
Active Structured Learning for Cell Tracking:

Algorithm, Framework and Usability

Xinghua Lou1,2, Martin Schiegg1, and Fred A. Hamprecht1

1Heidelberg Collaboratory for Image Processing (HCI),
Interdisciplinary Center for Scientific Computing (IWR),

University of Heidelberg, Heidelberg 69115, Germany,
firstname.lastname@iwr.uni-heidelberg.de

2Computational Biology Center, Memorial Sloan-Kettering Cancer
Center, New York, NY 10065, United States

Abstract

One distinguishing property of life is its temporal dynamics, and it is
hence only natural that time lapse experiments play a crucial role in mod-
ern biomedical research areas such as signaling pathways, drug discovery
or developmental biology. Such experiments yield a very large number of
images that encode complex cellular activities, and reliable automated cell
tracking emerges naturally as a prerequisite for further quantitative anal-
ysis. However, many existing cell tracking methods are restricted to using
only a small number of features to allow for manual tweaking. In this
paper, we propose a novel cell tracking approach that embraces a power-
ful machine learning technique to optimize the tracking parameters based
on user annotated tracks. Our approach replaces the tedious parameter
tuning with parameter learning and allows for the use of a much richer
set of complex tracking features, which in turn affords superior prediction
accuracy. Furthermore, we developed an active learning approach for ef-
ficient training data retrieval, which reduces the annotation effort to only
17%. In practical terms, our approach allows life science researchers to
inject their expertise in a more intuitive and direct manner. This process
is further facilitated by using a glyph visualization technique for ground
truth annotation and validation. Evaluation and comparison on several
publicly available benchmark sequences show significant performance im-
provement over recently reported approaches. Code and software tools
are provided to the public.

This paper is an extended version of our previous conference paper published in the 25th
Annual Conference on Neural Information Processing Systems (NIPS) 2011 [1].



1 Introduction

Even today, cell tracking remains a challenging topic that is under active study
[2, 3], particularly in the context of high-content screening [4] and cell lineage
reconstruction [5–7]. However, manual cell tracking is still predominant in
practice [8] and life science researchers need tools that are accurate, config-
urable and yet require limited manual input [9]. Unlike tracking people or cars
in videos [10], cellular image sequences usually contain large numbers (up to
thousands) of objects which may be densely packed and be indiscernible by ap-
pearance (Fig. 1E). Also, due to physical or experimental limits, the temporal
resolution may be so low that cells appear to be “jumping” between frames,
showing rare spatial overlap (Fig. 1A). In addition, the underlying cellular ac-
tivities may be diverse, including cell division (Fig. 1C&D), cell death, large
deformation (Fig. 1B), leaving/entering the field of view, etc. Taken together,
the estimation of inter-frame correspondences of cells becomes a very difficult
task. Last but not least, the final result of a tracking-by-assignment depends on
the previous cell segmentation/detection step. Despite many encouraging ad-
vances [11–13], segmentation/detection errors are inevitable and will propagate
to tracking errors. This can cause misinterpretation, e.g. an over-segmentation
can easily be mistaken for a cell division (Fig. 1F).

Figure 1: Challenges in cell tracking: A – relatively large displacement; B –
large deformation; C&D – heterogeneous cell division appearance; E – dense and
touching cells; F – segmentation error (over-segmentation). Three consecutive
frames are shown and the boundary of the cells of interest are highlighted.

1.1 Taxonomy of Cell Tracking Methods

Existing cell tracking methods can broadly be categorized as deformable mod-
els, stochastic filtering and object assignment. Deformable models combine
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Figure 2: Overview of our learning based approach. After some segmentation
and tracking feature extraction, we take user’s track annotation to train a cell
tracking model. Active learning is also integrated to reduce the annotation
effort. The trained model is then applied to new sequences.

detection, segmentation and tracking by initializing a set of models (e.g. active
contours) in the first frame and updating them in subsequent frames [14–16].
Large displacements are difficult to capture with this class of techniques and
are better handled by state space models, e.g. in the guise of stochastic filter-
ing. The latter also allows for sophisticated observation models [17]. Stochastic
filtering builds on a solid statistical foundation, but is often limited in practice
due to its high computational demands. Object assignment methods make it
harder to represent object properties, but they scale well [3,18,19], allowing the
tracking of thousands of cells in 3D [20]. For the remainder of this paper, we
concentrate on object assignment, or tracking-by-assignment, methods.

1.2 Machine Learning for Object Tracking

All of the above approaches contain energy terms whose parameters may be
tedious or difficult to adjust. Recently, great efforts have been made to de-
velop better energy terms with the help of machine learning techniques, mostly
in the context of pedestrian tracking and traffic monitoring. Specifically, for
tracking-by-assignment, this was first accomplished by casting tracking as a lo-
cal affinity prediction problem with either offline [21] or online learning [22–24],
weakly supervised learning with imperfect oracles [25], manifold appearance
model learning [26], or ranking [27, 28]. However, these local methods fail to
capture the very important dependency among assignments, hence the result-
ing local affinities do not necessarily guarantee a better global assignment [29].
To address this limitation, [30] extended the RankBoost method from [28] to
rank global assignments represented as a Conditional Random Field (CRF). To
reduce the annotation cost, active learning was also applied, e.g. in the context
of video data labeling [31].

1.3 Advantages of Learning Based Tracking

We believe that a learning based approach has the following advantages over
approaches without learning. Firstly, learning allows users to inject their prior
knowledge in a form or language that is natural to them, namely direct cell-to-
cell assignments between frames. This is more intuitive than specifying numer-
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ical values for parameters whose meaning, or effect, may remain obscure (as in
parametric tracking approaches). Secondly, with learning, adding more anno-
tations allows for systematical improvement of the model. Finally, it enables
the use of very high-dimensional features. Though conventional grid parameter
search is effective for models with low-dimensional features, it becomes inap-
plicable for high-dimensional ones for being too expensive (exponentially many
combinations) and suboptimal (discretization of the parameter space).

1.4 Our Contributions

In comparison to previous cell tracking systems, our method is special in that
it builds on the concept of learning from user annotated tracks. Our major
contributions are as follows. We first present an extended formulation of the
object assignment models that takes many complex tracking features and events
into account. This generalization improves the expressiveness of the model, but
also increases the number of parameters. We hence, secondly, propose to use
max-margin structured learning to automatically learn optimum parameters
from a training set, and hence profit fully from this richer description. Thirdly,
to reduce the high cost of ground truth annotation, we further developed an
active learning approach for efficient training data retrieval. To the best of our
knowledge, this is the first active learning method for cell tracking. Finally, we
share our considerations for a cell tracking framework and its usability, including
design of tracking features, a novel visualization technique for annotation and
validation, and a C++/Matlab software toolbox for the community.

1.5 Paper Organization

The rest of the paper is organized as follows. In section 2, we present the
technical details of our tracking model and the learning algorithms (max-margin
and active). We then share our considerations for feature design, visualization
and software packages in section 3, followed by results in section 4. Finally,
discussion and conclusions are provided in section 5 and section 6, respectively.

2 Algorithms

2.1 Tracking Model: Events, Hypotheses and Scoring

We assume that a previous detection and segmentation step has identified ob-
ject candidates in all frames, see Fig. 2. We set out to find that set of object
assignments that best explains these observations. To this end, we admit the
following set E of standard events [3, 18]: a cell can move or divide and it can
appear or disappear. In addition, we allow two cells to (seemingly) merge, to
account for occlusion or under-segmentation; and a cell can (seemingly) split,
to allow for the lifting of occlusions, or for over-segmentation. These additional
hypotheses are useful to account for the errors that typically occur in the detec-
tion and segmentation step in crowded or noisy data. The distinction between
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division and split is reasonable given that typical fluorescence stains endow the
anaphase with a distinctive appearance.

Figure 3: Toy example: two sets of object candidates, and a small subset of the
possible assignment hypotheses. One particular interpretation of the scene is
indicated by colored arrows (left) or equivalently by a configuration of binary
indicator variables z (rightmost column in table). Some rejected hypotheses are
shown in gray (best viewed in color).

Table 1: Notations for Tracking Model
Notation Definition

x Input data, detected objects from a pair
of subsequent frames

C,C′ Set of objects from the first/second
frame

P(C) P(C) := C ∪ (C ⊗ C), union of C and
all ordered pairs of objects in C

E Set of all possible events

z Tracking result, assignments of objects

fe
c,c′ Feature vector for the assignment of c ∈

P(C) and c′ ∈ P(C′) as event e

we Parameter vector for event e

zec,c′ Binary indicator variable for the assign-
ment of c ∈ P(C) and c′ ∈ P(C′) as
event e

We first define important notations in Table 1. Given sets of detected objects
{C, C ′} from two subsequent frames, there is a multitude of possible assignment
hypotheses, see Fig. 3. We have two tasks: firstly, to allow only consistent
assignments (e.g. making sure that each cell in the second frame is accounted
for only once); and secondly to identify, among the multitude of consistent
hypotheses, the one that is most compatible with the observations, and with
what we have learned from the training data.

We express this compatibility of the assignment between c ∈ P(C) and
c′ ∈ P(C ′) by event e ∈ E as an inner product

〈
fe
c,c′ ,w

e
〉
. Here, fe

c,c′ is a feature
vector that characterizes the discrepancy (if any) between object candidates c
and c′; and we is a parameter vector that encodes everything we have learned
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from the training data. Summing over all object candidates in either of the
frames and over all types of events gives the following compatibility function:

L(x, z;w) :=
∑
e∈E

∑
c∈P(C)

∑
c′∈P(C′)

〈fe
c,c′ ,w

e〉zec,c′ , (1)

where z =
{
zec,c′

}
is a set of binary variables whose element indicates whether

a hypothesis is accepted. The compatibility function L(x, z;w) states how well
a set of accepted hypotheses z matches the observations f(x) computed from
the raw data x, given the knowledge w from the training set.

Eq. (1) is equivalent to:

L(x, z;w) := w′Φ(x, z), (2)

where w is the concatenation of event-specific parameter (wmove,wdivide, . . .)
and Φ(x, z) is the concatenation of event-specific features summed up over all
activated events, which is referred to as joint feature vector [32]:

Φ(x, z) =



∑
c∈P(C)

∑
c′∈P(C′)

fmove
c,c′ zmove

c,c′∑
c∈P(C)

∑
c′∈P(C′)

fdivide
c,c′ zdividec,c′

. . .

 (3)

Furthermore, the selection of z is subject to consistency requirements: each
candidate in the first frame must have a single fate, and each candidate from
the second frame a unique past. That is, for hypotheses associated with the
same candidate, only one of them can be accepted. Formally, we have z ∈ Z, a
space that satisfies the following constraints:

∀c′ ∈ P(C ′),
∑
e∈E

∑
c∈P(C)

zec,c′ = 1, (consistency) (4)

∀c ∈ P(C),
∑
e∈E

∑
c′∈P(C′)

zec,c′ = 1, (consistency) (5)

∀e ∈ E, c ∈ P(C), c′ ∈ P(C ′), zec,c′ ∈ {0, 1}. (booleanity)

As an important technical detail, note that P(C) := C∪(C⊗C) is a set compris-
ing each object candidate, as well as all ordered pairs of object candidates from a
frame. For the example in Fig. 3, P(C) = {c1, c2, c3, {c1, c2}, {c1, c3}, {c2, c3}}.
This allows us to conveniently subsume cell divisions, splits and mergers in the
above equation.

To this end, model inference refers to finding the best z ∈ Z that maximizes
the compatibility function L(x, z;w):

ẑ = arg max
z∈Z

L(x, z;w). (6)
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The remaining tasks, discussed next, are how to learn the parameters w
from the training data; given these, how to find the best possible z; and finding
useful features.

2.2 Structured Max-Margin Parameter Learning

2.2.1 Learning to Track by Risk Minimization

In learning the parameters automatically from a training set, we pursue two
goals: first, to go beyond manual parameter tweaking in obtaining the best
possible performance; and second, to make the process as facile as possible for
the user. This is under the assumption that most experimentalists find it easier
to specify what a correct tracking should look like, rather than what value a
more-or-less obscure parameter should have.

Table 2: Notations for Learning
Notation Definition

X Set of training data

Z∗ Set of ground truth tracking annotations

λ,Ω(w) Regularization strength and regulariza-
tion function

ξn Slack variable for sample n

Zn Space of all possible tracking solutions
(structured) for sample n

Given N training frame pairs X = {xn} and their correct assignments
Z∗ = {z∗n}, n = 1, . . . , N , the best set of parameters is the optimizer of

arg min
w

R(w;X,Z∗) + λΩ(w). (7)

Here, R(w;X,Z∗) measures the empirical loss of the current parametrization
w given the training data X,Z∗. To prevent overfitting to the training data,
this is complemented by the regularizer Ω(w) that favors parsimonious models.
We use L1 or L2 regularization (Ω(w) = ||w||pp/p, p = {1, 2}), i.e. a measure
of the length of the parameter vector w. The L2 norm is often used for its
numerical efficiency, while the L1 norm is popular thanks to its potential to
induce sparse solutions (i.e., some parameters can become zero). The empirical

loss is given by R(w;X,Z∗) = 1
N

∑N
i=1 ∆(z∗n, ẑn(w;xn)). Here ∆(z∗, ẑ) is a

loss function that measures the discrepancy between a true assignment z∗ and
a prediction by specifying the fraction of missed events w.r.t. the ground truth:

∆(z∗, ẑ) =
1

|z∗|
∑
e∈E

∑
c∈P(C)

∑
c′∈P(C′)

z∗ec,c′(1− ẑec,c′). (8)

This decomposable function allows for easy exact inference when solving Eq. (9)
[33]. Note that this loss only penalizes false negatives. We do not explicitly
penalize false positives, because they are already interconnected through the
consistency constraints in Eq. (4) and Eq. (5).
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2.2.2 Max-Margin Structured Learning

Importantly, note that under constraints Eq. (4) and Eq. (5) both the input
(objects from a pair of frames) and output (assignments between objects) in
this learning problem are structured – a set of variables that are interdependent.
We hence resort to max-margin structured learning [32] to exploit the structure
and dependency within the assignment hypotheses. In comparison to other
aforementioned learning methods, structured learning allows us to directly learn
the global affinity measure, avoid generating many artificial false assignment
samples, and drop any assumptions on the signs of the features. Structured
learning has been successfully applied to many complex real world problems such
as word/sequence alignment, graph matching, and image segmentation [34].

In particular, we attempt to find the decision boundary that maximizes the
margin between the correct assignment z∗n and the closest runner-up solution.
An equivalent formulation is the condition that the score of z∗n be greater than
that of any other solution by some margin. To prevent overfitting, one can
relax this constraint by introducing slack variables ξn, which finally yields the
following objective function for the max-margin structured learning problem
from Eq. (7):

arg min
w,ξ≥0

1

N

N∑
n=1

ξn + λΩ(w)

s. t. ∀n,∀ẑn ∈ Zn :
L(xn, z

∗
n;w)− L(xn, ẑn;w) ≥ ∆(z∗n, ẑn)− ξn,

(9)

where Zn is the set of possible consistent assignments and using ∆(z∗n, ẑn) in-
stead of a fixed margin is known as “margin-rescaling” [32]. Intuitively, it pushes
the decision boundary further away from the “bad” solutions with high losses.
Note that the loss in Eq. (9) is ξn = |∆(z∗n, ẑn)− L(xn, z

∗
n;w) + L(xn, ẑn;w)|+,

which is a tight, convex upper bound on the original loss in Eq. (7) (non-convex).

2.2.3 Optimization with Bundle Method

Since Eq. (9) involves an exponential number of constraints, the learning prob-
lem cannot be represented explicitly, let alone solved directly. We thus resort
to the bundle method [35] which, in turn, is based on the cutting-planes ap-
proach [32]. The basic idea is as follows. Start with some parametrization w
and no constraints. At iteration t, first find the optimum assignments for the
current w by solving, for all n,

ẑn = arg maxz∈Zn
{L(xn, z;w) + ∆(z∗n, z)}. (10)

Use all ẑn to identify the most violated constraint, which is a linear lower bound
of the average of the slack variables [35]:

a′tw + bt ≤
1

N

N∑
n=1

ξn, (11)
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where, given Ψ(x, z∗, ẑ) := Φ(x, z∗)− Φ(x, ẑ), we have

at = − 1

N

(
N∑
n

Ψ(xn, z
∗
n, ẑn)

)
, (12)

bt = − 1

N

[
N∑

n=1

∆(z∗n, ẑn) + w′Ψ(xn, z
∗
n, ẑn)

]
−w′at. (13)

We then update w by solving a variant of Eq. (9), which instead uses all
those most-violated constraints (incl. those from previous iterations)

arg min
w,ξ≥0

1

N

N∑
n=1

ξn + λΩ(w)

s. t. ∀i ∈ {1, . . . , t},a′iw + bi ≤
1

N

N∑
n

ξn.

(14)

We then move on to the next iteration: find new best assignments using the
updated w, etc. The procedure converges when those constraints form a tight
lower bound of the original objective function (Eq. (7)), which is measured by
so-called approximation gap ε (see [35] for more details). For a given parameter
w, the optimum assignments can be found by integer linear programming (ILP)
[3, 18,19].

Pseudocode is shown in Fig. 4.

1: Input: D = {(xn, z
∗
n)}Nn=1, ε̂

2: Initialize A = ∅, b = ∅, t = 1, w (randomly)
3: repeat
4: for all (x, z∗) ∈D do
5: Compute ẑ using Eq. 10
6: end for
7: Compute at and bt as in Eq. 12 and Eq. 13
8: Set A = A ∪ at and b = b ∪ bt
9: Update w with A = {a1, . . .}, b = {b1, . . .} (Eq. 14)

10: Compute approximation gap ε
11: Set t = t+ 1
12: until ε ≤ ε̂
13: Output: w

Figure 4: Max-margin structured learning.

2.3 Training Data Retrieval via Active Learning

Given a learning algorithm, training a highly predictive tracking model is still
dependent on the amount and quality of annotated training samples. Unfor-
tunately, the annotation effort is particularly high for our tracking problem –
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hundreds of cells have to be examined and hundreds of events have to be marked
per training sample (a pair of images). Therefore, we introduce an active learn-
ing approach for efficient training data retrieval at a low annotation cost. Our
approach has the following core components: patchification, uncertainty mea-
sure, model update and stopping criteria. We elaborate on the details following
the pseudocode shown in Fig. 5.

1: Input: D = {xn}Nn=1, η̂, T
2: Initialize DL = ∅,DU = D, t = 1, w (randomly)
3: repeat
4: Find x̃ = arg maxx∈DU

q(x,w)
5: Annotate z̃∗

6: Set DU = DU \ x̃
7: Set DL = DL ∪ {(x̃, z̃)}
8: for all (x, z∗) ∈DL do
9: Compute ẑ using Eq. 10

10: Update w = w + Φ(x, z∗)− Φ(x, ẑ)
11: end for

12: Compute average uncertainty q̄t =
1

|DU|
∑
x∈DU

q(x,w)

13: Compute convergence measure η(q̄t−T :t) (Eq. 16)
14: Set t = t+ 1
15: until η(q̄t−T :t) ≤ η̂ or DU ≡ ∅
16: Output: w

Figure 5: Active structured learning with perceptron.

1) Patchification refers to dividing a pair of full images (large, hundreds of
events) into pairs of local patches (small, normally less than 20 cells per frame
with patch size 128 × 128). Then each pair of local patches is considered a
training sample. This certainly breaks the original (large) structure of event
dependency induced by Eq. (4) and Eq. (5). Yet, we will empirically show that
training on patchified samples is just as effective as training on pairs of full
images. We consider patchification a necessary and viable pre-processing step
for active learning. Otherwise, annotating a single sample is already too tedious
and time-consuming, and part of the efforts is wasted on similar and repeated
event patterns.

Note that patchification induces lots of artificial appearances and disappear-
ances at the patch border. We eliminate them by discarding objects that touch
the patch border unless it is the true image border.

2) Uncertainty measure is the very core component of active learning [36].
We propose four different uncertainty measures described in Table 3. They are
direct extensions of uncertainty measures for flat data [37,38] to structured data
as in this paper. As lines 4–6 of Fig. 5 shows, at each iteration, we find the
most uncertain sample (viz. pair of patches) from all unlabeled samples DU and
demand annotation from the annotator. We will compare the learning curves
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of those uncertainty measures in results.

Table 3: List of uncertainty sampling strategy.
Name q(x,w) Formulation and Description
Random Random number between 0 and 1

Scoring exp

(
−max
z∈Z

w′Φ(x, z)

)
where higher value of max

z∈Z
w′Φ(x, z) indicates

higher confidence on the predicted tracking using
existing parameter w.

Best Vs. Worst exp

(
−
(

max
z∈Z

w′Φ(x, z)−min
z∈Z

w′Φ(x, z)

))
where larger margin between those two terms indi-
cates higher confidence towards the best predicted
tracking w.r.t the worst one.

Best Vs. 2nd exp

(
−
(

max
z∈Z

w′Φ(x, z)− max
z∈Z◦

w′Φ(x, z)

))
where maxz∈Z◦ w′Φ(x, z) means computing the
second best scoring and larger margin between those
two terms indicates higher confidence towards the
best predicted tracking w.r.t the second best one.

As technical details, to compute the worst predicted tracking with given w
(see Best vs. Worst, Table 3), we can simply flip the signs of w and call Eq. (6).
Computing the second best tracking (see Best vs. 2nd, Table 3) is a bit more
complicated. Briefly, we first compute the best tracking ẑ using Eq. (6). Then

the second best tracking ˆ̂z can be computed by Eq. (15) which is a variant of
Eq. (6) with one extra constraint. The rational is as follows: 2ẑ−1 transforms all
the 0s in the binary vector ẑ to -1s, so the maximum possible value of 〈2ẑ−1, z〉
is ‖ẑ‖1 and is achieved only when z = ẑ; by forcing 〈2ẑ − 1, z〉 ≤ ‖ẑ‖1 − 1, the
optimizer can never pick ẑ as the optimal solution.

ˆ̂z = arg maxz∈Z L(x, z;w) (15)

s. t. 〈2ẑ − 1, z〉 ≤ ‖ẑ‖1 − 1.

3) Model update refers to updating the model parameter w after receiving a
new annotated sample. Given labeled training set (DL, Fig. 5), a näıve way is
to invoke max-margin structured learning from the previous section (Eq. (9)).
However, this turns out inefficient in practice: max-margin structured learning
is known very expensive (see [32] and our runtime result), which means that
the annotator has to wait a few minutes before proceeding to the next sample.
Therefore, we resort to structured perceptron [39] for model update (lines 8–
11, Fig. 5). Briefly, it makes a one-pass run through all labeled samples and
updates the parameter by incrementally (and locally) adding the gradient, viz.
w = w + ∂w (L(x, z∗;w)− L(x, ẑ;w)) (equivalent to line 10, Fig. 5).
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Theorem 1 Assuming a pool of N unannotated samples, the complexity of the
proposed algorithm in Fig. 5 is O(N2). While the complexity of using max-
margin structured learning for model update is at least O(N3).

Proof: In Fig. 5, at each iteration t (1 ≤ t ≤ N) we need N predictions, among
which N − t predictions are for uncertainty estimation on unlabeled samples
(line 4) and the rest t for model update using labeled sampled (lines 8–11).
This gives TN predictions after T iterations. Since T is a fraction of N , the
overall complexity is O(N2).

In the case of max-margin structured learning for model update (viz. re-
placing lines 8–11 with the algorithm in Fig. 4), [40] shows that, in SVM like
max-margin formulation (incl. structured learning), the number of support vec-
tors scales at least linearly with the number of training samples. Thus, the
complexity of max-margin structured learning is at least quadratic because we
need compute the inner-product of each support vector and each sample. The

overall complexity is then at least
∑
t

[
(N − t) + t2

]
, which amounts to O(N3).

We will discuss other pros and cons in section 2.4.
4) Stopping criteria are another crucial component [36]. We chose a very

popular measure proposed in [41] – the average uncertainty over all remaining
unlabeled samples (see uncertainty measure in Table 3). This does not require
any holdout validation dataset. At iteration t, given a sequence of computed
average uncertainty q̄t−T :t (incl. previous ones), we compute the convergence
measure η using Eq. (16) [42] (lines 12–13, Fig. 5). This convergence measure
drops to a low value when the improvement on average uncertainty remains
minor for several iterations. We stop the active learning when the convergence
measure is below a given threshold or all samples are labeled (line 15, Fig. 5).

η(q̄1:T+1) = |m̂ean(q̄2:T+1)− m̂ean(q̄1:T )| (16)

Here, m̂ean(·) is the robust mean (viz. mean of the elements within the 10%
and 90% quantile).

2.4 A Combined Learning Strategy

Though gaining speed, using structured perceptron for model update has two
drawbacks: lack of regularization and local (thus noisy) gradient update (line
10, Fig. 5). This makes the learned model prone to overfitting and also unstable
in convergence (see results). Therefore, in practice we use a combined approach:
we use active structured perceptron only for training data retrieval and then use
max-margin structured learning to obtain a regularized and globally optimized
model.

3 Framework and Usability

This section covers other important considerations for a cell tracking framework,
including tracking features, visual editing tool and implementation/software.
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3.1 Framework: Design of Tracking Features

The above structured learning for cell tracking allows the use of a much extended
set of features to capture complicated events from different aspects, and thus
boost the tracking performance. Many interesting tracking features have been
proposed in previous work. We borrow some state-of-the-art [18, 19], and also
contribute several new (e.g. Fig. 6). Table 4 shows a categorization of our
tracking features. For a detailed list, please refer to the supporting document.
Note that these features can vary significantly in scale, which makes manual
parameter tuning difficult. Normalization helps, yet can not address the problem
at its root. In the following, we briefly describe the features designed for different
events.

Table 4: Categorization of features.
Type Description
Position difference in position, distance to border, over-

lap with border
Intensity difference in intensity his-

togram/sum/mean/deviation, intensity
of father cell

Shape difference in shape, difference in size, shape
compactness, shape evenness

Others angle pattern, mass evenness, eccentricity of
father cell

Figure 6: Illustration of features: A – angle pattern; B – shape compactness.
Angle pattern measures whether the vectors pointing from the parent cell to
the child cells form an angle close to 180◦. Shape compactness is the ratio of
the total area of two proximate segments (c′1 and c′2) divided by the area of the
convex hull of their union.

3.2 Framework: Implementation and Software Contribu-
tions

Our framework has been implemented using Matlab and C++. The annotation
GUI and active learning are written in Matlab for better interactivity, while the
computation-intensive components such as feature extraction, model inference
and max-margin structured learning are provided in C++. In practice, to reduce
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the search space and eliminate hypotheses with no prospect of being realized,
we constrain the hypotheses to a k-nearest neighborhood (usually k = 4) with
distance thresholding. We use IBM CPLEX1 as the underlying optimization
platform for the ILP and quadratic programming as needed for solving Eq. (9)
[35]. In addition to those tracking features proposed in this paper, the core
library also provides a generic interface for adding additional features using
the factory design pattern. The library also allows for configurable settings for
different applications (e.g. worm tracking, no division event). This enables users
to easily integrate their preferred features. Our software library is available at

http://hci.iwr.uni-heidelberg.de/Staff/xlou/research/tracking.html.

3.3 Usability: Active Learning and Glyph Visualization

The improved usability first attributes to the use of active learning, which ob-
tains the most informative sample to annotate. We further facilitate annotation
by exploiting a visualization technique called “glyph visualization” [43] from the
information visualization community [44]. Briefly, when two frames are placed
side-by-side, instead of drawing arrows (e.g. Fig. 7A, cluttered view) or colored
text (e.g. cell ID, more perception time), we draw two identical markers (viz.
glyphs in the visualization language) at their respective cell centers to repre-
sent an assignment. We make the markers for proximate cells differ in several
primitive attributes such as color and shape, which forms a local pattern. As
a consequence, users no longer need to match cells by arrows or cell IDs but
can use local patterns instead (viz. group by group in Fig. 7B, clean). This
is efficient thanks to our powerful vision system: we instantly recognize and
differentiate local patterns. Furthermore, incorrect tracking is easily discernible
because of the consistency constraints (see Eq. (4) and Eq. (5)), namely a single
error usually provokes a domino effect, leading to a strong perturbation of the
glyph pattern. Important events such as divisions are still highlighted using
arrows; however, being rare, they barely give rise to any visual clutter.

4 Results

We evaluated the proposed approach on five publicly available image sequences,
one from DCellIQ2 [19] and four from Mitocheck3 [45] (referred to as MC1, MC2,
. . .). The datasets differ in illumination, cell density and image compression
artifacts (Fig. 8 and Table 5). The imaging conditions for MC1 to MC4 are
generally consistent, which differ from DCellIQ slightly. Note that re-training
is necessary when applying the proposed approach to datasets with drastically
different imaging conditions.

The GFP stained cell nuclei were segmented using the method in [13], yield-
ing an F-score over 99.3% by counting. Some statistics about these two datasets

1www-01.ibm.com/software/integration/optimization/cplex-optimizer/
2www.cbi-tmhs.org/Dcelliq/files/051606 HeLaMCF10A DMSO 1.rar
3www.mitocheck.org
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Figure 7: Comparison of line visualization and our glyph visualization as as-
signment indicator: A – line visualization, cluttered and errors not obvious; B
– glyph visualization, tends to be cleaner and afford an easier overview.

are shown in Table 5. Note that our tracking approach is not restricted to the
specific segmentation method used. Yet, high quality segmentation is expected
since many tracking features are extracted using segmentation masks.

Figure 8: Selected raw images from DCellIQ (top) and MC4 (bottom). MC4
exhibits higher cell density, larger intensity variability and “blockness” artifacts
due to image compression.

Table 5: Statistics of datasets used in our study
Data Size (X × Y × T ) No. Cells Seg. Acc. Compressed

DCellIQ 512× 672× 100 10664 99.5% No
MC1 1024× 1344× 93 37539 99.6% No
MC2 1024× 1344× 95 19206 99.7% No
MC3 1024× 1344× 95 12872 99.3% No
MC4 1024× 1344× 94 24102 99.3% Yes

4.1 Performance of Max-Margin Structured Learning

This section aims at evaluating max-margin structured learning. Therefore, we
assume that sufficient annotation efforts can be provided. All results in this
section are from models trained on full samples.
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1) Task 1: Efficient Tracking for a Given Sequence

We first evaluate our method on a task that is frequently encountered in prac-
tice: the user simply wishes to obtain a good tracking for a given sequence with
the smallest possible effort. The original graph matching based method on this
sequence by [19] yields a loss of 6.18% (Table 6, 2nd row). The model in [18]
using only two types of features (size and position) reduces this loss to 1.64%
(Table 6, 1st row). A detailed analysis of the error counts for specific events
shows that the method accounts well for moves, but has difficulty with disap-
pearance and split events. This is mainly due to the limited descriptive power of
the simple features used. To understand this limit, we applied our max-margin
structured learning to optimize the model in [18] and obtained a reduction of the
total loss from 1.64% to 0.65% (Table 6, 4th row). This can be considered as the
limit of this model. Note that the learned parametrization actually deteriorates
the detection of divisions because the learning aims at minimizing the overall
loss across all events. Local learning [1] also has a reasonable result (Table 6,
3rd row).

Table 6: Performance comparison on the DCellIQ dataset. The header row
shows the number of events occurring for moves, divisions, appearance, disap-
pearance, splits and mergers. The remaining entries give the error counts for
each event, summed over the entire sequence.

DCellIQ - Event Moves Divisions Appear. Disapp. Splits Mergers Sum Loss
Count 10156 104 78 76 54 55 10523

[18] w/ suggested param. 71 18 16 26 30 12 173 1.64%
Original method [19] - - - - - - - 6.18%a

Local learning by RF [1] 18 14 2 0 12 13 59 0.55%
[18] w/ our learning 21 25 5 5 6 10 72 0.65%

Ours w/ manual tweaking 56 24 16 19 2 5 122 1.12%
Ours w/ learning 15 6 4 1 2 6 34 0.30%

aHere we use the best reported error matching rate in [19] (similar to our loss).

Our model contains 38 features and thus manual tweaking becomes difficult
(Table 6, 5th row). However, the proposed structured learning allows our model
to fully profit from this richer description and achieve a total loss of only 0.30%
(Table 6, 6th row). More precisely, our model only missed 34 events which is
much lower than the rest. Some example assignments are shown in Fig. 9.

The learned parameters are summarized in Fig. 10. They afford the following
observations: Firstly, features on cell size and shape are generally of high im-
portance, which is in line with the assumption in [18]. Secondly, the correlations
of the features with the final assignment score are automatically learned. For
example, shape compactness is positively correlated with split but negatively
with division. This is in line with the intuition that an oversegmentation con-
serves compact shape, while a true division pushes the child cells far away from
each other (in the present kind of data, where only DNA is labeled). Finally,
many features are associated with large weights, which is key to the improved
expressive power.
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Figure 9: Some diverging assignments by [18] (top) and our approach (bottom):
A – missing a false division event; B – split mistaken for division; C – false
merger and move event. Color code: move – glyph visualization; red – division;
green – split; blue – merger (best viewed in color).

Figure 10: Parameters w learned from the training data. Parameters weighing
the features for different events are colored differently. The parameter values
indicate the correlations of the features with the respective event, i.e. the impor-
tance of each feature for the according event is measured by the absolute value
of its weight parameter. Note that the correlation can be positive or negative.

2) Task 2: Tracking for High-Throughput Experiments

The experiment described in the foregoing draws both training and test samples
from the same time lapse experiment. However, in high-throughput experiments
such as in the Mitocheck project [45], it is more desirable to train on one or a few
sequences, and make predictions on many others. To emulate this situation, we
have used the parameters w trained in the foregoing on DCellIQ [19] and used
these to track the Mitocheck dataset, without further training or refinement of
the parameters. The main focus of the Mitocheck project is on accurate de-
tection of mitosis (cell division). Despite the difference between those datasets,
our method shows a high generalization capability and obtains an average to-
tal loss of 0.59% ± 0.33%, see Table 7. The relatively degraded performance
on MC4 stems from the fact the video sequence is compressed which eventu-
ally yields noisy tracking features (e.g. blockness, intensity loss). Our method
consistently outperforms [18] even if their parameters are optimized using our
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learning algorithm.

Table 7: Performance comparison on the Mitocheck datasets. The method was
trained on the DCellIQ dataset. The header row shows the number of events
occurring for moves, divisions, appearance, disappearance, splits and mergers.
The remaining entries give the error counts for each event, summed over the
entire sequence.

MC1 - Event Moves Divisions Appear. Disappear. Splits Mergers Sum Loss
Count 35845 465 363 335 174 217 37399

[18] w/ our learning 50 66 30 36 109 63 354 1.04%
Ours w/ learning 30 23 30 30 56 30 199 0.56%

MC2 - Event Moves Divisions Appear. Disappear. Splits Mergers Sum Loss
Count 18957 195 59 99 90 78 19478

[18] w/ our learning 17 69 7 3 43 10 149 0.82%
Ours w/ learning 10 10 7 3 17 10 57 0.24%

MC3 - Event Moves Divisions Appear. Disappear. Splits Mergers Sum Loss
Count 12493 118 105 78 109 102 13005

[18] w/ our learning 13 40 7 13 69 20 162 1.13%
Ours w/ learning 7 20 7 10 23 13 80 0.56%

MC4 - Event Moves Divisions Appear. Disappear. Splits Mergers Sum Loss
Count 22520 384 310 304 127 132 23777

[18] w/ our learning 102 92 49 35 79 21 378 1.44%
Ours w/ learning 109 22 57 33 48 9 278 1.03%

Fig. 11 shows the trajectories of lineages extracted from MC4. The back-
ground shows the maximum intensity projection through the image sequence.
Each lineage is associated with a unique color – the root is indicated with a
circle and all its descendants are colored the same. We see heterogeneous mi-
grations and expansions, and cells are generally growing towards empty space
in the field of view.

3) On Mitosis Event Detection: Specific vs. Conjunctive

Cell division, or mitosis, usually draws particularly high attention from life
science researchers. Methods have been developed to specifically detect this
event [45, 46]. We show that mitosis detection can be improved if it is consid-
ered in conjunction with other events, as is done in our approach. With appro-
priately learned features, we can significantly reduce ambiguity and eliminate
false positives. For the DCellIQ sequence which is partially used for training,
we successfully detected 98/104 events (see Table 6). For the more challenging
MC4 dataset (for testing only), we correctly found 94.3% of 384 mitotic events.

4.2 Performance of Active Structured Learning

Knowing that we can train a highly predictive cell tracking model given sufficient
training data, we now evaluate our active learning for annotation cost reduction.

1) Justification of Patchification: As a strong prerequisite for the success
of active learning, we first need to justify patchification. We made a direct
comparison by applying regularized max-margin training on full samples (pairs
of full images) and on their respective patchified samples. Training samples are
sampled from DCellIQ and the test data is MC4. After 10 repeated experiments,
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Figure 11: Trajectory of lineages (best viewed in color).

the test error for training with patchified samples is 1.10 ± 0.01 (unit: %),
which is comparable to that of full samples: 1.08 ± 0.01 (unit: %). Note that
patchification is only applied to training data and the test data is not patchified.

2) Uncertainty Measures and Stopping Criteria: Using 660 patchified train-
ing samples from the DCellIQ dataset, in Fig. 12 we compare the learning curves
(viz. average uncertainty) of the four uncertainty measures upto 50% of the to-
tal training samples. Best vs. Worst is stably converging at the beginning but
has a second wave of significant changes after 16% of total training samples.
The same applies to Scoring but the changes of average uncertainty are more
drastic. Best vs. 2nd appears to be the best performing one: it converges to
a stable state after 17% of total training samples. Regarding stopping criteria,
Random is excluded because it is not suitable for the uncertainty convergence
measure η (Eq. (16)). To compute η, we chose T = 80 and used 10−4 as the
stopping threshold. As the embedded figure in Fig. 12 shows, they all stop at
around 17% of training data (Best vs. Worst is a bit earlier).

To further understand the learning curve in a practical setting, we tested
all intermediate learned parameter w of the active learning process on MC4,
respectively for all uncertainty measures. The result in Fig. 13 further supports
our choice of Best 2nd not only because of its superiority in stability but also
for its lower test error. Note that this observation is in line with the principle
of max-margin.

The second wave in the learning curve of Scoring and Best vs. Worst sug-
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Figure 12: Comparison of uncertainty measures: average uncertainty vs. per-
centage of training data. The embedded figure shows the uncertainty conver-
gence η vs. the percentage of training data.

gests that there are two principle cohorts in the training datasets. Both Scoring
and Best vs. Worst get stuck in choosing samples mostly from one cohort and
consequently make the trained model overfit to this cohort. This is recognized
only when the overfitting is too severe and the second cohort becomes dominant
in the remaining unlabeled samples, namely the beginning of the second wave.
Best vs. 2nd is more robust against this issue.

3) Runtime: In practice, using structured perceptron for model update yields
pleasant runtime. Across iterations it requires (stably) less than 9 seconds
to perform model update and uncertainty computation. We consider this a
tolerable delay. The final max-margin structured learning run takes between
150 and 200 seconds. Note that this runtime is dependent on the hardware
specification of the computer because the underlying solver CPLEX can run the
branch-and-bound ILP algorithm in parallel. We used a 2.4 GHz Intel Xeon
machine with 12 cores.

4.3 Performance of Combined Learning

We discussed that the purpose of active learning is to retrieve informative train-
ing samples while the truly useful model has to be learned via regularized max-
margin learning. Table 8 shows the result of this combined learning strategy
(CL) using 17% (viz. the stopping point by the convergence measure), 30%
and 40% of training samples, compared against the active learning (AL) out-
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Figure 13: Comparison of uncertainty measure: test error vs. percentage of
training data.

put. This affords the following observations. Firstly, using the same amount of
training samples, regularized max-margin learning generally improves the out-
put of active learning. Secondly, Best vs. 2nd performs better than the other
uncertainty measures. Finally (and most importantly), using Best vs. 2nd as
uncertainty measure and using only 17% of the training samples, we can train
a tracking model as competent as the baseline model learned from all samples
(last line, Table 8).

4.4 Hyperparameter Optimization

Here we discuss the selection of key hyperparameters used in the regularized
max-margin structured learning.

Table 8: Evaluation of Combined Learning – Unit %
17% 30% 40%

Measure AL CL AL CL AL CL
Random 1.77 1.66 2.14 1.53 2.43 1.31
Scoring 3.72 1.78 2.79 1.73 1.80 1.11

Best vs. Worst 2.73 2.23 2.73 3.06 3.72 1.36
Best vs. 2nd 1.33 1.08 1.26 1.06 1.29 1.09

Baseline 1.07
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First, we optimize the regularization parameter λ via cross validation (5-
fold). It turned out that the regularization paths [47] for training with full
samples and training with patchified ones are quite distinct (Fig. 14). In prac-
tice, we chose λ = 1 for the former and λ = 10−3 for the later.

Second, the approximation gap ε controls the precision of approximating
the learning objective function with piece-wise linear lower bounds (see Fig. 4
and [35]). A lower value means higher precision yet also more computation time
(see the embedded figure in Fig. 15 about runtime). We optimize this parameter
via empirical tests on a holdout validation dataset (MC4 in this case). As Fig. 15
shows, ε = 10−3 is sufficient for both training settings and any higher precision
does not increase the test performance.

Figure 14: Generalization error vs. reg-
ularization parameter λ.

Figure 15: Test error vs. approxima-
tion gap ε.

4.5 Additional Results

For other results such as sensitivity to training data size and sparse feature
selection via L1 norm, please refer to the supporting document or [1].

5 Discussions

As all detection/segmentation based tracking, our approach also relies on the
quality of segmentation, and we consider its major limitations as follows. Firstly,
it cannot recover missing detections. This can be addressed by, for example,
extending the technique from [48] which is a global model covering the entire
sequence. Our learning approach can be adopted to learn this global tracking
model, yet this can be prohibitively expensive. A more viable strategy is to
train on pairwise models as in this paper, yet perform the tracking globally
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using the global model. Secondly, our model cannot handle overly segmented
objects. This can be alleviated by improving the segmentation. However, a
single segmentation cannot always suffice. For example, tuning the segmentation
towards less over-segmentation may lead to more under-segmentation. A better
solution is to use multiple segmentations that are complementary to each other
(e.g. from multiple scales), and model the selection of segmentations jointly
with the tracking.

6 Conclusions & Future Work

We present a new cell tracking scheme that uses many expressive features and
comes with a structured learning framework to train the larger number of pa-
rameters involved. We further propose an active learning approach for efficient
training data retrieval that, empirically, reduces the annotation cost to only
17%. Comparison to related methods shows that this learning scheme brings
significant improvements in performance and usability.
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