our method

and the random walker algorithm / harmonic energy min-

imization. In the next section, we will compare these two

methods empirically.

To make the new method widely applicable, we first

generalize the s-t-contraction algorithm from the previous

section to more than two labels and multiple seeds per

label. The problem setup consists of a weighted graph

G = (V,E,w) and a surjective seed function s : V →
{0, . . . , k}where k is the number of labels and 0 is assigned

to unlabeled nodes.

A given cut V = V1∪. . .∪Vk into disjoint vertex subsets

respects the seeds s if s(v) = l =⇒ v ∈ Vl for all l ∈
{1, . . . k} and v ∈ V . Such a cut defines a labeling of the

entire graph, by assigning label l to vertex v if v ∈ Vl.

In the special case of k = 2 and only one seed per

class, these cuts are simply s-t-cuts, which can be sampled

with the s-t-contraction algorithm from the previous sec-

tion. The seeded contraction algorithm (algorithm 3), gen-

eralizes this and produces cuts that respect the input seeds

for arbitrary numbers of classes and seeds per class.

Algorithm 3: Seeded contraction algorithm with k
different labels. A label of 0 means “no label”.

Input : graph G = (V,E,w), labels

s : V → {0, . . . , k}
Output: contracted graph with k vertices

Contract all edges between nodes with the same

label;

Remove edges between nodes with different labels;

while G has more than k vertices do
choose an edge {v1, v2} with probability

proportional to its weight;

G← G/{v1, v2};
if v1 or v2 has a label then

assign the new node created by merging v1
and v2 that label;

Remove edges between nodes with different

labels;

return G;

For l ∈ {1, . . . k}, we define pcontr(v ∼ l) as the proba-

bility that the seeded contraction algorithm produces a cut

which assigns label l to the vertex v. Because this algorithm

is a very natural extension of Karger’s algorithm to seeded

segmentation, we will also refer to this distribution as the

“Karger potential”.

The seeded contraction algorithm can be run multiple

times to approximately find the probabilities pcontr(v ∼ l)
for each vertex v and label l. If a hard assignment is re-

quired, each vertex can then be assigned to the label for

which this probability is highest.

To compare the Karger potential to the random walker

potential, we reinterpret the seeded contraction algorithm as

a forest sampling method. During a single run of the con-

traction algorithm, n− k edges are selected for contraction.

These edges form a spanning k-forest of the graph, where

each component of the forest is one of the subsets Vl of the

cut. So our method defines a probability distribution over

the set Fs of k-forests that separate the seeds with different

labels. pcontr(v ∼ l) is the probability that a forest sampled

from this distribution connects v to the seeds with label l.
This is reminiscent of the random walker distribution prw

which can be interpreted as the probability that a forest sam-
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pled from a Gibbs distribution connects v to the seeds with

label l. The only difference between the two methods is the

distribution over forests they use.

To understand the effects of this difference, we will de-

rive an expression for the probability that the seeded con-

traction algorithm samples a given forest.

For a subset Ê ⊂ E of edges, we define

C(Ê) := Ê ∪ {e ∈ E|e ∪ Ê has cycles or contains

a path between seeds with different labels} .
(9)

C(Ê) is precisely the set of edges that has been removed

after the edges from Ê have been contracted because each

edge that forms a cycle with those in Ê has become a self-

loop. We write c(Ê) :=
∑

e∈Ê we for the sum of weights

of a set of edges. Then the total weights of edges remaining

after contracting the edges from Ê will be c
(

E \ C
(

Ê
))

.

Therefore, the probability of contracting edges

e1, . . . , en−2 in that order is

p(e1, . . . , en−2) =
n−2
∏

i=1

w(ei)

c (E \ C({e1, . . . , ei−1}))
. (10)

Note the i − 1 in the denominator; the term describes the

probability at the ith contraction step, at which point only

e1, . . . , ei−1 have been contracted.

For the sampled forest f , it does not matter in which

order its constituent edges e1, . . . , en−2 are contracted, so

the total probability is

p(f) =
∑

σ∈Sn−2

n−2
∏

i=1

w(eσ(i))

c
(

E \ C({eσ(1), . . . , eσ(i−1)})
)

= w(f)
∑

σ∈Sn−2

n−2
∏

i=1

1

c
(

E \ C({eσ(1), . . . , eσ(i−1)})
) .

(11)

We can compare this distribution to the Gibbs distribu-

tion over 2-forests that the random walker algorithm sam-

ples from,

p(f) =
1

Z

∏

e∈f

we =
1

Z
w(f) , (12)

where Z =
∑

f∈Fs

w(f). Both distributions contain the

term w(f) but where the Gibbs distribution has a partition

function Z that is independent of the forest f , the distribu-

tion of the contraction algorithm has the sum over permuta-

tions term with an additional dependency on f .

Note that w(e1), . . . , w(en−2) all contribute to the cost

of C({e1, . . . , en−2}). So a 2-forest with large edge weights

has a high probability not just because of the term w(f) but

also because of the second term in eq. (11). This means that

compared to the Gibbs distribution from eq. (12), we ex-

pect the contraction distribution to favor heavy forests more

strongly.

Therefore, the Karger potential should be “more confi-

dent” than the random walker potential – both will typically

be highest for the same label l, but pcontr(v ∼ l) will be

higher than prw(v ∼ l) for that label.

There is a second effect which is of a topological

nature: the cost of C({e1, . . . , en−2}) will tend to be

large if C({e1, . . . , en−2}) contains many edges. Since

e1, . . . , en−2 is a 2-forest, the only edges not in that set are

precisely the edges in the cut set that the 2-forest induces.

So this is again a reason to think that the Karger distribution

assigns more extreme probabilities than the Gibbs distribu-

tion – a large weight of the forest is equivalent to a small

weight of the induced cut.

There is a big difference in how the Karger and random

walker potential can be calculated in practice. As men-

tioned, the random walker potential can be calculated ex-

actly by solving a system of linear equations. In contrast,

calculating the Karger potential exactly appears to be infea-

sible for all but the smallest graphs. However, the seeded

contraction algorithm can be used to efficiently sample from

the distribution pcontr and by running it multiple times, this

distribution can be approximated.

To achieve a fixed precision in the approximation, the

seeded contraction algorithm needs to be run only a con-

stant number of times, independent of the size of the graph.

Our segmentation method therefore has a runtime complex-

ity of only O(m), where m is the number of edges of the

graph (details on how to implement the seeded contraction

algorithm in O(m) time can be found in the supplementary

material).

5. Experiments

We compare the new segmentation method from the pre-

vious section to the random walker on an image segmenta-

tion and a semi-supervised learning task. To keep the focus

on the methods under comparison, rather than the rest of

the pipelines, we chose two classical tasks and well-known,

relatively simple pipelines for computing the edge weights.

All of our code can be found at https://github.com/

ejnnr/karger_extensions. A few additional de-

tails, such as empirical runtimes, are part of the supplemen-

tary material.

Seeded segmentation We use the Grabcut [34] images

with sparse labels from [14]. To create graphs from images,

we used the usual 4-connected topology, meaning that each

pixel is connected by an edge to its four neighbors (or fewer

at the border).

We obtained edge weights with holistically-nested edge

detection [40] using a PyTorch implementation [32]. This
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↑ ARI ↑ Acc [%] ↓ VoI

Contraction 0.82± 0.02 96.3± 0.6 0.24± 0.02
RW 0.82± 0.02 96.0± 0.6 0.25± 0.03
Watershed 0.83± 0.02 96.2± 0.5 0.24± 0.02
Power WS 0.83± 0.02 96.2± 0.5 0.24± 0.02

Table 1: Seeded segmentation: Mean adjusted Rand index

(ARI), accuracy (Acc) and variation of information (VoI) on

the Grabcut dataset. RW = Random Walker, Power WS =

Power Watershed with q = 2, p→∞

yields an intensity gi ∈ [0, 1] (after dividing by the maxi-

mum intensity) for each pixel, where higher values corre-

spond to edges recognized by the network. For the edge

weights, we then used

wij = exp
(

−β(gi + gj)
2
)

, (13)

where β is a free parameter.

Figure 2 shows the effect of β on one of the Grabcut

images. Note that for intermediate values of β, e.g. β = 5,

we can see the higher “confidence” of the Karger potential

compared to the random walker potential, as hypothesized

in Section 4.

In addition to the random walker, we also compare to

the watershed segmentation, which has been used for both

seeded segmentation [6] and semi-supervised learning [3].

This segmentation arises from a maximum spanning for-

est that separates the seeds [6]. If there is only one max-

imum spanning forest, both the Karger potential and the

random walker potential converge to this segmentation as

β →∞. The more general case of multiple maximum span-

ning forests is described by the Power Watershed frame-

work [5, 30], which generalizes both the watershed and the

random walker. This framework has two parameters, q and

p, and the case q = 2, p → ∞ is the limit of the random

walker for β → ∞, without any assumptions on the num-

ber of maximum spanning forests. When there is a unique

maximum spanning forest, Power Watershed reduces to wa-

tershed; in particular, this is the case if all the edge weights

are distinct. So we rounded the edge weights to 8 bits to

artificially introduce the edges with equal weight that give

Power Watershed the opportunity to shine relative to wa-

tershed. This leads to 256 different possible edge weights,

exactly as in [5].

Table 1 shows the results on the entire Grabcut dataset.

We optimized β by hand separately for each method and

used the optimal values β = 10 for the Karger potential and

β = 20 for the random walker. However, the performance

of both algorithms is relatively stable within this range of

values. The watershed algorithm does not depend on the

value of β, as long as β > 0. For Power Watershed, we used

β = 10 (though its dependency on β is very low anyway).

The reported error is the standard error of the mean over

the dataset. We used 1000 runs of the seeded segmentation

algorithm to approximate the Karger potential, which made

the approximation error negligible in comparison.

We compare the four methods using the Adjusted Rand

Index (ARI), their classification accuracy and the Variation

of Information (VoI). For ARI and accuracy, higher is better,

for VoI, lower is better. All metrics are calculated only over

the unlabeled pixels.

Figure 3 shows an example of the seeds that were used,

the output of the edge detection network and the resulting

segmentations for each of the four methods, each at their

optimal β values. The results are for the most part very

similar – the segmentations shown here have been selected

because they are visibly different. In the first row, there are

many strong edges and the (Power) watershed follows a dif-

ferent edge than the other methods. In the second row, some

edges are missing and the four methods respond differently

to this “leak”.

The output of the contraction algorithm is only an ap-

proximation of the true Karger potential but the error is so

small that it does not visibly affect the contours of the seg-

mentation.

Semi-supervised learning Here, we used classical

benchmark data from the training set of the USPS hand-

written digits dataset [15, 24]. These are labeled 16 × 16
grayscale images of digits from 0 to 9. We calculated all

pairwise euclidean distances between the images and built

the 10-nearest neighbors graph based on those. The graph

weights were again computed using a radial basis function,

wij = exp

(

−β
d2ij
a2

)

, (14)

with a := max{i,j}∈E dij , where dij are the euclidean dis-

tances.

We used random subsets of different sizes as labeled ver-

tices and left the remaining vertices to be labeled. For each

size of the labeled set, we sampled 20 sets. Table 2 shows

the accuracies over unlabeled data, averaged over these 20

samples. The errors are the standard errors of the sample

mean. As before, the β values were chosen individually for

each method to maximize performance (β = 5 for the ran-

dom walker, β = 2 for the contraction method).

Throughout, we used the scikit-image implementation of

the random walker [38] with slight adaptations to use the

edge weights described above.

Results In all our experiments, the new method based

on the Karger potential performed comparably to the ran-

dom walker / harmonic energy minimization. However,

the new method has significantly better results in the semi-

supervised learning setting with few labeled vertices.
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Figure 2: The probabilistic estimates of the Karger potential, compared to those of the random walker / harmonic energy

minimization, for various graph edge weights.

Figure 3: Some qualitative differences between Karger-type contractions, random walker / harmonic energy minimization

and (Power) watershed. β values are chosen optimally for each method.

Seeds 20 40 100 200

Contraction 62.2± 1.8 73.1± 1.5 89.0± 0.5 92.6± 0.2
RW 53.7± 1.9 68.0± 1.2 87.7± 0.7 92.4± 0.3
Watershed 54.3± 2.0 58.7± 1.9 74.3± 1.0 80.0± 0.9
Power WS 54.4± 2.0 59.0± 1.9 74.7± 1.0 80.8± 0.9

Table 2: Graph-based semi-supervised learning: Accuracies

in % on the USPS dataset. RW = Random Walker, Power

WS = Power Watershed with q = 2, p→∞

6. Conclusion

We have shown that contraction algorithms that are con-

tinuous or that use only local properties of the edges can-

not efficiently solve the s-t-mincut problem or the normal-

ized cut problem to optimality. On the other hand, we have

demonstrated that certain extensions of Karger’s algorithm

can be successfully used for seeded segmentation and semi-

supervised learning tasks: we have presented a contraction-

based algorithm that performs as well as or better than the

random walker / harmonic energy minimization, while hav-

ing an asymptotic time complexity linear in the number of

edges.

Future work might address the question whether contrac-
tion algorithms based on global properties can be useful for
solving the s-t-mincut problem or whether our result can
be extended to an even wider class of algorithms. Another
open question is whether the s-t-contraction algorithm can
find s-t-mincuts quickly on graphs that occur in practice, as
opposed to the “malicious” artificial graphs we used in the
impossibility proofs. Finally, Karger’s algorithm induces a
distribution over spanning 2-forests, similarly to the distri-
bution we describe in Section 4. Future research could shed
more light on this distribution, for example whether it is
uniquely well suited for finding minimum cuts or whether
a Gibbs distribution would yield a result similar to Theo-
rem 1.
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