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Abstract. We present an iterative reconstruction algorithm for binary
tomography, called TomoGC, that solves the reconstruction problem
based on a constrained graphical model by a sequence of graphcuts.
TomoGC reconstructs objects even if a low number of measurements are
only given, which enables shorter observation periods and lower radia-
tion doses in industrial and medical applications. We additionally suggest
some modifications of established methods that improve state-of-the-art
methods. A comprehensive numerical evaluation demonstrates that the
proposed method can reconstruct objects from a small number of pro-
jections more accurate and also faster than competitive methods.

1 Introduction

Limited-data tomography deals with the problem of reconstructing 3D-volumes
or 2D-images denoted by x 2 RN , from a small number of (noisy) projections
given by b = Ax + ⌫ 2 RM . The range of applications for tomography includes
industrial [21] and medical [29] applications. In many situations it is desirable to
reduce the number of required measurements M that are represented by the rows
of the matrix A 2 RM⇥N . If M is much smaller than N , then the reconstruction
problem is ill-posed and regularization is required.

The tomography reconstruction problem can be formulated as a regularized
least squares (1) or a constrained minimization of the regularizer (2).

x

⇤ 2 argmin

x2RN

R(x) + kAx� bk22 (1)

x

⇤ 2 argmin

x2RN

R(x), s.t. b  Ax  b (2)

While problem (1) is searching for a solution that has a low score of the regular-
izer and good data-fidelity, problem (2) is searching in the feasible set (given by
the data-constraints) for the solution with the lowest score of the regularizer.

Early approaches such as filtered back projection (FBP) [7], deal with the
tomography problem by analytical reconstruction methods, which provides rea-
sonably accurate reconstructions in very short times, but usually require many
projection angles. The algebraic reconstruction methods (ARMs) such as ART,
SIRT or SART solve problem (1) without any regularization term R(x). They
fall into the category of row-action methods [10,11] also known as iterated pro-
jection methods for systems of linear (in)equalities. ARMs give better results
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than FBP, but due to the lack of regularization usually the number of required
projections is still large.

For a further reduction of required observations, several regularization tech-
niques have been proposed depending on the prior knowledge at hand. Convex
sparsity promoting priors like `1- or total variation minimization [17], smooth-
ness priors [36] or box constraints conserve the convexity of the overall problem.
Such non-smooth, constrained, distributed and large-scale optimisation problems
can be addressed by proximal algorithms in an unified fixed point theoretical
framework [14,9] as finding solutions to monotone inclusion problems or more
specifically by projections on convex sets [5,8]. In this context the alternating
direction method of multipliers [28] and in particular the Chambolle Pock Al-
gorithm [12], which is a decomposable method for minimizing the sum of two
convex functions subject to linear constraints, can be considered for tomograhic
inversion [31]. Interestingly, the ADMM framework can be adopted also when
considering a non-convex regularization term like the `0-prior as done in [32].
However several questions concerning convergence remain open. For a sufficient
uniqueness condition for the `0-regularized tomographic reconstruction problem
in terms of the image gradient sparsity and the number of tomographic mea-
surements, we refer to [15].

A further reduction of required measurements can be obtained if the range
of x is a finite set. The tomography problems (1) and (2) with the additional
constraint that x 2 {v1, . . . , vK}N is known as discrete tomography problem, the
subject of the present paper. A special case of this problem is binary tomography

where the set is restricted to two possible values (K = 2) for each x

i

, which in
practice occurs e.g. when air pockets in work pieces need to be detected without
destroying the object.

We underline that several heuristics have been designed to intervene be-
tween consecutive steps of a non-binary iterative image reconstruction algorithm
in order to gradually steer the iterates towards a binary solution. Batenburg
et al. suggested a (Soft) Discrete Algebraic Reconstruction Technique known
as (S)DART [4,6], which is a very fast heuristic that starts from a continuous
reconstruction, applies a segmentation step to restrict the reconstruction to the
allowed values, and then restarts the continuous reconstruction on boundary re-
gions of the segmentation, iteratively. While this leads to good results quite fast,
it does not optimize an objective function. In another line of research Batenburg
and Sijbers [2,3] presented an algorithm for the binary tomography problem that
is based on a sequence of minimum cost flow problems. For two projection di-
rections (with non-overlapping rays for each direction) this method is exact. In
the general case, it is a greedy approximation.

An alternative ansatz is to reformulate problem (1) into a discrete graphical
model. For the binary tomography problem (1) this leads to a fully connected
second-order binary model [30]. The multi-label case can be reduced to a se-
quence of such binary problems in a ↵-expansion framework [30]. As this is in
general not sub-modular, Raj et al. [30] have suggested to use QPBO [25] to
solve a relaxation of the problem which give additional persistence certificates.
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The main limitation of this approach is that the number of pairwise terms grows
quadratically with the number of pixels and the complexity of QPBO roughly
grows cubically with the number of pairwise terms in the worst case, which
caused e.g. [30] to consider only restricted projection matrices A. To overcome
this problem, Tuysuzoglu et al. [34] consider local approximations of the non-
sub-modular terms around a working point which is iteratively improved. Similar
methods have been also studied for more general graphical models [16,33].

Weber et al. [36,35] suggested to solve problem (1) by a quadratic pro-
gram. The binary constraints are enforced by iteratively increasing a non-convex
balloon-term that pushes the labels to zeros and ones. The subproblems are
solved by the difference-of-convex-function programming technique that itera-
tively and locally approximates the non-convex part of the objective by an affine
upper bound. While there is no guarantee that this method finds the global
optimum, it generally returns good results.

Gouillart et al. [18] have proposed a belief propagation algorithm for the
discrete tomography problem (1). In order to handle the higher order interactions
induced by the projection constraints, they include Lagrangian multipliers that
enforce that these constraints are fulfilled on average. However, this algorithm
only estimates the marginal distributions, which then are rounded to obtain a
discrete reconstruction.

Outside the application area of tomography, Lagrangian relaxation has been
used amongst others for multicommodity max flow [37], graphical models [26],
and graphical models with a few constraints [27]. While in [26], contrary to our
work, variable duplication is used to relax the problem, [37] and [27] use the
same mathematical idea as we do in the present context of discrete tomography.

Contributions. We present a novel method for solving the binary tomogra-
phy problem, which solves the dual of a relaxation of problem (2) by a sequence of
graphcut problems. The size of these problems scales linearly with the number
of primal variables and, besides the graphcut computation, only a few simple
matrix-vector operations are required. Consequently, the proposed method is
very efficient and scales up well to large data. On the other side, it is mathe-
matically sound and is the only currently available method that provides a lower
bound on the optimal objective value. Furthermore, we provide a comprehen-
sive experimental comparison of state-of-the-art methods, which was lacking so
far in the literature. We also suggest some modifications of standard methods
which improve their performance or are even necessary to make these methods
applicable in all considered scenarios.

2 Constrained GraphCuts for Binary Tomography

We consider problem (2) for K = 2. To ease the presentation, we temporarily
consider the noise-free case where b = b = b and generalize it later on. Without
loss of generality, we assume that v1 = 0 and v2 = 1. We define a grid graph
G = (V,E), with V corresponding to image pixels and E ⇢ V ⇥ V defining the
neighborhood system. As regularization term, we use R(x) :=

P
uv2E

� ·|x
u

�x

v

|,



4 J. H. Kappes, S. Petra, C. Schnörr, M. Zisler

(a) unconstrainted (b) 1 constraint (c) 2 constraints (d) 3 constraints

Fig. 1: Polyhedral illustration of the constrained linear program. In the uncon-
strained case (a), the optimal solution is integral. With one additional con-
strained (b), the LP-solution ( ) and optimal integer solution in the constrained
set ( ) are not identical. When adding another constrained (c), the LP-solution
moves in the interior of the original polytope. By adding more constraints (d),
the feasible set gets smaller and finally the LP solution gets integral.

so the problem at hand is given by

x

⇤ 2 argmin

x2{0,1}|V |

X

uv2E

� · |x
u

� x

v

|, s.t. Ax = b. (3)

Without the additional constraints Ax = b and � � 0, this problem can be
solved as a linear program by relaxing the {0, 1} constraints to [0, 1] constraints
and by representing |x

u

�x

v

| linearly by means of additional auxiliary variables.
This would be even the case if additional unary terms are added [23,13]. However,
in the presence of projection constraints as part of the problem, this is no longer
true, as illustrated in Fig. 1. The relaxed linear program can then have non-
binary solutions.

In order to find efficiently a solution of the relaxed problem (3), we consider
its Lagrangian dual

max

�

min

x2[0,1]|V |

X

uv2E

� · |x
u

� x

v

|+ h�, Ax� bi (4)

=max

�

min

x2[0,1]|V |

X

uv2E

� · |x
u

� x

v

|+ h�, Axi � h�, bi

| {z }
=:g(�)

. (5)

By weak duality, we know that for every feasible primal x and feasible dual value
�, the inequality (6) holds.

X

uv2E

� · |x
u

� x

v

| � g(�) (6)

If the optima x

⇤ and �

⇤ exist, equality in (6) holds (strong duality). If a feasible
finite primal solution exists, then also the dual has a feasible finite solution. In
the case that no feasible primal value exists, the dual problem is unbounded.

As a consequence, if a feasible primal solution exists, then we may solve the
dual problem instead of the primal, followed by recovering a primal solution from
the dual solution.
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Fig. 2: Shows the evolution of the unary data-term A

>
� during the iterations.

After 71 iterations, the data term leads to a duality gap of zero. This illustrates
that after a few iterations, the data term does not change so much any more.

The most simple algorithm to optimize the dual problem (5) is iterative
subgradient ascent with a proper stepsize sequence �

i

. For any � and

x

� 2 argmin

x2[0,1]|V |

X

uv2E

� · |x
u

� x

v

|+ h�, Axi,

a lower bound on the optimal value is given by
P

uv2E

� · |x�

u

�x

�

v

|+h�, Ax

��bi.
For the dual objective g(�) and its subdifferential @g(�), we compute a subgra-
dient by

@g(�) 3 Ax

� � b, x

� 2 argmin

x2[0,1]|V |

X

uv2E

� · |x
u

� x

v

|+ h�, Axi. (7)

The calculation of x� can be further simplified by making use of the relation to
graphcuts [23,13], which guarantees that a binary solution exists, that is globally
optimal. This can be efficiently calculated by a graphcut (max-flow) algorithm.
As long as � > 0, the optimal solution x

⇤ does not depend on the value of �.
Only the optimal dual variable �

⇤ will scale according to �.
An interesting observation is that by optimizing the dual objective, we it-

eratively build up a unary data term A

>
�, as illustrated in Fig. 2. Due to

regularization, the unary terms do not have to be perfect. While a reasonable
data term is found after a few iterations, most of the iterations are required to
close the primal-dual-gap without changing the dual variables much.

The construction of a feasible primal solution is non-trivial. While general
primal construction rules exists [20], these produce an optimal and feasible solu-
tion only in the limit. More advanced methods for solving the dual, for example
bundle methods [22], have a faster convergence and also provide primal esti-
mates. However, a study of those methods is beyond the present work.

As we are interested in binary solutions anyway, we have come up with
the following framework to generate primal solutions. Each subgradient yields
a primal solution x

�. If this solution is feasible and strong duality holds, i.e.

h�, Ax

� � bi = 0, this is an optimal primal solution. If the optimal primal solu-
tion is non-binary, the sub-gradients will oscillate around the non-binary solu-
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Algorithm 1 TomoGC (noise free case)

Require: A 2 RM⇥N

, b 2 RM⇥1

, � > 0, E ⇢ [N ]2

Ensure: v  min
x2[0,1]

N
, Ax=b

P
uv2E

� · |x
u

� x

v

| if feasible
1: initialize: i = 0, � = [0]1⇥M

, x̄ = [0]N⇥1

2: x

� 2 argmin
x2{0,1}|V |

P
uv2E

� · |x
u

� x

v

|+ h�, Axi
3: while (kAx

� � bk > 0 and h�, Ax

� � bi 6= 0) and i < i

max

do

4: � = �+ �

i

(x�) · [Ax

� � b]
5: x

� 2 argmin
x2{0,1}|V |

P
uv2E

� · |x
u

� x

v

|+ h�, Axi
6: if kAx̄� bk > kAx

� � bk then

7: x̄ = x

8: end if

9: i = i+ 1
10: end while

11: x = x̄

12: v =
P

uv2E

� · |x
u

� x

v

|+ h�, Ax� bi

tion. But if the solution is binary and unique, the dual objective will have the
optimal primal solution as subgradient at the optimal dual point.

The pseudocode of our method is given in Alg. 1. In each iteration, we update
the dual variable in the direction of the subgradient. The non-summable dimin-
ishing step length that ensures convergence, is defined by �

i

(x) =

20
(0.1·i+1)·kAx�bk2

,

i 2 N.
Noisy data case. In the case where we have to deal with noise and b < b, we
have to replace Ax� b in eq. 4 and Alg. 1 by max{0, Ax� b}+min{Ax� b, 0}.
The values b and b have to be selected with respect to the noisy measurements
b and the assumed noise level such that a feasible solution exists.

3 Experiments

For our experimental evaluation, we used the binary test-datasets of Weber et al. [35]
and Batenburg and Sijbers [4]. We generated the projection matrices with the
ASTRA-toolbox [1] and simulated parallel projections within the range of 0 and
180 degrees. The width of the sensor-array is 1.5 times the image size and each
sensor has the same size as a pixel. The entries of the projection matrix A are
given by the length of the intersection of the pixels and the rays. We restricted our
evaluation to algorithms that can deal with arbitrary projection matrices and
excluded methods that make additional assumptions such as A 2 {0, 1}M⇥N .
Table 1 lists all methods that we evaluated.

As a baseline for continuous methods we considered Filtered Back Projec-
tion (FBP) [7], Simultaneous Iterative Reconstruction Technique (SIRT) [19],
and a total variation regularized reconstruction with hard projection constraints
(tomoTV) [15]. For the former two, we used the implementation available in
the ASTRA-toolbox, the latter was kindly provided by Denitiu et al..
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shortcut reference label regularization implementation objective

FBP [7] cont. no ASTRA-toolbox -
SIRT [19] cont. no ASTRA-toolbox eq. (1)
tomoTV [15] cont. TV Denitiu et al. eq. (2)
tomoDC [36] binary Potts ours eq. (1)
tomoFTR* [34,16] binary Potts ours eq. (1)
tomoPB* [34,33] binary Potts ours eq. (1)
tomoGC* Sec. 2 binary Potts ours eq. (2)
DART [4] discrete - ASTRA-toolbox -
DART-S* [4] discrete Potts ASTRA-toolbox + TRWS -

Table 1: Compared Methods. Methods marked with * are either novel methods
or extensions of existing methods proposed in the present work.

We furthermore compared to the Discrete Algebraic Reconstruction Tech-
nique (DART) [4]. We used the publicly available implementation of the ASTRA-
toolbox. For the continuous iterative reconstructions we used SIRT. We set the
smoothing intensity and percentage of random points to 0.1, which are the sug-
gested default values, and run DART for 20 iterations. Additionally, we suggest
a variation of the DART method by replacing the elementary nearest neighbor
segmentation of the DART-method by a structured segmentation that also in-
cludes a smoothness-term. In order to be able to deal with multi-label problems,
we used TRWS [24] to solve the segmentation problems. To the best of our
knowledge, this combination of DART and structured segmentation (DART-S)
has not been considered before.

For the binary case, we implemented the difference-of-convex-functions ap-
proach (tomoDC) from Weber et al. [36] which is known to give good results
even with a low number of projections. We used the same parameter setting
as described in [35] and the implementation of the spectral projected gradient
(SPG) method of Mark Schmidt1 for solving the subproblems. When running to-
moDC on the large instances from [4], we observed that the method got stucked
in non-binary equilibriums due to numerical reasons. Because adding some addi-
tional noise as suggested by Weber et al. did not solve the problem, we initialized
tomoDC with the solution of FBP. This resolved all numerical problems for all
our problem instances.

In recent work Tuysuzoglu et al. [34] solve binary tomography problems by
a set of surrogate problems that approximate the original function around the
current solution. The surrogate problems are designed to be solvable by graph-
cut (max-flow) methods. If the best solution of all surrogate problems improves
the original energy, then the current solution is updated accordingly and the
procedure continues, otherwise it stops. The downside of this approach is that
the selection of the surrogate problems in [34] is rather greedy and inefficient.

1
http://www.cs.ubc.ca/~schmidtm/Software/minConf.html

http://www.cs.ubc.ca/~schmidtm/Software/minConf.html
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SIRT tomoTV DART DARTS tomoPB tomoDC tomoGC

3

4

5

6

Fig. 3: Phantom 3 from Weber [35] with no noise

Inspired by this work, we recognize some relations to recent works in the area
of discrete optimization [16,33] which better indicate how to choose these surro-
gate problems. Tang et al. [33] consider all possible surrogate problems (pseudo
bounds) with respect to the free parameter, and find all possible solutions by
parametric max-flow. By using parametric max-flow a greedy selection is only
required if the number of possible solutions is too large - this can be the case
if the current solution is bad. In such a case, we simply greedy-like suppress
nearby solutions. Typically, after a few iterations, the solution is good enough
such that the number of possible solutions is small. We call this method tomog-
raphy with pseudo bounds (tomoPB). A similar approach was suggested by
Gorelick et al. [16] - originally also not applied to tomography problems. They
use also a first-order Taylor expansion as an upper bound of the original func-
tion around the working point. An additional trust region term, based on the
Euclidean distance, enforces solutions in the local region where the objective
function is approximated well. We call this method tomography with fast trust
region (tomoFTR).

A full evaluation of all test-instances is reported in the supplementary ma-
terial. Due to lack of space, we can only show here two examples and some
reconstructions. Fig. 3 and 5 show in the first row the original data and the
sinograms (b) which are measured with k projection angles. Fig. 4 shows the
ratio of wrongly reconstructed pixels and runtime for a different number of pro-
jection angles for two examples. In the noise free case tomoDC and tomoGC
give the best results, but tomoGC is typically one magnitude faster. As shown
in Fig. 3 and 4a, those are able to obtain nearly optimal reconstructions with
only 5 projections. DART-S gives a reasonable result with 5 projections, which
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(a) Phantom 3 from Weber [35] with no noise
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(b) Phantom 3 from Batenburg [4] with noise (SNR

db

= 20)

FBP SIRT tomoTV DART DART-S
tomoFTR tomoPB tomoDC tomoGC

Fig. 4: Exemplary plots for the runtime and pixel accuracy in the noise free
and noisy case for small number of projections. In the noise free case, tomoDC,
tomoTV and tomoGC give the best results, but tomoGC is typically one magni-
tude faster. In the presence of noise tomoTV, DART and DART-S give the best
results, since their greediness/rounding make them robust against noise.

is much better than the original DART method with only slightly increased run-
time. FBP, SIRT, tomoFTR and tomoPB have problems with this small number
of projections and require more projections for reasonable reconstructions.

We also simulated noisy observations by adding Poisson noise to the sino-
grams (b). The reconstruction results shown in Fig. 4b and 5 are obtained with
a signal to noise ratio (SNR) of 20db. None of the problem formulations are
designed to deal with Poisson noise, which is the most realistic approximation
of noise in tomography. DART, DART-S and tomoTV include a rounding pro-
cedure, which removes noise in a greedy way. This seemed to work better than
more sophisticated approaches, like tomoDC or tomoGC, which use a "wrong"
noise model and added some artefacts to fulfill the projection constraints. The
best results are obtained by tomoTV after rounding and DART-S, which again
gives better results compared to the original DART method. In the presence
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SIRT tomoTV DART DARTS tomoPB tomoDC tomoGC

8

12

16

20

Fig. 5: Phantom 3 from Batenburg [4] with noise (SNR

db

= 20)

of noise, tomoFTR got sometimes stucked in local fixed points, and tomoPB
performs better than tomoDC, but worse than tomoGC.

4 Conclusion and Future Work

We presented a new method for efficient binary reconstruction problems. In each
iteration, our method only has to perform simple matrix vector operations and
a graphcut problem of the size of the image/volume. For large-scale problems,
solving the graphcut problem becomes the limiting factor, but efficient parallel
implementations for this problem have been suggested in the recent literature.
Even without this specialized implementations, our method is by more than one
magnitude faster than competitive methods and provides additional theoretical
guarantees, which makes it appealing to be used as a sub-solver within a ↵-
expansion like algorithm, as suggested in [34].

For the generalization to multi-label tomography, we obtained some first
promising results by replacing graph cuts with graphical models, which is equiv-
alent in the binary case. However, in the multi-label case two additional prob-
lems have to be considered. Firstly, the discrete inference problem is no longer
tractable in polynomial time and secondly, the allowed values span a simplex
and no longer live on an one-dimensional space.

In future work, we also plan to replace naive subgradient ascent by the more
advanced bundle method with automatic stepsize choice [22]. This should give a
further speedup and non-binary primal estimates which can be used to suppress
noise similar to tomoTV.
Acknowledgements: Financial support of our research work by the DFG, grant GRK
1653. is gratefully acknowledged.
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